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Abstract
The cancer stem cell (CSC) paradigm presumes the existence of self-renewing cancer cells
capable of regenerating all tumor compartments and exhibiting stem cell-associated phenotypes.
Recent interpretations of the CSC hypothesis envision stemness as a dynamic trait of tumor-
initiating cells rather than a defined and unique cell type. Bidirectional crosstalk between the
tumor microenvironment and the cancer bulk is well described in the literature and the tumor-
associated stroma, vasculature and immune infiltrate have all been implicated as direct
contributors to tumor development. These non-neoplastic cell types have also been shown to
organize specific niches within the tumor bulk where they can control the intra-tumor CSC content
and alter the fate of CSCs and tumor progenitors during tumorigenesis to acquire phenotypic
features for invasion, metastasis and dormancy. Despite the complexity of the tumor-stroma
interactome, novel therapeutic approaches envision combining tumor-ablative treatment with
manipulation of the tumor microenvironment. We will review the currently available literature that
provides clues about the complex cellular network that regulate the CSC phenotype and its niches
during tumor progression.
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Introduction
Most cancers are characterized by marked phenotypic and functional heterogeneity within
the tumor bulk that can result from the accumulation of intrinsic (genetic and epigenetic)
insults and extrinsic signals from the microenvironment [1]. Despite the absence of
comprehensive organization among all cancer types, several mechanisms have been
postulated to model the acquisition of intratumor cellular heterogeneity, including the clonal
evolution theory [2] and the cancer stem cell (CSC) hypothesis [3]. The latter has become
increasingly popular after the identification of defined tumor subsets endowed with
tumorigenic activity and exhibiting phenotypic features of normal stem cells [4]. Although
the existence of tumor cells displaying CSC features has been well described in the literature
for a number of cancers, no single CSC phenotype can be generalized to all cancers and
several distinct populations within a unique tumor may display CSC features [5]. In tumors
that incorporate cells having a CSC phenotype, the CSC compartment concentrates most of
the tumor-initiating activity and has also been implicated in tumor progression, invasion,
and metastasis [5]. Due to their propensity to exhibit metabolic and transport activities
usually associated with normal stem cells, CSCs represent an attractive culprit for the
augmented radio- and chemotherapy resistance that plagues cancer recurrence. However, the
evolution of CSC phenotype accompanying distinct steps of tumor progression has not been
clearly established. Acquisition of CSC features by non-CSC subsets has been described in a
number of studies, mostly involving cancer cell lines. Dedifferentiation has been especially
proposed to be a possible feature of metastasis and relapse [6]. Metastatic CSCs display
distinct properties that separate them from CSCs detected in primary tumors, including long-
term self-renewal [7] or heightened chemoresistance [8] and expression of CXCR4 has also
been used to differentiate pancreatic CSCs having metastatic potential [9]. The contribution
of microenvironmental cues to cancer progression is well described in the literature [10] and
the identification of several niches within the tumor microenvironment revealed interactions
between stromal, vascular or immune populations and CSCs that influence the fate of the
CSC compartment during tumor progression (Figure 1). Here, we will review the recent
literature pertaining to the interactions between CSCs and niche-resident stromal cells and
we will discuss their complex crosstalk as well as its incidence for possible therapeutics.

Experimental designs to study CSC-stroma interactions
The tumor microenvironment is heterogeneous (including stroma, vasculature and
inflammatory cells) and recruited cells often display an activated phenotype upon
interactions with tumor cells to augment their pro-tumorigenic activities. Thus, the study of
interactions between putative CSCs and the stromal microenvironment remains challenging,
due to high heterogeneity and variability in both cellular compartments. In vivo
recapitulation of interactions between human CSCs and their niche is typically attempted
using immunodeficient rodent models [4]. Modulation of the microenvironment can be
achieved using transgenic animals, orthotopic transplantation, or co-injection of stromal
cells and engineered niches. Alteration of the medullar hematopoietic niche using transgenic
immunodeficient animal strains was used to evaluate the effects of unbalanced
hematopoietic cytokines on the fate of CD34+ leukemic CSCs [11]. Co-injection of
basement membrane matrix protein has been shown to support tumor initiation and growth
of putative CSCs [12]. The site of injection has also been reported to be of critical
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importance and can modify the frequency of tumor-initiating cells that can be measured in
these assays. Mammary fat pads were the most reliable site of injection to study tumor-
initiation potential of ovarian tumors [13], and represents an orthotopic injection site for
breast CSC studies [14]. Orthotopic transplantation assays via coinjection of human tumor
and stromal cells to humanized microenvironment is gaining acceptance [4], but most
models involve a single component, either endothelial [15, 16] or stromal [17]. Finally,
current CSC sorting strategies from primary isolates often do not distinguish CSC subsets or
CSCs from non-CSC tumor-initiating progenitors. Putative breast CSCs were originally
identified by their CD44+CD24-phenotype. Further refinement of the breast tumorigenic
compartment can be achieved using additional markers such as CD90 [18] or by including
CSC-associated phenotypes such as multidrug resistance (MDR) transporter expression and
activity [19] or cellular size via light scatter properties [14, 18]. A small resting CSC-like
phenotype was associated with a tumorigenic activity at low dose without requirement for
stromal support, whereas larger progenitor-like cells either required injection of larger
number of cells or the presence of supportive stroma to retain tumor-initiating activity [14].

Current approach to the cancer stem cell paradigm
The modern interpretation of the cancer stem cell (CSC) hypothesis was formulated over a
decade ago following studies on acute myeloid leukemia [5]. Other putative CSC subsets
were subsequently identified in a variety of solid tumors [5]. The identification of rare self-
renewing cancer cell subsets capable of serially generating heterogeneous tumors in
xenograft models and the convergence of signaling pathways dysregulated during
oncogenesis and governing the self-renewal/differentiation fate of normal stem cells has led
to the hypothesis that CSCs in primary tumors may arise from the transformation of normal
stem cells or alternatively via acquisition of stem cell features (i.e. self-renewal) by more
differentiated cells harboring genetic or epigenetic insults (Figure 1). The initial concept of a
clonogenic tumor-initiating CSC atop heterogeneous cancer cell progenies was extrapolated
from the hierarchical differentiation model of the hematopoietic system, a unidirectional
differentiation scheme in which self-renewing multipotent stem cells give rise to pools of
proliferating intermediate progenitor cells and ultimately all mature cell types. Most recent
iterations to define CSCs have emphasized the inherent complexity and fluctuation of the
CSC compartment within a unique tumor and have embraced a definition of the CSC
phenotype as a dynamic cell state rather than a distinct cell type [1, 5, 6, 20]. Beyond the
clonogenic properties of CSC (self-renewal and differentiation/tumorigenicity), numerous
analogies have been made between putative CSCs and their normal counterpart to identify
them within the heterogeneous tumor bulk, including surface marker expression, cell cycle
state, migratory properties, immune escape, or metabolic and transporters activities [5, 6].
Recent studies have exposed that CSCs may also arise from dedifferentiation of more
differentiated tumor cells [21], after receiving specific signals from the local
microenvironment (Figure 1). Data obtained in the Donnenberg laboratory using clinical
isolates seems to support such a scenario. Unlike small CSC-like MDR+ breast cancer-
initiating cells, high light scatter MDR-CD90+ breast cancer progenitors exhibit tumorigenic
activity only when injected at high cell numbers [19] or when coinjected with adipose
derived stromal cells [14]. Yet these progenitors were shown to be able to generate tumors
that recapitulated the heterogeneity of original patient tumors, including the rare small
resting CSC population. These observations support the plasticity of tumor initiating cells
and highlight the link between tumorigenicity, expression of mesenchymal associated
markers, and stromal interactions.
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Tumor microenvironment cellular components
The tumor microenvironment consists of an extra-cellular matrix (ECM) and multiple cell
types. The tumor ECM mainly results from extravasation of plasma proteins and dense
deposits of collagen delivered by the fibrotic component. The cellular components include a
substantial inflammatory infiltrate (i.e. macrophages, dentritic cells and T-cells), which is
reminiscent of chronic inflammatory and fibrotic lesions and has now become an attractive
target for the development of anti-cancer immunomodulating therapies [22]. Tumor-
associated macrophages (TAMs) often accumulate in hypoxic areas and can support
angiogenesis via release of proangiogenic factors (e.g. vascular endothelial growth factor
(VEGF)) sequestered in the ECM, or can facilitate revascularization via release of
metalloproteinases [23]. TAMs have been shown to interact with CSCs in several cancers,
including breast, hepatocellular and colon carcinomas and gliomas [24-27]. Under hypoxic
conditions, glioma CSCs can inhibit TAM phagocytosis, as well as T-cell proliferation and
activation via STAT3 signaling [28]. Although the tumor microenvironment is often
considered to promote tumorigenicity by inhibition of the innate and adaptive responses
[22], including dendritic cell maturation and subsequent antigen presentation [29], immune
cells such as follicular dendritic cells can directly support the maintenance of the
tumorigenic CSC state, as occurs in some cases of therapy-resistant follicular lymphoma
[30]. The microenvironment also incorporates tumor-associated fibroblasts (TAF), vascular
cells and local or recruited progenitors (bone marrow-derived mesenchymal stem cells (BM-
MSC), endothelial progenitors (EPC)). TAFs display an activated phenotype that often
resembles myofibroblasts and secrete a battery of growth factors and cytokines at the
primary site of tumor to support both cancer cell proliferation and survival [31]. TAFs not
only regulate directly tumor growth, but can also support local angiogenesis via recruitment
of endothelial progenitors [32]. Possible crosstalk between CSCs and myofibroblasts is
supported by their close localization at the invasive front of epithelial tumors [18, 33].
Interactions between CSCs and vascular lineages are particularly prominent in highly
vascularized brain tumors [34, 35], but have also been reported to govern metastatic
activities of dormant breast cancer cells [36]. The perivascular niche of glioblastoma tumors
can self-regulate its growth in a loop fashion in which CSCs stimulate local angiogenesis by
releasing paracrine factors and endothelial cells control migratory and tumorigenic CSC
activities [35]. The effects of BM-MSC on tumor cells have been reviewed in [37, 38].
Large numbers of BM-derived MSC can be mobilized and recruited to the local
microenvironment via release of endocrine and paracrine signals during tumor development.
Both pro- and anti-tumorigenic activities of BM-MSC have been acknowledged in the
literature [37, 38]. BM-MSCs interact with all other stroma-resident populations. They can
replenish intra-tumor TAFs via differentiation, regulate local angiogenesis and modulate
innate immunity via interactions with macrophages [37, 38]. Several studies have suggested
that MSCs can contribute to the acquisition of a CSC phenotype by non-CSC tumor cells or
support epithelial-to-mesenchymal transition (EMT) leading to invasion and metastasis [37,
39].

The cancer stem cell niche
Stem cells reside in a specific microenvironment (or niche) that can regulate their self-
renewal and differentiation. A similar niche concept has been extrapolated to cancer in
which microenvironmental cues regulate the CSC fate during tumor development [40].

Quiescent hematopoietic stem cells (HSC) reside in an osteoblastic niche, although HSC can
also occupy a vascular niche within the sinusoidal endothelium [41]. Assuming leukemia
CSCs occupy similar niches in the bone marrow, several studies have investigated the
effects of microenvironment modulation on the fate of cancer cells. The injection of
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leukemia CSCs into transgenic animals revealed an instructive role of the microenvironment
[11]. Adhesion signals involving the glycoprotein CD44 seem to play a critical role in
leukemia CSC-niche interactions as disruption of CD44 signaling altered the
myeloproliferative and homing activities of chronic myeloid leukemia (CML) [42] and acute
myeloid leukemia (AML) [43] CSCs. Disturbance of the osteoblastic niche has direct
repercussions on leukemia CSCs. Activation of osteoblasts via Dicer1 deletion can induce
myelodysplasia and secondary leukemia [44]. Similarly, modulation of the osteoblastic
niche via parathyroid hormone signaling can alter the myeloproliferative activity of
leukemia CSCs [45], although in the latter, bone remodeling resulted in increased TGF-β
release by medullar osteoblasts, which was detrimental to myeloproliferative neoplasia and
engraftment of CML cells. The same approach improved engraftment and tumorigenicity of
AML CSCs [45]. TGF-β signaling had been previously implicated in the maintenance of a
CSC phenotype in CML cells [46]. Yet, in this study, in vitro inhibition of TGF-β actually
impaired the colony-forming ability of CML cells and combination of TGF-β, SCF and
Foxo3a inhibition depleted the CML in vivo. While the results obtained in these studies are
contradictory, they confirm a pivotal role of TGF-β signaling in the regulation of the
leukemia CSC niche. The diverging effects of TGF-β signaling on CSC activities probably
reflect the complexity of the interplay between CSCs and their cellular partners in the niche.

In highly vascularized brain tumors such as gliomas, CSCs are tightly regulated by the
tumor endothelium [34]. Brain CSCs are chemoattracted towards endothelial cells in vitro
and their tumorigenicity in animal models can be enhanced via co-injection of endothelial
cells [34]. Niche-glioma CSC interactions have been shown to be bidirectional [35, 47].
Other CSC niches can be observed at the invasive front of epithelial tumors [18, 33] where
stromal cells are suspected to control tumor invasion [6, 48]. The high density of
myofibroblasts at the tumor-stroma interface in colon cancer coincides with an enrichment
of tumor cells with high nuclear expression of β-catenin which is mediated by myofibroblast
secretion of hepatocyte growth factor (HGF) [33]. Similarly, a population of CD44+CD90+
CSCs has been shown to reside in direct contact with a layer of CD90+ stromal cells at the
periphery of invasive nests and trabeculae observed throughout breast tumors [18],
supporting possible regulation of the invasive phenotype of breast CSCs by the adjacent
stroma.

Tumor initiation and CSC pool regulation
The acquisition of CSC features by tumor cells upon interaction with the microenvironment
has been reported for a variety of cancers. Restricted leukemia progenitors can reexpress a
CSC phenotype via reactivation of self-renewal programs [49]. Hedgehog (Hh) signaling
seems to be essential for maintenance of leukemia-CSCs [50, 51], possibly involving
activation of β-catenin signaling [52]. Recently, stromal cells have been shown to modulate
Hh signaling and proliferation in myeloid neoplasms via expression of the Hh-interacting
protein [53]. Induction of Hh signaling in epithelial cancers upon interaction with TAMs has
also been reported [25].

Stroma-mediated regulation of the CSC phenotype is well described in epithelial tumors.
Cancer-associated MSCs were shown to rely on altered BMP production to regulate ovarian
CSCs and their tumorigenesis [54]. Similarly, pancreatic stromal cells can enhance the CSC
phenotype in pancreatic cancer cells [55] and promote their self-renewal and invasiveness
[56]. Infiltrating immune cells also exert control over the CSC pool. Secretion of
interleukin-6 (IL-6) by innate immune cells stimulates the proliferation of colon CSCs [57].
IL-6 was also found to enhance conversion of breast cancer progenitors to a CSC phenotype
via a positive feedback loop involving NFκb, Lin28 and Let7miRNA [58] and was
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identified among other TAM-secreted cytokines as an inducer of tumor-initiating capacity
and chemotherapy resistance in colon and lung cancer cells [25].

TAFs were shown to promote a CSC phenotype in colorectal carcinoma cells via production
of collagen type I [59], but can also induce a CSC phenotype in non-tumorigenic cancer
cells via reactivation of the Wnt pathway and HGF signaling [33]. Wnt signaling has also
been proposed to be essential to maintain a CSC phenotype in epidermal tumors [60]. Wnt
activation by the surrounding microenvironment and HGF signaling seem to be redundant
mechanisms to promote tumor activation [33, 52, 61-63]. HGF promoted a CSC phenotype
in various cell lines [64, 65] and is implicated in the acquisition of an invasive phenotype via
EMT [66]. Gastric TAFs were suggested to exploit another EMT-related growth factor (i.e.
transforming growth factor beta (TGF-β) to regulate CSC content [67].

Low physiological oxygen favors acquisition of CSC features in various cancer cells
including glioblastoma [68] and ovarian cancer cell lines [69]. Hypoxic conditions increased
expression of the ABC transporter ABCG2 in ovarian CSCs [61] and acquisition of pro-
inflammatory phenotype by breast CSCs via Wnt signaling [62]. Hypoxic and acidic
microenvironments potentiate the maintenance or the acquisition of CSC features via
induction of hypoxia inducible factor 2α (HIF2α) [35, 47]. HIF2α expression promoted
local release of angiogenic factors [35] and acquisition of a CSC phenotype [47, 70, 71] that
was marked by an upregulation of stem cell associated networks such as the pluripotency-
associated factors Oct4, Nanog or c-Myc. Similar acquisition of human embryonic stem cell
(ESC) markers in various cancer lines following hypoxia was recently reported [72].
Tumorigenicity shares many features with pluripotency and induced pluripotency, exploiting
factors that are known oncogenes (MYC) or are commonly detected in tumors (NANOG,
SOX2, OCT4) [73]. Non-tumorigenic mammary cells and differentiated populations of
luminal-like breast cancer cells can acquire a CSC phenotype using cellular reprogramming
[74, 75]. Interestingly, hypoxia also enhances efficiency of induced pluripotent stem cells
(iPSC) generation from mouse embryonic fibroblast and human dermal fibroblasts [76],
suggesting that it may play a critical role for dedifferentiation. The Zambidis laboratory has
derived human iPSC lines using a methodology involving both low oxygen and micro-
environmental stroma-priming that dramatically enhanced cellular reprogramming of
myeloid progenitors to pluripotency [77]. BM-MSC-secreted factors active during
progenitor reprogramming included known MSC-released cytokines such as platelet-derived
growth factor (PDGF), CCL2 and IL-6, which have already been implicated in the
acquisition of CSC features. For example, CCL2 has been shown to mediate crosstalk
between cancer cells and stromal fibroblasts that augments the CSC phenotype and self-
renewal of breast cancer cell lines [78]. BM-MSC secretion of IL-6 has also been suggested
to modulate the CSC content of breast cancer [79]. In another study, BM-MSC secretion of
IL-6, CCL5 and IL-8 resulted in activation of β-catenin/WNT signaling in various cancer
cell lines and promotion of a CSC phenotype [80].

Vascular regulation
Bidirectional crosstalk between CSCs and vascular cells has been demonstrated in the
perivascular niche of highly vascularized tumors (i.e. glioblastoma). Local endothelial cells
support retention of the stem cell phenotype and tumorigenicity by CSCs [34], while glioma
CSCs closely promote local angiogenesis through the release of VEGF and stromal-derived
factor 1 [34, 81-84]. Glioma CSC self-renewal has been shown to be mediated by activation
of the Notch pathway following release of nitric oxide by endothelial cells [85]. Glioma
CSCs not only promote recruitment and expansion of the local vascular network by
releasing VEGF [81, 86], but also protect vascular cells from hypoxia and irradiation-
induced apoptosis [87, 88]. Skin carcinoma CSCs have also been shown to populate a
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vascular niche [89]. Both niches seem to resolve upon an autocrine VEGF loop that
regulates both CSC and niche self-renewal [89, 90]. Glioblastoma CSCs can also
transdifferentiate into vascular cells and contribute to the microvasculature via a process
termed vascular mimicry (VM) [91, 92]. Vascular mimicry (VM) is a new pattern for tumor
vascularization involving the formation by tumor cells of highly patterned vascular channels
(Figure 1) that has been observed primarily in aggressive types of cancer [93]. Although
these tumor tubes are deprived of endothelial cells, they include a basement membrane and
have been demonstrated to anastomose to the vasculature [93].

Invasion and metastasis regulation
Numerous components of the tumor microenvironment have been implicated in local and
distal dissemination of tumor cells [48]. Stroma-tumor interactions have been shown to
promote acquisition by CSCs of an invasive phenotype in various cancers including
pancreatic [94] and bladder [95] carcinomas. A population of CSCs is observed at the
invasive front of epithelial cancers [18, 33]. The breach of the basement membrane by
carcinoma cells facilitates tumor-stroma interactions and recruitment of circulating stromal
components (i.e. immune cells, EPCs, MSCs). TAMs can participate to the acquisition of an
invasive phenotype by CSCs. While bidirectional interactions between carcinoma CSCs and
macrophages can modulate metastasis [26], TAMs and resident microglia can also regulate
the invasive phenotype of glioma CSCs via TGF-β signaling [27]. Invasion is often
accompanied by a transdifferentiation process (Figure 1), termed epithelial-to-mesenchymal-
transition (EMT). Epithelial cancer cells that undergo EMT exhibit mesenchymal features
(loss of polarized epithelial morphology and acquisition of spindle shape) that favor
motility, invasiveness and survival [96]. Carcinogenic EMT is a critical step for invasion/
metastasis that is partially reminiscent to embryonic developmental programs [39]. EMT is
often associated with dedifferentiation and acquisition of CSC features (Figure 1). Induction
of EMT in normal immortalized human mammary epithelial cells led to augmented
expression of CSC markers, self-renewal capacity and tumor-initiating activity [97].

Cancer EMT can be triggered by various factors including HGF, PDGF, and TGF-β [66].
Hypoxia can regulate expression of EMT-associated genes [98] and promote acquisition of
an invasive phenotype via activation of Wnt signaling in breast, colon, hepatic and
pancreatic cancer cell lines [99]. HGF secretion by myofibroblasts at the invasive front in
colorectal cancer can induce a CSC phenotype in non-tumorigenic cancer cells [33]. In lung
adenocarcinoma, putative CSCs expressing cytokeratin and the EMT-associated markers
CD44 and CD90 are rare in primary tumors, but prevalent in metastatic pleural effusions
[100].

Occurrence of metastasis does not occur randomly and recent studies suggest that primary
tumors can instruct the microenvironment of distant organs to develop premetastatic niches
(Figure 1) [101]. Pre-metastatic plasma and BM-MSCs of advanced breast cancer patients
facilitate transendothelial migration of breast cancer cell lines and may participate to
remodeling of the bone marrow prior to colonization by cancer cells [102]. Other cell types,
including tumor-associated T-cells can participate to the organization of the premetastatic
niche [103]. A reciprocal role of the metastatic niche in the control of CSC content and
invasive phenotype at the primary site of tumor has also been suggested. Peritoneal
mesothelial cells contributed to the acquisition of a CSC phenotype and invasive phenotype
by ovarian cancer cells via SDF1-CXCR4 signaling [104]. Periostin, a component of tumor
ECM, was found to be critical for CSC colonization of their metastatic niche [105]. Periostin
deposition by stromal fibroblasts was induced in the secondary target organ upon
interactions with infiltrating CSCs [105]. Local stroma-resident populations can also
accompany metastatic cancer cells to facilitate their engraftment at distal niches. Pancreatic
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stellate cells were shown to intravasate/extravasate to and from blood vessels and
accompany metastatic pancreatic cells to distant metastatic nodules where they stimulate
angiogenesis [106].

Metastatic cancer CSCs specifically migrate and incorporate into a suitable niche [101]
where they can potentially lay dormant until reactivation by niche signals (Figure 1).
Although cancer dormancy is not a defining hallmark of CSCs, significant phenotypic
overlap between dormant cancer cells and CSCs (quiescence, radio- and chemotherapy
resistance, immune escape, response to angiogenic factors) suggest at least an overlap of
both phenotypes [107]. The local microenvironment has been proposed to play a critical role
in the establishment and maintenance of cancer dormancy [108]. Activation of osteoblasts
can disrupt the local niche and induce myelodysplasia and secondary leukemia [44]. The
perivascular niche has recently been implicated in the regulation of breast tumor dormancy
[36]. Using engineered microvascular niches, the authors determined the factors critical to
maintaining dormancy or promoting reactivation of disseminated tumorigenic cells.
Secretion of thrombospondin-1 by the vasculature was critical to sustain cell quiescence.
Inversely, active angiogenesis resulted in a sprouting neovasculature and release of TGF-β
and periostin, leading to micrometastatic outgrowth. A vascularized “inhibitory niche” was
also reconstructed ex vivo using stromal cell lines and umbilical cord vascular endothelial
cells and shown to support a resting state in breast cancer cell lines [109].

4. Conclusions: Therapeutic perspectives
Many of the aspects of tumor progression and resistance to treatment result from the
interplay between the neoplastic cells and the surrounding non-malignant stroma [110]. The
tumor stroma has become an attractive target for anti-cancer therapies due to its global
contribution to tumorigenesis and direct interactions with therapy-refractory CSCs. Tumors
in which interactions between CSC and vascular cells are closely regulated are possible
targets for anti-angiogenesis strategies. For example, anti-angiogenic treatment was shown
to decrease the glioblastoma CSC content resulting in reduced overall tumor growth and
higher sensitivity to cytotoxic agents [81, 111]. In another study, the use of inhibitors of
VEGFR2 and PDGFR-β targeted both endothelium and pericytes, resulting in diminished
vascular supply of glioma tumors [31]. Disruption of Notch signaling in glioblastoma CSCs
resulted in higher sensitivity to radiotherapy by disrupting the attachment of CSCs to their
vascular niche [112]. Yet, inhibition of local angiogenesis in other models elicited increased
invasiveness and metastasis [113] and created a local hypoxic niche, which could also result
in expansion of a radioresistant CSC phenotype [70]. In colon cancer, CSCs have been
shown to display resistance to antiangiogenic therapy [114]. Other therapies envision
augmenting the local vasculature to facilitate delivery of chemotherapeutic agents.
Coadministration of gemcitabine and IPI-926, a drug that depletes tumor-associated stromal
cells via inhibition of Hedgehog signaling, produced a transient increase in intratumor
vascular density and the intratumor concentration of gemcitabine, leading to temporary
stabilization of the disease [115]. Targeted strategies against non-endothelial contributors of
the tumor microenvironment have also been investigated. TAF depletion via T-cell mediated
killing was shown to lead to a significant reduction of tumor growth and metastasis in colon
cancer, as well as improving chemotherapy efficacy [116]. Anti-HGF signaling treatments
(anti-MET antibodies) prevented colon cancer tumor growth in vivo [117]. A number of
strategies have been targeted to microenvironmental support to invasion and metastasis.
Disruption of the CXCR4-CXCL12 axis has proven to affect migratory properties of
leukemia [118-120], follicular lymphoma [30] and colon [121] CSCs. Combined blockade
of CXCR4 and dacarbazine treatment efficiently inhibited tumor growth and metastasis in a
chemoresistant melanoma CSC model by modifying the lymphatic microenvironment [122].
MT1-MMP and MMP9 targeting has been proposed to reduce CSC content and invasive
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phenotype in medulloblastoma [123]. CCL2 targeting disrupted CSC-TAF interactions and
reduced tumorigenesis [78]. Metformin has been shown to specifically target CSCs in
several cancers including glioblastoma [124] and ovarian carcinoma [125]. Combination
therapy including metformin and a stroma-targeting smoothened inhibitor was able to reduce
pancreatic tumor CSC content and affect their proinvasion phenotype [126]. Finally, some
approaches rely on microenvironment manipulation to disrupt dormancy and target
chemoresistant CSCs. The induction of oxidative stress disrupted quiescence of leukemia
CSCs, leading to their entry into cycle and significant sensitivity to cytosine arabinoside and
apopotosis [127]. Overall, an improved understanding of the interactions between CSCs and
their specific niches during tumor progression has the potential to reveal new ways in which
to target radio and chemoresistant CSC populations that are often selected during cancer
recurrence.
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BM-MSC bone marrow-derived mesenchymal stem cells

CML chronic myeloid leukemia

CSC cancer stem cells

ECM extracellular matrix

EMT epithelial-to-mesenchymal transition

ESC embryonic stem cells

Hh hedgehog

HIF hypoxia-inducible factor

HGF hepatocyte growth factor

HSC hematopoietic stem cells

iPSC induced pluripotent stem cell

MSC mesenchymal stem/stromal cells

PDGF platelet-derived growth factor

PDGFR platelet derived growth factor-receptor

TAF tumor-associated fibroblast

TAM tumor-associated macrophage

VEGF vascular endothelial growth factor

VEGFR2 vascular endothelial growth fact receptor 2

VM vascular mimicry
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Figure 1. Evolving Cancer Stem Cell niche interactions during tumor progression
The tumor cell-of origin may initially display CSC features or CSC may appear during
tumor progression. Complex interactions between all components of the microenvironment
and CSCs organize distinct niches that govern tumor proliferation, immune escape, invasion,
metastasis, dormancy and cancer relapse. CSCs have been located in close relationship with
two distinct niches: the stroma and the vasculature. Both niches have been shown to play a
critical role in regulating CSC phenotypes and initiate invasive, metastatic or dormant
behaviors. The immune infiltrate plays also critical roles, modulating these niches or directly
interacting with CSC. Circulating BM-MSCs can be recruited at the primary site of tumor,
where they can contribute both directly and indirectly to the primary tumor niche or can
participate in the establishment of the metastatic niche. CSC transdifferentiation has been
suggested based on CSC acquisition of endothelial (vascular mimicry) or mesenchymal
(epithelial-to-mesenchymal/mesenchymal-to-epithelial transitions) traits, to support tumor
growth or invasiveness. The involvement of the microenvironment in the possible
dedifferentiation of non-CSCs to a CSC phenotype has also been suggested. Acquisition of
CSC features is often partially reminiscent of embryonic phenotypes and possible
dedifferentiation process may involve signaling routes exploited by induced pluripotency.
The metastatic process is highly inefficient, but instruction of a premetastatic niche by the
primary tumor and acquisition of a CSC phenotype by invasive cells may favor survival and
engraftment of circulating cancer cells in secondary niches. While the osteoblast niche
seems to regulate the fate of leukemic CSCs for cancer relapse, the vascular niche has been
involved in establishment and exit of breast cancer dormancy.
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