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Abstract
The aim of this study was to survey the bacterial diversity of Amblyomma maculatum Koch, 1844,
and characterize its infection with Rickettsia parkeri. Pyrosequencing of the bacterial 16S rRNA
was used to determine the total bacterial population in A. maculatum. Pyrosequencing analysis
identified Rickettsia in A. maculatum midguts, salivary glands, and saliva, which indicates
successful trafficking in the arthropod vector. The identity of Rickettsia spp. was determined based
on sequencing the rickettsial outer membrane protein A (rompA) gene. The sequence homology
search revealed the presence of R. parkeri, Rickettsia amblyommii, and Rickettsia endosymbiont of
A. maculatum in midgut tissues, whereas the only rickettsia detected in salivary glands was R.
parkeri, suggesting it is unique in its ability to migrate from midgut to salivary glands, and
colonize this tissue before dissemination to the host. Owing to its importance as an emerging
infectious disease, the R. parkeri pathogen burden was quantified by a rompB-based quantitative
polymerase chain reaction (qPCR) assay and the diagnostic effectiveness of using R. parkeri
polyclonal antibodies in tick tissues was tested. Together, these data indicate that field-collected A.
maculatum had a R. parkeri infection rate of 12–32%. This study provides an insight into the A.
maculatum microbiome and confirms the presence of R. parkeri, which will serve as the basis for
future tick and microbiome interaction studies.
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Ticks transmit a variety of pathogens and are second only to mosquitoes in human and
veterinary health importance (Sonenshine 1991). Amblyomma maculatum Koch, 1844, has
emerged as an important arthropod of public health significance because of its competence
as a vector for Rickettsia parkeri and experimental vector of Ehrlichia ruminantium. R.
parkeri is the causative agent of human rickettsiosis (Paddock et al. 2010), and E.
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ruminantium is the etiological agent of a fatal cattle disease in South America and Africa
(Uilenberg 1982). A. maculatum is distributed along the Atlantic and Gulf Coast region of
the United States and is also present in several Central and South American countries (Teel
et al. 2010). Bird migration and livestock transportation are two important factors affecting
the distribution of A. maculatum (Hasle et al. 2009) and represent a serious threat in
importing tick-borne diseases into the United States (Uilenberg 1982).

Ticks also harbor various nonpathogenic microbial organisms; however, knowledge of these
microbial communities associated with ticks remains largely unknown because of
limitations in culture-based techniques. Bacterial ribosomal-based sequence analysis
(“metagenomics”) has revolutionized the exploration of microbial communities in complex
environments (Dowd et al. 2008a,b). This method has been successfully used to characterize
the metagenome of Ixodes ricinus L., Rhipicephalus microplus (Canestrini, 1888), and
Amblyomma americanum (L.) (Andreotti et al. 2011, Carpi et al. 2011, Menchaca et al.
2013), and has revealed a rich bacterial diversity in ticks, but with limited understanding of
the functional significance of the associated bacterial communities. The bacterial genera
Stenotrophomonas, Pseudomonas, Rhodococcus, and Propriobacterium have consistently
been identified in tick tissues. Ticks are also frequently associated with various pathogenic
bacteria of the Borrelia, Rickettsia, Ehrlichia, and Anaplasma genera, various bacterial
endosymbionts, or both, which can have commensal, mutualistic, or parasitic relationships
with ticks (Noda et al. 1997, Sacchi et al. 2004, Scoles 2004).

Tick-borne rickettsial diseases are caused by two groups of intracellular bacterial species
belonging to 1) the spotted fever group of the genus Rickettsia (spotted fever group
Rickettsia (SFGR); Raoult and Roux 1997), and 2) species from the Anaplasma and
Ehrlichia genera (Dumler et al. 2001). Rickettsiae are obligatory intracellular gram-negative
α-proteobacteria that are disseminated by arthropod vectors and affect an estimated one
billion people worldwide (Parola et al. 2005, Walker and Ismail 2008). Ticks are the
important reservoir of the SFGR (Raoult and Roux 1997).

This metagenomics study begins to investigate the functional role of microbial communities
in organismal biology. The microbial community plays important roles in pathogen
transmission, vector competence (Burgdorfer et al. 1973, Clay et al. 2008, Vilcins et al.
2009), and tick reproductive fitness (Zhong et al. 2007), and likely has other undiscovered
roles in vector ecological and physiological adaptation. In this study, we examined the
microbiome associated with blood-fed A. maculatum and further screened for SFGR agents.
This is the first report cataloging the microbial diversity associated with A. maculatum-
isolated tissues during pathogen development. The identification of the A. maculatum
microbiome and further detection of R. parkeri in tick tissues provides the basis for future
tick–pathogen interaction studies.

Materials and Methods
Tick Rearing

Adult Gulf-Coast ticks were obtained from three different sources. Wild-caught A.
maculatum were collected from the Sandhill National Wildlife Refuge (Gautier, MS) using
the drag-cloth method as described previously (Falco and Fish 1988). These ticks were
collected in late summer and early fall of 2011 and 2012. Questing adult ticks were collected
and identified based on morphological characteristics (Keirans and Litwak 1989). Rickettsial
identification within the wild-caught ticks is described below. A. maculatum ticks that
contain Rickettsia endosymbionts (lab colony) were purchased from the tick rearing facility
at Oklahoma State University. Rickettsia-free A. maculatum ticks were purchased from the
tick rearing facility at Texas A&M (TAMU) and were used in the immunological study of R.
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parkeri. All adult male and female ticks were partially blood fed on a New Zealand rabbit or
sheep according to the approved Institutional Animal Care and Use Committee (IACUC)
protocol #10042001.

Tick Tissue Isolation
Blood-feeding ticks (n = 134) were removed 8 d postinfestation, weighed, and dissected to
isolate midguts (MG) and salivary gland (SG) tissues from each female tick (Karim et al.
2002). The carcasses (whole tick without the midgut and salivary gland tissues) were used to
determine the infection rate (2012 collection). Genomic DNA was extracted from a small
piece of isolated midgut and one salivary gland to test for SFGR infection. Tick saliva was
collected after injecting saliva extraction solution (Ribeiro et al. 1992). Briefly, dopamine
and theophylline (1 mM each in 20 mM 3-(N-morpholino) propanesulfonic acid-buffered
saline with 3% dimethyl sulfoxide, pH 7.0) were injected into the dorsum hindquarter as a
stimulant for salivation (Needham and Sauer 1979). The collected saliva was used
immediately after collection or stored at −80°C.

DNA Extraction
Genomic DNA was extracted from tick tissues using the DNeasy blood and tissue kit
(Qiagen, Valencia, CA), following the manufacturer’s protocol. From the 2011 field
collection, genomic DNA was collected from midgut tissues, salivary glands, and male
ticks. From the 2012 field collection tick carcasses were also used for the genomic DNA
extraction following the same protocol. The extracted DNA samples were stored at −20°C
until further use.

454-Pyrosequencing
DNA from field collected and laboratory colony-raised tick tissues was used for bacterial
tag-encoded titanium amplicon pyrosequencing (bTETAP; Dowd et al. 2008a,b). The output
used for analysis had an average read length of ≈450 bp, with sequencing extending across
V1 and into the V3 ribosomal region (MRDNA, Shallowater, TX). This procedure used the
forward primer 27F (5′-GAGTTTGATCNTGGCTCAG-3′) and the reverse primer 519R (5′-
GTNTTACNGCGGCKGCTG-3′) in relation to E. coli 16S. Amplicon sequencing was
performed as recommended by the manufacturer (Roche Applied Science, Indianapolis, IN)
for titanium sequencing on the FLX-titanium platform.

Microbial 16S rDNA sequences were curated to obtain Q25 sequence data, which were
processed using a proprietary analysis pipeline (MRDNA), which trimmed sequencing reads
to remove barcodes, primers, and short sequences <200 bp. Furthermore, the sequences with
ambiguous base calls and homopolymer runs exceeding 6 bp were deleted. The sequences
were than denoised, and chimeras were removed before operational taxonomic units (OTUs)
clustering was performed using USEARCH (Drive5, WA). OTUs were defined after
removal of singleton sequences, clustering at 97% similarity (Dowd et al. 2008a,b, 2011;
Edgar 2010; Capone et al. 2011; Eren et al. 2011; Swanson et al. 2011). The taxonomic level
of classification of OTUs was performed using BLASTn against a curated GreenGenes
database (DeSantis et al. 2006) and compiled into each taxonomic level into both “counts”
and “percentage” files. GENE-E software was used to visualize the percentage of bacterial
genera in tick tissues and saliva, relative to each sample (Fig. 1).

SFGR Detection
The presence of SFGR was detected by using outer membrane protein A (ompA) gene-
specific primers in a nested polymerase chain reaction (PCR) reaction (Blair et al. 2004).
The primers RR 190–70 and RR 190–701 (Table 1) were used for the primary reaction, and
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190-FN1 and 190-RN1 (Table 1) for the nested PCR reaction. In the primary reaction, ≈150
ng of DNA template was added to 2× PCR Master Mix (Promega, Madison, WI) and the
appropriate primers (400 nM). In the nested reaction, the same mixture was used except with
the nested primers and 2.5 μl from the primary reaction. SFGR PCR was performed in a
MyCycler Thermal Cycler (Bio-Rad Laboratories, Richmond, CA) as follows: one cycle at
95°C for 3 min, 35 cycles of 95° for 20 s, 46°C for 30 s, and 63°C for 60 s, and one cycle at
72°C for 7 min. For each reaction, two negative controls (no-template and no-primer) and
one positive control (50 ng of a known SFGR) were included. The amplicons were analyzed
on a 2% agarose gel containing ethidium bromide and observed using a ultraviolet
transilluminator. The PCR products were purified (Qiagen) and sequenced at Eurofins
MWG Operon (Huntsville, AL). Partial sequences obtained were analyzed by BLASTn from
National Center for Biotechnology Information (NCBI) for homology searches. All PCR
reactions were set up in a PCR hood using sterile technique. The PCR amplicon sequences
obtained from this study were assigned GenBank accession numbers: JQ914757-81 and
JX134636-41.

Quantification of R. parkeri
The presence of R. parkeri in tick tissues detected from the outer membrane protein A
(rompA) gene study were further validated and quantified using the rickettsial outer
membrane protein B (rompB)-based qPCR assay (Jiang et al. 2012). The R. parkeri ompB
gene from positive ompA assay samples and a R. parkeri-positive sample were first
amplified by PCR using primers Rpa129 F and Rpa224R (Table 1). The amplified rompB
PCR product was visualized on an agarose gel and purified. The purified PCR product was
serially diluted 10-fold (2 × 108 to 2 × 101) and used for standard curve preparation. The
qPCR reaction consists of 2× Master Mix (Promega, Madison, WI), 100 ng DNA template,
0.7 μM of each primer (Rpa129F and Rpa224R), 0.4 μM probe (Rpa188p; Table 1), and 8
mM MgSO4. The qPCR reactions were performed in a Thermal Cycler (CFX96 Real time
detection system, Bio-Rad Laboratories) subjected to one cycle each of 50°C for 2 min and
95°C for 2 min, and 45 cycles of 95°C for 15 s and 60°C for 30 s. A no-template control and
a positive control were included in each qPCR run. Each sample was analyzed in triplicate,
and the obtained threshold cycle (Ct) values were used to calculate the copy number based
on the standard equation.

Preparation of R. parkeri Tissue Culture
R. parkeri seed stock (1 ml) was diluted (1:10) in sterile brain heart infusion buffer or
Snyder’s 1 buffer and used for the inoculation of two T-162 cm2 flasks containing Vero cells
(−2–3 × 106 cells/ml). Twenty milliliters of the old media from each flask was discarded.
The diluted seed stock was inoculated into each flask, rocked at RT for 1 h, replenished with
20 ml of fresh Eagle’s minimum essential medium containing 2.5% fetal bovine serum, and
then placed back into the incubator. Culture flasks were incubated at 35°C and 5% CO2 until
20–30% of the infected cells had sloughed off (6–7 d). Sterile 5-mm glass beads were used
to disrupt cell adhesion. The pooled cell suspension was centrifuged at 10,000 × g for 30
min. The cell pellet was resuspended in Snyder’s 1 buffer (0.22 M sucrose, 3.6 mM
KH2PO4, 8.6 mM Na2HPO4, and 4.9 mM glutamic acid) at a ratio of one cell pellet to 4 ml
of Snyder’s 1 buffer. R. parkeri stock was aliquoted in 1 ml volumes, placed in cryogenic
vials and stored at −80°C.

Preparation of Whole Cell Antigen for Mouse Antibody Generation
R. parkeri was propagated in several T-162 cm2 flasks of Vero cells grown in Eagle’s
minimum essential medium supplemented with 2.5% fetal bovine serum in 5% CO2 at 35°C.
Heavily infected cells were harvested at 6–7 d postinfection, using sterile 5-mm-diameter
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glass beads. Cells were spun at 7,600 × g for 40 min at 4°C. The pellet was resuspended in 5
ml of K36 buffer (0.1 M KCl, 0.015 M NaCl, 0.05 M KH2PO4, and pH 7.0) and
homogenized with a glass homogenizer. The homogenate was centrifuged at 250 × g for 5
min at 4°C. The supernatant was collected and spun at 7,600 × g for another 40 min at 4°C.
The pellet was resuspended with K36 buffer. The suspension was then used for mouse
immunization. The sera from rickettsimic mouse blood were used for the detection of R.
parkeri in tick tissues.

Immunodetection of R. parkeri in Tick Tissues
R. parkeri-infected female A. maculatum midgut and salivary glands tissues were suspended
in 100 μl of extraction buffer (0.15 M Tris-HCl, pH 8.0, 0.3 M NaCl, 10% glycerol, and
Protease inhibitor cocktail) followed by sonication (3 by 5 s). The sonicated samples were
centrifuged at 20,000 × g for 10 min at 4°C. The resulting supernatants were removed, and
the protein concentration was estimated using the Bradford assay (Bradford 1976). R.
parkeri-infected Vero cells were subjected to the same procedure. The extracted
supernatants were analyzed by electrophoresis on a 4–20% SDS-PAGE and transferred onto
a nitrocellulose membrane in a Transblot Cell (Bio-Rad) following the manufacturers’
instructions. A duplicate gel was stained with GelCode Blue (Pierce, IL) for visualization. R.
parkeri-infected Vero cell supernatant was used as a positive control. A. maculatum
obtained from the Texas A&M tick rearing facility have previously been shown to be
Rickettsia free (Moraru et al. 2013) and, therefore, these samples were used as a negative
control. Nonspecific binding was reduced by incubating the blot with 5% skim milk and
mouse pre-immune sera (1:10,000). The nitrocellulose membranes were incubated with
mouse R. parkeri polyclonal antibody (1:500 dilution). The antigen–antibody complex was
visualized with horseradish peroxidase-conjugated anti-mouse IgG (KPL) at a dilution of
1:10,000 and detected with SuperSignal chemiluminescent substrate (Pierce) using Bio-Rad
ChemiDox XRS. The same blot was reprobed with the monoclonal anti-β-Actin-peroxidase
(1:25,000; Sigma).

Results
Microbiome of A. maculatum

From field collected A. maculatum tissues, we obtained 27,691 sequence reads for analysis
after trimming and removing all low-quality sequences. In total, 12,330 sequence reads
obtained from midgut tissues, 13,009 sequences reads from salivary glands, and 2,352
sequence reads from saliva were searched against the GreenGenes databases. Similarly, we
obtained, in total, 13,927 sequence reads from lab colony A. maculatum midgut and salivary
gland tissues together. This provided a reference for comparing field and lab colony A.
maculatum tissues.

In field collected A. maculatum, the bacterial phyla Proteobacteria (83.39% MG, 95.90%
SG, and 92.18% saliva), Actinobacteria (3.92% MG, 2.28% SG, and 5.23% saliva), and
Firmicutes (11.0% MG, 1.73% SG, and 2.59% saliva) were found in all tick tissues, and
these phyla account for >95% of the bacterial communities in all tested tick tissues. Minor
bacterial phyla detected in tick midguts include Bacteroidetes (1.42%), Spirochaetes
(0.17%), Cyanobacteria (0.07%), and Fusobacteria (0.02%) whereas salivary gland tissues
had only a few reads from Bacteroidetes (0.05%), Spirochaetes (0.01%), and Chloroflexi
(0.03%). In lab colony A. maculatum, we observed bacterial reads representing
Proteobacteria (64.90% MG; 99.49% SG), Firmicutes (20.53% MG, 0.51% SG),
Bacteroidetes (13.25% MG, 0% SG), and Actinobacteria (1.32% MG, 0% SG) phyla.
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Francisellaceae (0.22% MG, 82.34% SG), Enterobacteriaceae (30.58% MG, 0.1% SG, and
90.82% saliva), and Rickettsiaceae (51.47% MG, 11.40% SG, and 0.21% saliva) were
abundant bacterial families detected in field-collected A. maculatum tick tissues and saliva,
accounting for >80% of bacterial species detected in tick tissues. The majority of
endosymbionts detected in this study belong to the Francisellaceae family. A. maculatum
from the lab colony had abundant reads from Francisellaceae (34.44% MG, 99.27% SG),
while most other bacterial families in midgut tissues were Enterobacteriaceae (27.81%),
Veillonellaceae (9.93%), Ruminococcaceae (5.30%), Porphyromonadaceae (4.64%),
Lactobaccillaceae (3.97%), Staphylococcaceae (1.32%), Propionibacteriaceae (1.32%), and
Comamonadaceae (1.98%).

In wild-caught ticks, pyrosequencing revealed 54 different bacterial genera from midgut
tissues, 23 different bacterial genera from the salivary gland tissues, and 16 bacterial genera
from saliva (Figs. 1 and 2). We observed six bacterial genera in all tick tissues studied:
Francisella, Propionibacterium, Rickettsia, Pseudomonas, Corynebacterium, and
Escherichia. In addition, the Enterobacterial genera (Raoultella, Ewingella, Escherichia, and
Klebsiella) account for ≈30% of the total microbial diversity in tick midgut tissues (Fig. 1).
Reads from Rickettsia account for 46% of the total reads from midgut tissues but only 7%
from salivary glands, confirming differential pathogen levels within tissues of blood-feeding
wild caught A. maculatum.

Not surprisingly, the bacterial diversity is different in tick midguts and salivary glands (Fig.
2), which could be because of bacterial tissue specificity. The lab-maintained A. maculatum
revealed Francisella, Escherichia, Alistipes, Ruminococcus, Selenomonas, Staphylococcus,
Tannerella, Trabulsiella, Lactobacillus, Propionibacterium, and Diaphorbacter (Fig. 2).
Surprisingly, Francisella endosymbionts were detected in the salivary glands of lab-
maintained A. maculatum. F. endosymbionts have previously been identified in hard and soft
ticks from different continents, but because of difficulty in culture-based techniques, little
information is known about these endosymbionts (Ivanov et al 2011).

We determined the microbial diversity in field-collected tick saliva to evaluate potential
microbial secretion. The saliva samples revealed sequences from Shigella, Bacillus,
Escherichia, and Micrococcus, with most reads identified as originating from Shigella with
a few from Rickettsia (Fig. 1). It is important to note that some of the detected bacteria could
have resulted from environmental contamination, as many of these bacteria are commonly
found in environmental samples. However, because Rickettsiae are obligate intracellular
organisms, they were likely secreted from tick salivary glands. The saliva from laboratory-
based ticks was not tested in this study.

Screening of SFGR in A. maculatum
The prevalence of SFGR infection in the collected ticks was confirmed using ompA gene-
specific primers in nested PCR (Fig. 3). The PCR amplicon was sequenced, and the
nucleotide homology was assessed by searching the nonredundant nucleotide collection at
GenBank. Of the 11 male ticks examined, 54% (6 out of 11) were found to be SFGR
positive with nearest homology (99–100%) to R. parkeri, Rickettsia amblyommii, or R.
endosymbiont of A. maculatum (Table 2). Next, we examined SFGR infection in partially
blood-fed female midguts, salivary glands, and saliva. Eighty percent of tick midguts (20 out
of 25) contained SFGR with sequence homology to R. parkeri, R. amblyommii, or R.
endosymbiont of A. maculatum. Interestingly, of the eight salivary glands tested for the
presence of SFGR, 50% (4 out of 8) showed sequence homology with R. parkeri (Table 2).
Although we identified rickettsial reads in tick saliva from pyrosequencing, no SFGR were
detected from rompA-nested PCR (data not shown).
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R. parkeri Quantification in A. maculatum
To further confirm the presence of R. parkeri in our field-collected ticks, we used a specific
qPCR assay using ompB gene-specific primers and probe (Jiang et al. 2012). The male tick
DNA samples were insufficient in concentration to test using the qPCR assay. The infection
level of R. parkeri in the midgut samples ranged from 6 to 4,000 copies/μl, while the single
pair of salivary gland that tested positive had an infection load of 1,794 copies/μl (Table 2).
We observed some testing discrepancies in samples, in that some sequences with identity to
R. parkeri based on ompA homology (Fig. 3) were not amplified in the more accurate qPCR
assay. The apparent disparity could be because of the inherent difficulties in assigning
Rickettsial species identity because of the small divergence between ompA sequences among
rickettsial species (Fournier et al. 2003).

To study R. parkeri infection rate in field-collected A. maculatum, we expanded this assay to
include more A. maculatum tick samples. The individual female tick carcasses (n = 83)
(whole tick minus gut and salivary gland tissues) and male ticks (n = 5 groups; 3 per group)
were screened for qPCR detection of R. parkeri. We observed a 32.5% infection rate in
females samples (27 of 83), whereas three of five male tick samples tested positive for R.
parkeri infection. Based on this assay, the R. parkeri infection level in field-collected A.
maculatum showed 12–32% infection rate in field-collected female ticks.

Immunodetection of R. parkeri in A. maculatum
Western blotting was performed to detect the R. parkeri expressed proteins in tick tissues
and evaluate the efficacy of this antibody in future studies. R. parkeri polyclonal antibodies
cross-reacted with 30, 75, and 100 kDa proteins in R. parkeri-infected Vero cells and the
cell supernatant. These samples served as the positive control (Fig. 4). Rickettsia-free A.
maculatum tick midgut and salivary gland supernatants (originating from a tick colony
maintained at Texas A&M University) had no notable cross-reactivity to R. parkeri antibody
with respect to positive controls. The R. parkeri polyclonal antibody cross-reacted with a
≈70 kDa protein (Fig. 4B, Lanes 4 and 5) in field-collected tick midgut tissues but cross-
reacted with a ≈75 kDa protein (Fig. 4B, Lanes 11 and 12) in salivary glands tissues. The
differences could be because of posttranslational modification of the immunogenic protein
or they could represent entirely different proteins. The field-collected A. maculatum midgut
and salivary gland tissues were infected with R. parkeri or R. endosymbionts, based on their
carcass. The R. parkeri polyclonal antibody cross-reacted with protein species presumably
associated with rickettsial infection in midguts (Fig. 4B, Lane 6; 70 kDa) and salivary
glands (Fig. 4B, Lane 13; 70 kDa). The same blot was reprobed with monoclonal anti β-
Actin labeled with peroxidase and showed cross-reactivity of a 42 kDa band in Vero cells
and tick tissues. β-Actin was used to show the reference protein level in both the tick tissues
and Vero cells (Fig. 4C). The SDS-gel stained with GelCode Blue was also included as a
reference (Fig. 4A).

Discussion
This study revealed the microbial diversity in field-collected and lab-maintained A.
maculatum tick midguts, salivary glands, and saliva. Importantly, F. endosymbionts were
identified in all samples tested. The bacterial community of A. maculatum maintained in the
laboratory showed an average relative abundance of the Francisella genus to be 35 and 98%
in midgut and salivary gland tissues, respectively. As obligatory blood feeders, ticks are
required to maintain a relatively simple and restrictive microbial community (Lalzar et al.
2012). The uniform presence of the Francisella genus represents a systemic association
between arthropods and these bacteria. A more diverse bacterial community in A.
maculatum was expected because of its interactions with different animal hosts while
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feeding in wild. In contrast, the bacterial community had abundant sequences assigned to the
Francisella genus (80%), followed by Rickettsia (6%) and Wolbachia (4%) in field-
collected A. maculatum salivary glands (Fig. 2). These findings are in agreement with
previous reports for tick species. The abundance of Francisella species in tick tissues
suggests that Francisella sustains an obligatory association with its tick hosts, and
outcompetes other bacterial genera. The findings of Francisella, Rickettsia, and Wolbachia
in field-collected ticks reported in this study support this assertion. Determining the extent to
which field-collected ticks maintain endosymbionts (Francisella, Rickettsia, and
Wolbachia), pathogens, or both, was outside the scope of this investigation. Bacteria from
the Rickettsia and Wolbachia genus are known endosymbionts for several arthropod systems
(Gottlieb et al. 2011). In this study, we detected bacteria from the genus Rickettsia and
Wolbachia in tick salivary glands, but the bacterial density was significantly lower
compared with Francisella. These findings support a facultative association between
Rickettsia, Wolbachia, and ticks. The prevalence of obligatory or facultative endosymbionts
in ticks has been proposed to be influenced by several factors including competition,
increased virulence, and problems in vertical transmission (Mira and Moran 2002). Vector
regulation of Francisella multiplication might explain the lower reads of Rickettsia and
Wolbachia in A. maculatum salivary glands. Alternatively, interspecies competition of
Rickettsia populations found (R. parkeri and R. endosymbiont) might result in decreased
prevalence. In Dermacentor andersoni Stiles, the abundance of Rickettsia peacockii in tick
ovaries was suggested to block transovarial transmission of R. rickettsii (Burgdorfer et al.
1981, Niebylski et al. 1997).

The survival or dominance of Enterobacteria in tick gut tissues (Fig. 2) could be under the
control of the same mechanism that operates in mosquito guts, in that bloodmeal-induced
oxidative stress results in a oxidative killing of many bacteria (Wang et al. 2011). The redox
capacity of enteric bacteria may be important adaptation within blood-feeding arthropod
guts, owing to high oxidative stress during blood metabolism. Francisella and Wolbachia,
found in both midguts and salivary glands (Fig. 2), and Candidatus Devosia found
predominantly in salivary glands (Fig. 2) are known endosymbionts (Scoles 2004, Vannini
et al. 2004, Zhang et al. 2011). Wolbachia species have been proposed for use in insect pest
control, importantly by Wolbachia-induced cytoplasmic incompatibility (Zabalou et al.
2004), and this methodology has been shown to block or reduce Plasmodium falciparum
(malaria parasite) transmission from Anopheles gambiae Giles, 1902 (Hughes et al. 2011).
Only the Francisella-like endosymbionts were found in lab-colony salivary glands while
both the Francisella-like endosymbiont and Rickettsia (Figs. 1 and 2) were detected in field-
collected salivary glands, suggesting further study is warranted to understand their
interaction with their host.

Symbionts are classified as obligate, providing nutrient supplements to their arthropod host,
or facultative, aiding in immunity (Moran et al. 2008). The presence of the facultative
symbiont, Wolbachia, has been shown to result in upregulated immune genes on pathogen
infection in Drosophila melanogastor and Aedes aegypti L. (Rances et al. 2012,
Eleftherianos et al. 2013). Clearly, the presence of F. endosymbionts in A. maculatum is of
fundamental significance, given their occurrence in numerous other tick species including
Dermacentor variabilis (Say, 1821), D. andersoni, Dermacentor hunteri Bishopp, 1912,
Dermacentor nitens Neumann, 1897, Dermacentor occidentalis Marx, 1892, and
Dermacentor albipictus (Packard) (Niebylski et al. 1997, Sun et al. 2000, Scoles 2004), but
the nature of this symbiotic relationship has not yet been determined.

Interestingly, Rickettsia reads were present in saliva (Fig. 1), suggesting rickettsial secretion
from salivary glands. The detection of Rickettsia in midgut, salivary glands, and saliva is
important with respect to the possible pathogen development cycle. The putative trafficking
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route in ticks begins with midgut tissues acquiring or harboring the pathogen from an
infected vertebrate host, the development and replication, trafficking to the salivary glands,
and finally transmission to a mammalian host via salivation (De Silva and Fikrig 1995).
Interestingly, the only Rickettsia species we identified in A. maculatum salivary glands was
R. parkeri, supporting its unique ability to migrate from midgut to salivary gland (Table 2).

We detected R. parkeri, R. amblyommii, and R. endosymbiont of A. maculatum in field-
collected A. maculatum. R. parkeri has been frequently reported from different field-
collected A. maculatum (Cohen et al. 2009, Paddock et al. 2010, Trout et al. 2010, Varela–
Stokes et al. 2011, Wright et al. 2011), with an estimated infection rate of 28.1–41%, similar
to this study. Similarly, R. amblyommii has been identified in many different Amblyomma
species (Labruna et al. 2004; Apperson et al. 2008; Ogrzewalska et al. 2008, 2009, 2010,
2011; Jiang et al. 2010; Bermudez et al. 2011). Culturing rickettsial endosymbionts from the
soft tick, Carios capanensis (Neumann, 1901), has been attempted (Mattila et al. 2007), but
complete characterization remains incomplete. The public health significance of R. parkeri
was recognized more than 60 yr after its discovery in A. maculatum (Parker et al. 1939,
Paddock et al. 2004). In addition, a human rickettsiosis originating from R. amblyommii
infection has been recently reported (Apperson et al. 2008). In fact, the pathogenicity of
many rickettsial agents (which may include tick endosymbionts) remains unknown because
of the lack of specific diagnostic approaches, minor differences in clinical symptoms, and
the fact the same antibiotic regimen is prescribed for all rickettsial infections.

Stenotrophomonas, Pseudomonas, Rhodococcus, and Propriobacterium in A. maculatum
were reported in Ixodes ricinus L. and were proposed to be part of the core microbiome of
Ixodid ticks (Carpi et al. 2011); however, specific or functional classification has not yet
been achieved (Moran et al. 2008). The detection of Mycobacterium, Bacillus,
Streptococcus, Clostridium, Streptomyces, Pseudomonas, Streptococcus, Corynebacterium,
Staphylococcus, Papilibacter, Coprococcus, Eubacterium, Roseburia, Pantoea,
Ruminococcus, and many other environmental and soil bacterial genera identified in this
study have previously been reported in ticks (Andreotti et al. 2011, Carpi et al. 2011).

In this study, we attempted the detection of R. parkeri in tick tissues using a mouse-
generated polyclonal R. parkeri antibody. However, rickettsial polyclonal antibodies
extensively cross-react with antigens from many different Rickettsial species (Anderson and
Tzianabos 1989), and, currently, this prevents the use of Rickettsial antibodies as a means of
specific detection of Rickettsial species in tick tissues. The use of a species-specific
rickettsial antibody with cross-adsorption could provide a specific determination of R.
parkeri (Raoult and Paddock 2005). The differences in antibody reactivity in Vero cells and
the tick tissues (Fig. 4) could be because of different antigen expression profiling of R.
parkeri in mammalian (Vero cell) and arthropod systems (tick). Differences in antigenic
profiling was reported in Ehrlichia chaffeensis-infected tick and mammalian cells
(Kuriakose et al. 2011). Overall, these data underscore the difficulty in serological
differentiation among Rickettsia.

In conclusion, we described the A. maculatum microbiome and further confirmed R. parkeri
infection, which could be the basis of future studies examining the interactions between R.
parkeri and the tick microbiome. The known pathogenic and nonpathogenic microbes likely
interact with the tick vector, and a better understanding of these interactions could open new
avenues for vector and disease control. The manipulation of the microbial communities by
altering or inhibiting the growth of a particular bacterial strain could alter pathogen
transmission (Hughes et al. 2011). The mechanism by which the tick midgut microbiome
influences pathogenic rickettsial development could be used for tick-borne disease control
strategies. Moreover, elucidating the precise role of the endosymbionts on the regulation of
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the immune response and the corresponding pathogenic response of R. parkeri, will continue
to be of considerable research interest. Further studies will focus on the influence the
microbiome has on pathogen survivability, virulence, and development within the tick
vector and the relationship between various symbionts and tick immunity with emphasis to
F. endosymbionts and numerous Rickettsiae.
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Fig. 1.
The relative abundance of bacterial genera in A. maculatum tissues. The field-collected ticks
(SH) and lab colony (LC) ticks: midgut (MG), salivary glands (SG), and saliva.
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Fig. 2.
Microbiome of the partially blood-fed A. maculatum tissues. The bacterial diversity in the
tissues from field-collected (A) and lab-based (B) female A. maculatum tissues based on
454-pyrosequencing approach. The asterisk sign (*) denotes no or <1% reads for that
genera. Values below 1% were grouped as “Others.”
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Fig. 3.
Molecular detection of SFGR in field-collected A. maculatum. Tick tissues were tested for
the presence of SFGR using the ompA-nested PCR assay. (A) 1: DNA ladder; 2: no-template
control; 3: no-primer control; 4: positive control; lanes 5–15: male tick DNA. (B) Lane 1:
DNA ladder; 2, 4, and 6: Blank; 3: no-template control; 5: positive control; lanes 7–17:
female midgut DNA. (C) 1: DNA ladder; 2: no-template control; 3: no-primer control; 4:
positive control; lanes 5–13: female salivary gland DNA.
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Fig. 4.
A 4–20% SDS-PAGE stained with GelCode Blue (A) and its corresponding immunoblot
demonstrating cross-reactivity to the R. parkeri antibody (B) and β-actin (C). Standard
protein marker adjoining molecular size lane (M); Lanes 1 and 2 were R. parkeri grown in
Vero cells and the corresponding cell supernatant (Lanes 8 and 9). Lane 7 was empty. Lanes
3 and 10 were A. maculatum (Texas A&M) midgut and salivary gland tissues, respectively
(Rickettsia-free tissues); Lanes 4 and 5 (midgut tissues) and lanes 11 and 12 (corresponding
salivary glands), respectively, from field-collected A. maculatum; Lane 6 (midgut) and lane
13 (salivary gland) of lab colony A. maculatum (infected with R. endosymbiont).
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Table 1

Primers and probe used in this study

Gene Sequences Amplicon size (bp) Reference

ompA (primary) (F) 5′-ATGGCGAATATTTCTCCAAAA-3′
(R) 5′-GTTCCGTTAATGGCAGCATCT-3′

590 (Blair et al. 2004)

ompA (nested) (F) 5′-AAGCAATACAACAAGGTC-3′
(R) 5′-TGACAGTTATTATACCTC-3′

540

ompB (qPCR) (F) 5′-CAAATGTTGCAGTTCCTCTAAATG-3′
(R) 5′-AAAACAAACCGTTAAAACTACCG-3′
(Probe) 5′-6-FAM-CGCGAAATTAATACCCTTATGAGCAGCAGTCGCG-
BHQ1-3′

96 (Jiang et al. 2012)
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