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 Letter to the Editor

Stenotrophomonas maltophilia, which is still defined as an 
organism of limited pathogenicity, has risen prominently as a 
nosocomial pathogen. Despite the increase in the spectrum of 
clinical syndromes associated with S. maltophilia, very little is 
known about the extracellular enzymes profile, pigment pro-
duction and motility patterns which may have potential roles in 
pathogenesis. In this study, we screened and compared an array 
of extracellular enzymes in S. maltophilia collected from inva-
sive and non-invasive clinical specimens by substrate plate assays. 
We also grouped the isolates as device related and non-device 
related and compared the enzyme profile. Our study showed all 
clinical isolates irrespective of source produced substantial lev-
els of enzymes assayed, produced melanin and exhibited swim-
ming and swarming motility pattern. These data suggests clinical 
isolates of S. maltophilia is a reservoir for pathogenic potential 
enzymes.

Stenotrophomonas maltophilia plays a major role as an 
opportunistic pathogen in immunocompromised individuals. 
Despite not yet being recorded as a highly virulent bacterium, 
S.  maltophilia is often isolated from serious human infection.1 
High rates of isolation in immunocompromised patients, 
increasing multidrug-resistant strains, and lack of controlled 
clinical treatment trials makes this bacterium a cause of serious 
concern.2-5 S. maltophilia is frequently isolated from clinical 
specimens and is implicated in catheter-related bacteremia 
and septicemia, urinary and respiratory tract infections, and 
endocarditis.6-8 In most cases, S. maltophilia cause infection in 
patients with the assistance of invasive medical devices than in 
healthy host.9

Despite its clinical relevance, very little is known about the 
pathogenic mechanism of infections. Secretion of enzymes, 
namely proteinases, lecithinases, gelatinase, lipases, and DNase, 
biofilm formation, hemolysis, and motility are few properties that 
pathogenic microbes possess in order to establish an infection. 
These enzymes are considered virulent as they damage the host 
tissues making the host permissive for infection.10,11

Although studies have implicated the ability of S. maltophilia 
to attach to mammalian cells, form biofilms and produce large 
number of extracellular enzymes,12-14 the presence of these factors 
in clinical isolates and its correlation with isolates recovered 

from different anatomical sites are not clear. Therefore, the main 
aims of the present study were to screen for the production of 
extracellular enzymes (protease, lipase, lecithinase, gelatinase, 
deoxyribonuclease [DNase], hyaluronidase, hemolysin) by 
S. maltophilia isolates, to compare the enzyme profiles of invasive 
(e.g., blood and cerebrospinal fluid) and non-invasive (e.g., 
sputum, tracheal aspirate, wound infection, and urine) isolates 
and also in device and non-device related isolates.

A total of 108 S. maltophilia clinical isolates collected from 
patients admitted for various underlying diseases in tertiary care 
hospitals in the central region of Malaysia were investigated. 
Isolates were confirmed as S. maltophilia by lavender green 
colonies on blood agar, motility test, and standard biochemical 
assays such as DNase, catalase and oxidase activities. The isolates 
were genotypically confirmed by species specific polymerase 
chain reaction (PCR) that targeted the 23s RNA. The isolates 
were further reconfirmed using the VITEK® Mass Spectrometry 
System and an array of 64 biochemical assays. S. maltophilia 
ATCC 13637 (clinical strain) and S. maltophilia LMG 959 
(environmental strain) from Belgian Coordinated Collections 
of Microorganisms (BCCM) was used as control. These study 
isolates were further classified as invasive or non-invasive based 
on the anatomical site of isolation. Invasive isolates included 
in the study were those that were isolated from sites such as 
peripheral blood and cerebrospinal fluid. Non-invasive isolates 
were those that were isolated from sites such as tracheal aspirate, 
sputum wound infections, swabs, and pus.

All isolates were screened for the secretion of a panel of 
extracellular enzymes such as DNase, gelatinase, hemolysin, 
heparinase, hyaluronidase, lecithinase, lipase, and proteinase; 
pigment production, which includes melanin, fluorescein, and 
pyocyanin; and ability to form biofilm and motility patterns. 
The enzyme activity was evaluated by spot (2-mm) inoculations. 
All substrate plate assays were incubated for 48 h at 37 °C unless 
otherwise specified.

For DNase agar test, 0.01% toluidine blue was used to 
determine DNase production after 72 h of growth at 37 °C. 
DNase activity was indicated by the formation of a large pink 
halo around an inoculum spot.15 Modified DNase tube test was 
also employed to evaluate the DNase production as described 
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earlier. Clearing of the genomic DNA band was considered to 
be a confirmatory test.16 For gelatinase test, organisms were 
inoculated on 0.4% gelatin agar. The plates were incubated at 
37 °C for 24 h followed by which the plates were flooded with 
mercuric chloride solution. Appearance of opaque zone around the 
inoculum showed positive results.17,18 Hemolysis was determined 
on trypticase soy agar containing 5% sheep blood.19 Heparinase 
production was tested by diluting heparin in distilled water to 
a final concentration of 5 U/ml followed by filter sterilization 
(0.45 pM) before dispensing 20 μl into 96-well micro titration 
plate; each well contained 30 μl of the test bacteria, incubated 
overnight at 37 °C. Twenty microliters of aqueous toluidine blue 
0.01% was added to each well. Blue color indicated positive result, 
while pink indicated negative.20 Hyaluronidase production was 
evaluated by incorporation of aqueous solutions of hyaluronic 
acid into Muller Hinton agar supplemented with bovine serum 
albumin (final concentration, 1%). After being inoculated and 
incubated for 48 h, each plate was flooded with 2 N acetic acid, 
which was removed after 10 min. The appearance of a clear zone 
around the inoculum indicated presence of hyaluronidase.21 For 
lecithinase, 10 ml of the 50% egg yolk was added to 90 ml of 
sterilized tryptic soya agar. A white precipitate around or beneath 
an inoculum spot indicated lecithinase formation.10,22 Lipase 
activity was detected by the appearance of a turbid halo around 
the inocula on trypticase soy agar plates supplemented with 
1% Tween 80.23 Proteinase activity was evaluated using casein 
hydrolysis and was tested on Mueller–Hinton agar containing 
3% (w/v) skimmed milk . The presence of a transparent zone 
around the inoculum spot indicated a positive test.10,24

For melanin production, bacteria were grown on l-tyrosine 
containing agar plates to observe the brown pigment produced.25 
Brown color pigmentation is considered positive. Pyocyanin 
was tested by using Bacto Pseudomonas Agar P. The pyocyanin 
production is promoted by glycerol which is the source of energy 
while magnesium chloride and potassium sulfate enhances 
the intensity of pyocyanin produced.26,27 Positive results were 
indicated by a bluish-green pigment that diffuses into the agar 
under UV light (366 nm).10 For fluorescein, Bacto Pseudomonas 
Agar F is utilized. The presence of dipotassium phosphate increases 
the phosphorous content and magnesium sulfate provides 
essential ions whereby enhances the fluorescein production.27 
Under UV light (366 nm) a greenish yellow fluorescent pigment 
in the colonies and surrounding medium indicates fluorescein 
production.10 For all pigments, the intensities were scored as 0, 1+, 
2+, or 3+ manually in a semi-quantitative way. Intensity greater 
than 2+ was considered as high pigment-producing strain.28

For biofilm assay the bacteria were grown overnight with 
agitation, the optical densities at 600 nm were standardized to 
2, and the cultures were diluted 1:100 in Luria bertani (LB) 
broth. Aliquots (100 μl) were added to a 96-well plate, incubated 
for 24 h at 37 °C. Upon complete growth, the inoculums were 
discarded and washed three times with water. The plates were 
then incubated with crystal violet for 15 min, followed by 3 rinses 
with water (30 s each). Finally the biofilms were dissolved with 
95% ethanol and transferred to fresh 96-well plate to measure the 
absorbance at 540 nm. Each sample was tested in triplicate.29 The 

cutoff was defined as three standard deviations above the mean 
optical density of control (ODc).30 Each isolate was classified 
as follows: weak biofilm producer OD ≤ 2 × ODc, moderate 
biofilm producer OD ≤ 4 × ODc and strong biofilm producer 
OD > 4 × ODc.31

Motility patterns of S. maltophilia were determined by 
examining its ability to diffuse in soft agar plates. For swimming 
test, tryptone broth (10 g/l tryptone/5 g/l NaCl) that contained 
0.3% (w/v) agarose was used. Swim plates were inoculated with 
bacteria from an overnight culture in LB agar (1.5%, w/v) plates 
at 37 °C with a sterile toothpick. The plates were then wrapped 
with saran wrap to prevent dehydration and incubated at 30 
°C for 12–14 h. For swarming test, the media used consisted 
of 0.5% (w/v) bacto-agar with 8 g/l nutrient broth, to which 
5 g/l glucose was added. Swarm plates were typically allowed 
to dry at room temperature overnight before being used. For 
twitching motility test, LB broth (10 g/l tryptone/5 g/l yeast 
extract/10 g/l NaCl) solidified with 1% (w/v) granulated agar 
was used. Twitch plates were briefly dried and isolates were stab 
inoculated with a sharp toothpick to the bottom of the petri 
dish from an overnight-grown LB agar (1.5%, w/v) plate. After 
incubation at 37 °C for 24 h, motility patterns were determined 
by measuring the zone of motility in the agar.32 All experiments 
were conducted in triplicates. The data was analyzed using 
graph pad prism version 5.0. Values were considered significant 
when P < 0.05.

As summarized in Table  1 enzymatic profile indicates that 
most of the isolates irrespective of being invasive or non-invasive 
secreted all of the major enzymes that are known to destroy cell 
components such as membranes and proteins. Figure  1 shows 
some of the assays that were tested for S. maltophilia isolates.

DNase, gelatinase, hemolysin, lipase, and proteinase activity 
were observed in all isolates studied. None of the urine isolates 
exhibited lecithinase, hyaluronidase, and heparinase activity. 
While isolates from most of the anatomical sites showed activity, 
19.1% of tracheal aspirate and 56.5% of blood isolates, lecithinase 
secretion was observed to be absent. Among all enzymes assayed, 
heparinase showed variation based on the anatomical sites of 
isolates; 71.4% tracheal aspirate, 69.2% blood, 66.6% CSF, 80% 
sputum, and 69.2% wound infection were found to be positive. 
For pigment production, melanin was produced by majority of 
the invasive (91.1%) and non-invasive (95.2%). Pyocyanin and 
fluorescein were not observed by any of the isolates.

As depicted in Table  2, all isolates were biofilm producers 
with varied intensities. While majority of the isolates were low 
biofilm producers (80% invasive and 82.5% non-invasive), some 
showed a very strong biofilm formation (20% invasive and 17.5% 
non-invasive). With respect to motility, all isolates were found 
to be motile. Among the three modes of motility pattern tested, 
swimming and swarming were commonly seen, while twitching 
was not prominent.

When isolates were classified as device related and non-
device related, as observed for anatomical sites, most of the 
enzymes were secreted by all isolates. Heparinase was found to 
be produced by slightly more number of device-related isolates 
(73.2%) than non-device-related ones (62.1%). In contrast, 
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lecithinase was observed more among non-device-related isolates 
than device-related ones. However, both enzymes did not show 
any significant (P > 0.05) association with source of isolation. As 
observed in Table 2, significant association was also not observed 
in melanin and biofilm formation.

The striking increase in S. maltophilia infections with broad 
spectrum of clinical syndromes and with greater risk of death 
especially among immunocompromised and hospitalized patients 
has prompted an intense search for the underlying virulence 
determinants. To date, virulence factors of S. maltophilia is very 
minimally defined. It is very certain that S. maltophilia which 
is basically an environmental microbe would express pool of 
virulence determinants to establish itself as a successful clinical 
pathogen. Here, we performed a comprehensive screening of 
pathogenic determinants and extracellular enzymes secretion in 
clinical isolates of S. maltophilia. Our results clearly indicated 
that unlike environmental strain (LMG 959) clinical isolates of 
S. maltophilia is capable of producing a variety of extracellular 
enzymes and most of these enzymes are of known pathogenic 
potential.33,34

Proteinases plays an important role in invasiveness, host tissue 
damage, and evading host-defense.35 Extracellular lipases help 
bacteria to thrive in a carbohydrate restricted environment where 
lipids are the sole carbon source23,36 and enable in adhering to 
host tissue.37 Lecithinase enzyme modulates the host immune 
system38 and play roles in cell-to-cell spread as seen in Listeria 
monocytogenes pathogenicity.39 Hyaluronidase facilitates tissue 
invasion.40 Heparinase plays import role in the digestion of 
extracellular matrix of the host tissues (mainly related to the 
respiratory organs) which enhances the invasiveness of the 
pathogen41 DNase evade the innate immune response in the 
host by degrading neutrophil extracellular traps (NETs) and 
also has the capability to kill bacteria by interfering with DNA 
synthesis.42,43

Although S. maltophilia is frequently associated with 
respiratory infections, like most other nosocomial pathogens, it is 

Table 1. Enzymatic profiles for clinical isolates from different anatomical sites as well as device-related and non-device-related isolates

Frequency among clinical isolates (n = 108)

Enzymes
Tracheal aspirate 

(n = 42)
Blood  

(n = 39)
CSF (n = 6)

Sputum 
(n = 5)

Wound infection 
(n = 13)

Urine 
(n = 3)

Device-related 
(n = 71)

Non-device-
related (n = 37)

Dnase 42 (100) 37 (94.8) 6 (100) 5 (100) 13 (100) 3 (100) 71 (100) 69 (97.1)

Gelatinase 42 (100) 39 (100) 6 (100) 5 (100) 13 (100) 3 (100) 71 (100) 37 (100)

Hemolysin 42 (100) 39 (100) 6 (100) 5 (100) 13 (100) 3 (100) 71 (100) 37 (100)

Heparinase 30 (71.42) 27 (69.2) 4 (66.6) 4 (80) 9 (69.2) 0 52 (73.2) 23 (62.1)

Hyaluronidase 42 (100) 39 (100) 6 (100) 5 (100) 13 (100) 0 71 (100) 37 (100)

Lipase 42 (100) 39 (100) 6 (100) 5 (100) 13 (100) 3 (100) 71 (100) 37 (100)

Lecithinase 34 (80.95) 17 (43.5) 6 (100) 5 (100) 13 (100) 0 49 (69) 27 (73)

Proteinase 42 (100) 39 (100) 6 (100) 5 (100) 13 (100) 3 (100) 71 (100) 37 (100)

Pyocyanin 0 0 0 0 0 0 0 0

Fluorescein 0 0 0 0 0 0 0 0

Clinical isolates collected from various anatomical sites such as tracheal aspirate, blood, cerebrospinal fluid (CSF), sputum, wound swabs, and urine showed 
significant variation for heparinase and lecithinase. None of the urine isolates secreted the hyaluronidase enzyme.

Figure  1. Enzymatic profile of S. maltophilia isolates. (A) SM ATCC, 
(B) clinical isolate of S. maltophilia; (C) S. maltophilia LMG 959 (environ-
mental isolate). When (A–C) were compared, for all tested properties, 
(C) (environmental strain) showed comparatively less activity.
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also isolated from different body sites or clinical specimens such 
as blood, urine, wound swabs, sputum, CSF, etc. The growth 
of S. maltophilia from non-sterile sites is sometimes difficult to 
interpret and is not used as a proof of infection. Hence isolation 
from sterile sites (e.g., blood, CSF), usually represents true 
infection. In this study we compared invasive (e.g., blood, CSF), 
and non-invasive (urine, tracheal aspirate, wound swab, sputum) 
isolates for the production of pathogenic determinants. Among 
all enzymes tested lecithinase, hyaluronidase, and heparinase 
were not detected in urine sample. Heparinase activity was 
found more among sputum and tracheal aspirate. Heparinase 
bind with heparin sulfate (substrate for heparinase) which is a 
component of the proteoglycans present in bronchial airways 
in the extracellular matrix and transmit pathologic processes 
leading to tracheobronchial infection.44

Production of pigments like melanin protects bacteria from 
host defense mechanism and against environmental insults.45 
Although S. maltophilia is an inevitable pathogen among the 
immunocompromised patients, melanin production and the 
ability to form biofilms may enhance its protection from host 

defense mechanism. Melanin production and biofilm forming 
property has also shown to have association with antibiotic 
resistance in S. maltophilia.46

S. maltophilia infection is usually mediated by the device 
or lines attached to the patients, for example breathing tubes 
such as endotracheal or tracheostomy tubes, ventilators and 
indwelling urinary catheters. Hence we compared isolates from 
device related and non-device related infectious to observe any 
differences in the virulence determinant profiles. No significant 
difference in any of the virulence determinant tested indicated, 
all clinical isolates could be reservoir for pathogenic potential 
determinants.

In conclusion, from the present study, it is clear that 
S.  maltophilia irrespective of whether invasive or non-invasive, 
device-related or non-device-related is capable of producing 
virulence potential extracellular enzymes, which might play 
major roles in pathogenicity.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Table 2. Production of melanin, biofilm, and motility profile of clinical isolates of S. maltophilia

Melanin Biofilm Motility

Positive Negative High Low Motile Non-motile

Invasive (n = 45) 41 (91.1) 4 (8.8) 9 (20) 36 (80) 100 0

Non-invasive (n = 63) 60 (95.2) 3 (4.7) 11(17.5) 52 (82.5) 100 0

Device-related (n = 71) 65 (91.5) 6 (8.4) 14 (19.7) 57 (80.2) 100 0

Non-device-related (n = 71) 36 (97.2) 1 (2.7) 7 (18.9) 30 (81) 100 0

Neither invasive nor non-invasive isolates showed significant difference in the melanin production and biofilm formation.
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