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Extra Views

Recently we published two inde-
pendent studies describing novel 

gene expression-based classifications of 
colorectal cancer (CRC). Notably, each 
study stratified CRC into a different 
number of subtypes: one reported 3 sub-
types, whereas the second highlighted 5. 
Given that each ascribed clinical signifi-
cance, distinctive biology, and therapeu-
tic prognosis to the different subtypes, 
we sought to reconcile this apparent 
incongruity in subtype stratification of 
CRC, and to interrelate the results. To do 
so, we each evaluated the other’s data sets 
and analytical methods and discovered 
that the subtypes and their classifiers 
are, in fact, clearly related to each other; 
indeed, the 5 subtype outcomes can be 
coalesced into the same three. In addition 
to presenting this clarification, we briefly 
discuss how both classification methods 
can be viewed within the broader litera-
ture on CRC subtypes, and potentially 
applied.

Introduction

Recently our groups concurrently pub-
lished 2 independent studies describing 
novel gene expression-based classifications 
of colorectal cancer (CRC).1,2 In the study 
of De Sousa E Melo et al., 3 different types 

of CRC (CCS1-CIN, CCS2-MSI, and 
CCS3-serrated) were identified that were 
differentiated by their genetic and clinico-
pathological characteristics1 (Fig.  1A). In 
the second study, Sadanandam et al. iden-
tified a classification of CRC into 5 sub-
types (stem-like, transit amplifying [TA], 
enterocyte, goblet-like, and inflammatory 
type), of which the TA type could be fur-
ther subdivided into 2 sub-groups based 
on different responses to epidermal growth 
factor receptor (EGFR)-targeted therapy 
(cetuximab)2 (Fig. 1B). Each study iden-
tified sets of genes—signatures—whose 
differential expression among CRCs can 
stratify ostensibly similar tumors into sub-
types with distinctive characteristics of 
potential clinical significance. We antici-
pated that these 2 studies, published back-
to-back, might cause some confusion, as 
at first sight they appear incongruous: 
Are there 3 or 5 CRC subtypes? And what 
can explain the difference in the num-
ber of subtypes identified? After detailed 
evaluation of our respective data sets and 
analytical methods, we present here a rec-
onciliation of the 2 taxonomies. We con-
clude that the classifiers strongly relate to 
each other. Below we briefly present an in-
depth analysis of the relationships between 
the distinctly named and numbered sub-
types from the 2 studies.
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Results

Both our studies separated patients 
into distinct groups by performing an 
unbiased consensus-based clustering of 
core data sets for various numbers of clus-
ters (k = 2–10) using different clustering 
methods. Subsequently the number of 
clusters that best represents in the collec-
tive data set was selected using a statistical 
algorithm that summarizes how similar 
individual patients are within a cluster, 
and how dissimilar they are across clus-
ters (namely their cophenetic coefficient: 
CC2 or gap score1). In this analysis, k = 3, 
indicating 3 subtypes, resulting in robust 
cluster stability in both of our studies.1,2 
However, additional heterogeneity was 
detected in one study within some of the 
clusters, which can be accommodated by 
using 5 clusters instead of 3, which led one 
of us to use k = 5 as the standard, while 
mentioning the k = 3 cluster solution in the 
supplementary information.2 Importantly 
k = 3 or k = 5 do not significantly differ 
in gap score or CC for both core data sets, 
and are therefore both suitable solutions 
that can be adopted (Fig. S1).

To investigate how our proposed 
subtypes relate to each other, we re-
evaluated the 2 data sets from our stud-
ies by exchanging data sets and applying 
our distinctive classifiers and clustering 
methods on the other’s data set (Fig. 2A 
and B). Specifically, we applied the 
CRCassigner-786 classifier and non-
matrix factorization (NMF) algorithm 
methodology from Sadanandam et  al. to 
classify the AMC–AJCCII–90 data set 
from De Sousa E Melo et  al. (Fig.  2A). 
Similarly, we applied the 146‑gene 
CCS classifier from De Sousa E Melo 
et  al. to classify the core data sets from 
Sadanandam et  al. (Fig.  2B), using dif-
ferent methods than those used by 
Sadanandam et al., in order to correct for 
batch effects, and merged the data sets; see 
the “Materials and Methods” section for 
details. This logic of applying each group’s 
methods on other’s data sets provided a 
means to investigate the discrepancies 
in the number and nature of the CRC 
subtypes identified in the 2 studies. In 
addition, we determined the significance 
of association of the various subtypes by 
assessing the overrepresentation of tumor 

samples of one CRCassigner subtype in 
each of CCS subtypes and vice versa using 
a hypergeometric test (sample enrichment 
analysis; Fig.  2C and D). Importantly, 
we observed that in general the subtypes 
defined by Sadanandam et al. are further 
subdivisions of those defined by De Sousa 
E Melo et al. There is an obvious consen-
sus between our classifications, although 
minor variations exist between the dif-
ferent data sets that probably relate to the 
sample size and variations in the composi-
tion of the patient series and methodolo-
gies used.

Overall, our analysis, summarized 
in Figure  2, reveals that the TA and 
enterocyte subtypes are subsets of the 
CCS1–CIN subtype, whereas the tumors 
defined as CCS2-MSI encompass the 
inflammatory and goblet-like subtypes; 
the stem-like subtype is highly related to 
the CCS3-serrated subtype. These asso-
ciations make sense also in light of previ-
ous studies, since MSI tumors are often 
associated with an inflammatory immune 
infiltrate and a mucinous phenotype,3 and 
poor prognosis CRC (CCS3-serrated) 
has previously been shown to display a 

Figure 1. Overview of CRC classification studies. (A and B) Graphic showing the clinical and biological characteristics and gene signatures of colon 
cancer subtypes (CCS) (A) and CRCassigner subtypes (B). SSA, sessile serrated adenoma; TA, transit-amplifying; CR-TA, cetuximab-resistant TA; CS-TA, 
cetuximab-sensitive TA; DFS, disease-free survival.
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stem cell-like gene expression signature.4,5 
Thus, we found that 2 of the De Sousa E 
Melo et  al. subtypes were simply subdi-
vided to generate a total of four subsets in 
the Sadanandam et al. study.

We further assessed the concordance in 
our classification signatures using a third 
data set from the TCGA consortium6 
using both of our methodologies. We had 
already used the CRCassigner signature to 
classify the TCGA data set, as described 
in Sadanandam et  al.2 Now, we applied 
the CCS classification to that TCGA data 
set, as described in the “Materials and 
Methods” section. Then, we sought to 
associate both classifications of the TCGA 
data set using a heatmap and the hypergeo-
metric test (Fig. 3A and B). Additionally, 
we evaluated the overall association of the 
subtypes with the clinical and (epi)genetic 

characteristics reported for the TCGA 
data set.6 Both classifications associate 
subtypes with phenotypic features, in par-
ticular microsatellite stability status, CpG 
island methylator phenotype (CIMP), 
BRAF mutations, and tumor location in 
the colon (Fig. 3C). Furthermore, analo-
gous trends are observed for the 2 classifi-
cations with respect to the conclusion that 
patients with a CCS3/stem-like subtype 
have a poor prognosis.1,2

Discussion

These analyses establish that the 2 
independently derived classification 
schemes are not in conflict, but instead 
support each other’s legitimacy. In addi-
tion, both taxonomies have, in our 
view, their own unique appeal: the CCS 

classification closely coincides with well-
established and clinically relevant CRC 
subtypes, MSI (microsatellite instable) 
and CIN (chromosomal instable) tumors, 
and further identified a third, previously 
less-defined entity (CCS3-serrated) that 
displays a particularly poor prognosis and 
is associated with a different precursor 
lesion (Fig.  1A).1 The CRCassigner pro-
poses a categorization that draws parallels 
with various cell type-specific character-
istics that can be recognized in the nor-
mal colon crypt. Thus the goblet-like and 
enterocyte CRC subtypes express high 
levels of goblet cell and enterocyte-specific 
genes, respectively, whereas the stem-like 
subtype has high Wnt signaling and both 
stem-cell and mesenchymal signatures, 
and the TA subtype displays heterogeneity 
in Wnt activity (Fig. 1B).2 It remains to be 

Figure 2. Relationships of colorectal cancer subtype classifications. (A and B) Heatmaps depict the AMC–AJCCII–90 data set classified according to the 
CRCassigner signature (A) and the Sadanandam et al. core data set classified based on the CCS classification (B). Columns represent patients; rows indi-
cate CRCassigner genes (A) or CCS classifier genes (B). Colors represent relative gene expression levels; blue signifies low expression, and brown, high 
expression. (C and D) Heatmaps indicate association of CRCassigner subtype samples (left) with CCS group samples (top) for the AMC–AJCCII–90 set 
(C) and the Sadanandam et al. core data set (D). Colors indicate significance of association; green signifies a low association, and red a high association. 
P values are determined using hypergeometric tests.
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established if these distinctive normal 
cell types are indeed the cell-of-origin 
for CRCs ascribable to these subtypes, 
or whether these molecular character-
istics are rather features of malignant 
transformation.

In addition, both classifications define 
subtypes that are associated with differ-
ential response to therapeutic strategies 
that are currently employed for treat-
ment of CRC. Using the same patient 
series (Khambata-Ford7), both stratifica-
tions identified subgroups of patients that 
are resistant to cetuximab therapy. For 
instance, CCS3-serrated tumors are rela-
tively resistant to EGFR-targeted therapy, 
and a similar trend can be observed for 
the stem-like subtype of Sadanandam 
et  al., which functionally corroborates 
the association between these subtypes. 
Furthermore, in Sadanandam et  al. a 
2-tier approach was described in which 
TA-subtype patients can be further sub-
divided into cetuximab-resistant and 
cetuximab-sensitive patients (CR-TA and 
CS-TA, respectively) using a small gene 
panel, thereby indicating even further rel-
evant heterogeneity within the major sub-
types of both studies.

We envision that these proposed clas-
sifications will facilitate future research on 
CRC heterogeneity and its implications 
for therapy, a disease which may come to 
be treated based on molecular subtype, 
much as is increasingly the case for breast 
and non-small cell lung cancer.8 Attempts 
to define therapeutic strategies for CRC 
based on targetable mutations has not been 
fruitful, apart from the intrinsic resistance 
of KRAS-mutated CRCs to EGFR tar-
geted therapy that dictates exclusion.9 Our 
studies demonstrate that more general and 
unbiased tumor categories can be defined 
based on gene expression profiles, which 
associate with distinct molecular and cel-
lular features, and that the subtypes may 
be differentially responsive to distinctive 
therapies. More data from both larger and 
prospective cohorts should in due course 
clarify whether and how these distinct but 
interrelated classification systems can best 
be used to guide decisions about patient 
care, and we will actively pursue clarity 
and consensus on this important question 
in the future. Notably, both studies pro-
pose simple immunohistochemical assays 

Figure 3. Validation in the TCGA data set. (A) Heatmap depicts the TCGA data set classified by both 
taxonomies. Columns represent patients; rows indicate genes from the CCS classifier. Colors rep-
resent relative gene expression levels; blue signifies low expression, and brown, high expression. 
(B) Heatmap indicates association of CRCassigner subtype samples (left) with CCS group samples 
(top) for the TCGA set. Colors indicate significance of association; green signifies a low association, 
and red a high association. P values are determined using hypergeometric tests. (C) Graph depicts 
the association of clinical and (epi)genetic characteristics with both classification methods for the 
TCGA data set. Features that are significantly associated with both classification schemes are indi-
cated. P values are determined using Chi–square tests.
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that may enable classification of patients 
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ing both standard and nouveau therapies 
in regard to potential subtype selectiv-
ity in beneficial responses and intrinsic 
resistance.

Materials and Methods

Classifying the core data set of 
Sadanandam et al. and the TCGA set by 
the CCS classifier

CRC tumor samples of the “core” data 
set of Sadanandam et al. from 2 cohorts: 
GSE13294 (n = 135) and GSE14333 (n = 
252), were normalized by frozen robust 
multiarray analysis (fRMA10) sepa-
rately. Batch effect was detected by prin-
ciple component analysis and corrected 
by ComBat.11 The CCS classifier built 
based on PAM in De Sousa E Melo et al. 
was then applied to classify the merged 
median centered expression profiles of 
total 387 CRC tumor samples that passed 
the Silhouette-based selection of samples 
from Sadanandam et al.2 For CCS-based 
classification of the TCGA data, the nor-
malized gene expression profiles, based on 
Agilent Microarray platform, for 220 CRC 
tumors were obtained from the TCGA 
Data Portal (https://tcga-data.nci.nih.
gov/docs/publications/coadread_2012/). 
Probesets were mapped to unique gene 
symbols, based on the criterion that for 
each gene we select the probeset with 
highest overall expression. Similarly, we 
applied the CCS classifier to classify the 
median centered expression data of signa-
ture genes. Those signature genes of the 
CCS classifier that cannot be found in the 
TCGA data set were substituted by their 
most correlated genes.

Classifying the AMC–AJCCII–90 set 
and the TCGA set by CRCassigner

Affymetrix GeneChip® Human 
Genome U133 Plus 2.0 arrays of tumors 
samples from AMC–AJCCII–90 
(GSE33113) was processed and normal-
ized using R and Bioconductor-based 

robust multiarray analysis (RMA).12 After 
mapping CRCassigner-786 genes on to 
the normalized AMC–AJCCII–90 data, 
we performed NMF-based classification 
as described.2 The normalization and pro-
cessing of TCGA data set for CRCassigner 
classification is described in the supple-
mentary information of Sadanandam 
et al.2

Comparison of subtypes
For each of the AMC–AJCCII–90, the 

core data set of Sadanandam et  al., and 
the TCGA data set, we performed sam-
ple enrichment analysis using hypergeo-
metric tests to compare the classification 
results from the CCS and CRCassigner 
classifiers. P values derived from these 
tests (Benjamini-Hochberg corrected) 
indicate strength of association between 
CRCassigner subtypes and CCS subtypes. 
For classification results of the TCGA 
data set using either CRCassigner or CCS 
classifier, we performed chi-square tests 
to inspect the association with a variety 
of clinical features and mutations. Gap 
statistic and cophenetic coefficients for 
varying cluster numbers were determined 
as described.1,2
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