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Abstract
The ability of tumours to metastasise is
regarded as one of the hallmarks of malig-
nancy. The process through which tu-
mours evolve to achieve this has been
termed the metastatic cascade. This cas-
cade has been the subject of much investi-
gation over many years. One of the vital
events identified by these investigations is
the reduction of adhesion between tumour
cells facilitating invasion of the surround-
ing tissues and vascular channels, ulti-
mately leading to the development of a
distant metastasis. E-cadherin and its
associated catenin complex have been
identified as key molecules in cell adhe-
sion. This review looks at the structure
and interaction of the E-cadherin–catenin
complex and the factors that appear to
regulate E-cadherin expression and thus
cell adhesion. From the data gathered, it
has become possible to propose the hy-
pothesis that the development of tumour
hypoxia is the initiating factor that sets the
tumour on the road to metastasis.
(J Clin Pathol: Mol Pathol 1999;52:179–188)
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The ability of tumour cells to invade adjacent
tissues and disseminate to distant organs has
long been considered the biological hallmark of
malignancy. This ability of malignant tumours
to colonise and destroy distant organs was first
recognised by Jean-Claude Recamier in 1829
and termed metastasis.1 Since this first basic
but profound observation, the study of the
mechanisms and importance of metastasis has
formed an important part of the investigation
of neoplasia. The expansion of this body of
knowledge has been particularly rapid over the
past two decades, coinciding with the develop-
ment of new techniques that have allowed cru-
cial insights into the interplay of various factors
at a molecular and genetic level. The resultant
model shows metastasis to be a coordinated,
multistep process encompassing the detach-
ment of cells from the primary tumour to the
development of a tumorigenic lesion in a
distant site (fig 1).2 3

The process of metastasis appears to be regu-
lated by a variety of gene products.4 These
include: (1) cell–cell and cell–extracellular ma-
trix receptors5 6; (2) proteolytic enzymes that
facilitate the breakdown and invasion of the
basement membrane, vascular channels, and
organs7–9; (3) motility factors that allow migra-
tion through tissues10 11; (4) receptors mediating

organ specific invasion12; (5) growth factors nec-
essary for the maintenance of the tumour
microcolonies in the secondary organ13; and (6)
angiogenic factors that result in neovascularisa-
tion of the metastasis, allowing the supply of
nutrients, removal of metabolites, and haema-
togenous spread of metastatic cells.14 15 Conse-
quently, it can be appreciated that the weakening
of cell–cell adhesion mechanisms must be a
basic prerequisite for tumour metastasis to
occur. The weakening involves changes in
homotypic cell–cell adhesion, heterotypic cell–
cell adhesion, and interactions of cells with the
extracellular matrix at the primary tumour site.16

In recent years, several families of biochemically
and genetically distinct cell adhesion molecules
have been described. These include the cadher-
ins, integrins, adhesion molecules belonging to
the immunoglobulin superfamily, selectins, and
CD44.

The members of the cadherin family of cell–
cell adhesion molecules are situated on the cell
surface and have a wide distribution in normal
tissues. Although the family as a whole shows a
wide distribution, the individual members
show pronounced tissue specificity. E-cadherin
is one of the best characterised members of the
family and is expressed by all normal epithelia.
It has been the focus of much attention recently
because of its apparent promise as a prognostic
indicator, with loss or reduction of expression
correlating with enhanced aggressiveness and
dediVerentiation of many carcinomas.17–22 In
this paper, the E-cadherin adhesion system and
its relation to the metastatic potential of
tumours will be reviewed.

Structure and function of the
E-cadherin–catenin complex
To appreciate the role of the E-cadherin–
catenin complex it is essential to be familiar
with the interactions of these molecules and the
mechanisms by which they exert their eVects.

E-cadherin is a transmembrane protein with
a molecular mass of 120 kDa. It is formed from
a 135 kDa precursor, which undergoes cyto-
plasmic enzymatic trimming to form the
mature molecule and is then routed mainly
towards the basolateral surface of the epithelial
cells, where it tends to localise to specialised
junctions of the zonula adherens type (fig
2).23 24 The enzymatic trimming of the precur-
sor at the extracellular N-terminal end of
E-cadherin is essential for the mature molecule
to exert its role in cell–cell adhesion.25 The gene
encoding human E-cadherin has recently been
cloned and characterised.26 It has been found
to be situated on chromosome 16q22.1, within
a large conserved linkage group that includes
loci for haptoglobin, chymotrypsinogen B,
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metallothionine-1, metallothionine-2, tyrosine
aminotransferase, and lecithin
cholesterolacyltransferase.27 28

E-cadherin consists of an extracellular do-
main, which binds homotypically to
E-cadherin molecules on adjacent cells, and a
highly conserved intracellular domain, which
binds non-covalently to the catenins. The
homotypic binding is calcium dependent and is
mediated by five homologous repeated do-
mains that harbour two conserved regions rep-
resenting the putative calcium binding sites.29 30

The extracellular domain also possesses a flex-
ible hinge region.31 The cytoplasmic domain of
E-cadherin contains a highly conserved region
that is common to all members of the cadherin
family.32 The presence of this region provides a
target for immunological screening for the
presence of cadherins. There is a catenin
recognition site within the cytoplasmic domain
that forms the link to the cytoskeleton through
its interaction with the catenin complex.33 34

The two parts of the molecule are connected by
a single, 32 amino acid, hydrophobic, mem-
brane spanning domain.31

The binding of the transmembranous
E-cadherin molecule and the actin cytoskel-
eton is essential for the formation of strong
cell–cell adhesion mediated by the catenins, a
series of associated cytoplasmic proteins that
are classified according to their molecular
weight. The catenin complex consists of á cat-
enin (102 kDa), â catenin (92 kDa), and ã
catenin/plakoglobin (83 kDa).35–37 The human
genes have been assigned for all three catenins,
with á catenin located on chromosome 5q31, â
catenin on chromosome 3p21, and ã catenin/
plakoglobin on chromosome 17q21.38–40 A
fourth catenin-like molecule, p120cas, has
recently been described and its gene localised
to the long arm of chromosome 11q11, imme-
diately adjacent to the centromere.41 42 The
protein has been shown to be a tyrosine kinase
substrate for epidermal growth factor (EGF)
and platelet derived growth factor (PDGF)
receptors.43 Four isoforms of the p120cas mol-
ecule have been described.

The catenins bind to E-cadherin and each
other in a specific manner. E-cadherin binds to
either â catenin or ã catenin, whereas á catenin
also binds â catenin or ã catenin but not
E-cadherin.44–46 The existence in the same cell
of two distinct E-cadherin–catenin complexes
results from specific binding. One complex is
composed of E-cadherin, á catenin, and â cat-
enin, and the other of E-cadherin, á catenin,
and ã catenin.46 47 The p120cas molecule
appears to bind only to E-cadherin and does
not associate directly with the other catenins or
the 300 kDa adenomatous polyposis coli
(APC) protein, which binds to â catenin.48–50

The wild-type (wt) and the mutated (mt) APC
proteins both bind to â catenin.48 Several other
cytoplasmic molecules have been found to
associate with the E-cadherin–catenin com-
plex. Among these is the wnt-1 gene product,
which has been found to initiate a mechanism
by which the binding between E-cadherin and
â catenin is stabilised, eVectively promoting
cell–cell adhesion.51 The c-erbB-2 gene prod-
uct has also been found within the complex as
a result of binding to â catenin or ã catenin.52

The E-cadherin–catenin complex begins to
form during the passage of E-cadherin to the cell
membrane. The first catenin to interact with
E-cadherin is â catenin.46 53 The initial interac-
tion is followed by binding of á catenin to a short
region close to the N-terminal of â catenin,
which results in the formation of stable bonds
between the complex and the actin
cytoskeleton.54 The binding domain responsible
for the link to actin is located at the N-terminal
and is also responsible for the linkage of spectrin
to the complex.55 The formation of the complex
does not interfere with the catenins’ ability to
form complexes with other molecules, both
cytoplasmic (such as APC) or at the cell
membrane—for example, the EGF receptor
(EGFR).45 46 Changes in the linkage to the
cytoskeleton may be the mechanism by which
EGF induces alterations in E-cadherin
function.56 The catenins forming the complex
may also be exchanged for free catenins within
the cytoplasm.46 The final intercellular binding
between E-cadherin molecules of adjacent cells

Figure 1 The multistep process of metastasis.
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Figure 2 The formation of an E-cadherin complex using á catenin and â catenin in
epithelial cells.
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is calcium mediated and the resultant multimo-
lecular structure has a “zipper” conformation.30

Pathological mechanisms eVecting cell
adhesion mediated by the
E-cadherin−catenin complex
The E-cadherin−catenin complex is dependent
upon numerous interactions, which have been
highlighted above. It should be obvious that
cell adhesion is thus dependent not only on the
structural and functional integrity of the
E-cadherin molecule, but also that of the asso-
ciated catenins and other molecules that medi-
ate its binding to the cytoskeleton. Reduction
in cell adhesion is of major importance in
tumour metastasis and appears to be achieved
by a variety of mechanisms aVecting the
E-cadherin−catenin complex. These include
reduction or loss of E-cadherin expression,
mutation of the genes of the constituent
molecules, redistribution of E-cadherin to
diVerent sites within the cell, shedding of
E-cadherin, and competition for binding sites
by other proteins.57

Reduction or loss of expression of
E-cadherin has been documented in a large
number of tumours from varying organs,
including colon,58 59 stomach,20 60 61 pancreas,62

oesophagus,63 64 liver,65 lung,64 66 bladder,67–69

prostate,70–72 breast,73–79 uterus,80 ovary,81

thyroid,82 skin and oral carcinomas.83–87 The
degree of tumour diVerentiation appears to be
related to the proportion of E-cadherin expres-
sion, with poorly diVerentiated tumours more
likely to show reduced E-cadherin expression,
which might be a result of downregulation or
defects in the catenins.63 88–90

Mutation of the genes of the constituent
molecules may result in structural or functional
aberrations that result in reduction of cell
adhesion. Mutations of the E-cadherin gene
appear to be infrequent events. In frame
skipping of exon 8 or 9 and deletion of exon 10
have been demonstrated in diVuse-type gastric
cancer.91 Point mutations in exons 7 (invasive
breast carcinoma),92 12 and 13 (endometrial
carcinoma),93 and 16 (ovarian carcinoma)93

have also been demonstrated, and these mostly
aVect the extracellular domain of E-cadherin.
Deletions of the á catenin gene, resulting in a
mutated á catenin that does not bind
E-cadherin, have been identified in lung, colon,
and prostate carcinoma cells.70 94–96 â catenin
has been found to be deleted in a human
gastric carcinoma cell line.88 90

Redistribution of E-cadherin expression has
been noted in some cancers, with the staining
being variable or spotty in distribution, or
located at abnormal sites along the mem-
brane.64 66 Cytoplasmic (as opposed to mem-
branous) expression has been noted in thyroid,
breast, and some squamous carcinomas.78 82 97

Shedding of E-cadherin from the cell
surface, with resultant excretion of soluble
E-cadherin in the urine has been reported.98 99

In these cases, the primary tumours have been
noted to show reduced E-cadherin expression.
Bladder cancers have also been shown to be
associated with shedding of the molecule into
the urine.100

Competition for binding to E-cadherin by
other molecules such as the APC protein may
aVect the normal E-cadherin–catenin interac-
tion, thereby resulting in abnormal
function.49 101–103

Functional regulation of E-cadherin
expression
The expression of E-cadherin may be down-
regulated as part of a physiological process.
Embryonic morphogenesis is commonly asso-
ciated with variations in E-cadherin expression
occurring during specific events.104 105 An ex-
ample is found during the development of the
murine cochlea, where E-cadherin is down-
regulated on the lateral membranes of the
reticular lamina, allowing the process of fluid
space opening in the organ of Corti.106

E-cadherin is downregulated during fusion of
cytotrophoblast cells to syncytiotrophoblast.107

Downregulation has been observed in liver
undergoing regeneration after partial hepatec-
tomy.108

Downregulation occurring under specific
circumstances suggests the existence of exter-
nal control over the expression of E-cadherin,
and thus cell adhesion. Treatment with epider-
mal growth factor appears to interfere with
E-cadherin–catenin complex assembly and
results in a more invasive phenotype in vitro.109

The interference with complex assembly seems
to be mediated by a mitogenic signal transmit-
ted by the EGFR through its tyrosine kinase,
resulting in tyrosine phosphorylation of â
catenin and E-cadherin itself.110 Transforming
growth factor á (TGF-á) has extensive homol-
ogy with EGF, and produces most of the
biological activities of EGF, as a result of bind-
ing with the EGFR. It has been shown recently
that inhibition of E-cadherin, using a specific
antibody, results in secretion of a urokinase-
type plasminogen activator, which induces
proteolysis of the extracellular matrix.111 Thus,
stimulation of the EGFR results in reduction of
E-cadherin function, facilitating cell motility
and proteolysis of the extracellular matrix,
which would favour cell invasion. Regulation of
cell adhesion by EGFR stimulation is also very
important in wound healing, where EGF and
TGF-á are produced in response to the
cascade of active substances released by the
injured tissue, allowing the proliferating epithe-
lial cells to migrate, thereby facilitating closure
of the breached epithelial layer. This appears to
account for the downregulation of E-cadherin
seen in epithelial cells adjacent to areas of
ulceration in the gastrointestinal tract.112

Other motility factors that promote the pro-
liferation and non-directional movement of
discohesive cells have been isolated. These
include autocrine motility factor (AMF),113

migration stimulation factor (MSF), scatter
factor/hepatocyte growth factor (SF/HGF),
and autotaxin.10 114 The SF/HGF receptor,
c-Met, is a transmembrane tyrosine kinase and
proto-oncogene.115 Binding of SF/HGF to
c-Met appears to mediate mesenchymal–
epithelial interactions that regulate cell growth,
development, motility, and morphogen-
esis.116 117 Although the function and interac-
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tion of these factors is beyond the confines of
this review, it is clear that they form part of the
cascade of active substances released during
the process of tissue damage. The motility fac-
tors appear to act in concert with other factors,
including EGF and TGF-á, to facilitate a
reduction in cell adhesion and increased cell
motility, in turn leading to tissue repair and
healing. Adhesion molecules expressed by
tumour cells could be regulated in a similar
way, in response to tumour necrosis.

Several studies have reported that integrins
are capable of signal transduction across the
plasma membrane, resulting in local changes in
cell adhesion and the cytoskeleton,118 giving
rise to the question of whether E-cadherin itself
is involved in signalling. EGF induced signal
transduction and its eVects have been men-
tioned previously. Recent studies have revealed
an intersection between signalling (WNT–
wingless pathway) and adhesion (cadherin–
catenin complex).119 The Wnt-1 protein, which
has been studied extensively in drosophila, has
been found to bind to a seven transmembrane
domain receptor called frizzled. The steps in
the pathway downstream of membrane binding
are still not fully understood; however, â
catenin is known to be of major importance.
The sharing of the cytosolic pool of â catenin
means that the cadherin/WNT pathways are
dependent upon each other. For instance,
binding of Wnt-1 to the frizzled receptor
results in accumulation of cytoplasmic â
catenin.120 The increased pool of â catenin will
obviously have an eVect on cell adhesion, with
the â catenin in this cytosolic pool either link-
ing with E-cadherin or acting in the WNT–
wingless pathway. â Catenin may heterodimer-
ise with leucocyte enhancer factor (LEF-1),
allowing translocation to the nucleus, where
LEF-1 induces DNA bending and gene
transcription.121 122 The genes activated by the â
catenin–LEF complex have not been defined.

The view that the E-cadherin–catenin com-
plex might be involved in signalling has been
strengthened by the demonstration that
homophilic binding of E-cadherin to an
adjacent cell can activate protein kinase C,
leading to the assembly of tight junctions.123

The assembly of tight junctions also involves
the Rho subfamily of the Rho small G protein
family.124 Other members of the G protein fam-
ily include the Rac and Cdc42 subfamilies,
which are involved in regulation of E-cadherin
mediated cell–cell adhesion through the action
of a molecule known as IQGAP1.125 In a recent
study, Rho, Rac, and Cdc42 activation by
tumour necrosis factor á (TNF-á) resulted in
reorganisation of the actin cytoskeleton and the
formation of intercellular gaps, indicating
reduced function of tight junctions.126 A similar
eVect on endometrial epithelial cells by TNF-á
had been noted previously and attributed to
disassembly of actin filaments.127 The evidence
above appears to indicate a role for TNF-á in
the regulation of cell adhesion.

The role of the APC protein in the regulation
of E-cadherin is not yet fully understood. The
APC gene is located on chromosome 5q and is
mutated in familial adenomatous polyposis and

in most sporadic colorectal carcinomas.128 129

As already mentioned, both wt and mt APC
proteins bind to á catenin and â catenin. In
addition, the wt APC protein, unlike mt APC,
has the ability to promote microtubule assem-
bly in vitro.130 It has been hypothesised that,
based on the selective localisation of the APC
protein to the superficial diVerentiated crypt
compartment in gut epithelium,131 the wt APC
protein may regulate shedding of cells from the
luminal surface through its interplay with the
E-cadherin–catenin complex, resulting in
downregulation of E-cadherin expression. Mu-
tation of APC might result in interference of
the normal mechanism, leading to accumula-
tion of cells that contain potentially oncogenic
mutations.132

The role of Helicobacter pylori in the regula-
tion of E-cadherin has been studied recently. It
is widely accepted that H pylori is the main fac-
tor in the pathogenesis of peptic ulceration.133

In addition, data have emerged recently that
implicate this bacterium in the development of
gastric cancer and lymphoma.134–136 The ulcero-
genic potential of H pylori seems to result from
the action of bacterial urease, which generates
ammonia and protease that break down the
protective mucous layer overlying the gastric
epithelium. Recent studies have shown that H
pylori infection is associated with downregula-
tion of E-cadherin, probably by generating cell
signalling events that counteract the normal
function of protein kinase C.137 138 The result-
ing increase in permeability mediated by the
reduction in cell adhesion might allow H pylori
antigens to reach the gastric lamina propria
and activate the mucosal immune system, with
resultant tissue damage.

The ability of cell adhesion, represented in
part by E-cadherin function, to be regulated by
a variety of factors implies that the downregu-
lation of E-cadherin seen in certain tumours
may not just be a function of genetic
mutations, resulting in expression of a dysfunc-
tional, mutated protein, but may be regulated
by factors within the microenvironment of the
tumour. This modulation of E-cadherin ex-
pression has been noted in a recent study of 25
adenocarcinomas by Cowley and Smith.139

They found higher levels of E-cadherin expres-
sion in the intravascular component of the
tumours, compared with the adjacent, much
larger extravascular component. It is tempting
to speculate that the upregulation noted in the
intravascular component may be the result of a
relatively higher oxygen tension in this com-
partment. The eVect of this upregulation
would be an increase in tumour cell adhesion,
facilitating the formation of a tumour embolus.

The interplay of various factors within the
tumour microenvironment has been exten-
sively studied recently, particularly in breast
cancers. Reduction of E-cadherin expression in
invasive duct carcinoma of the breast has been
shown to correlate with the presence of lymph
node metastasis, invasiveness, and EGFR ex-
pression.140 141 Poorly diVerentiated duct carci-
noma in situ (DCIS) shows significantly less
E-cadherin expression compared with well dif-
ferentiated DCIS.142 The expression of peptide
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growth factors TGF-á, EGF, and insulin-like
growth factor I (IGF-I) has been found to be
increased in a large proportion of breast
carcinomas.143–145 Breast stromal cell cultures
derived from human breast cancer lines are
able to secrete an EGF-like substance, prob-
ably as a result of stimulation by the adjacent
cancer cells.146 These results indicate that the
reaction to varying concentrations of stimula-
tory factors, such as EGF and TNF-á, within
the various microenvironments of a tumour
aVect the degree of cell adhesion, allowing car-
cinoma in situ to transform into an invasive
tumour.

Is there a role for hypoxia in the initiation
of the metastatic cascade and
downregulation of E-cadherin?
The conventional models of epithelial tumour
metastasis start with a cell or population of
cells that undergoes a series of mutational
events resulting in a malignant population.147

These mutations aVect oncogenes and tumour
suppressor genes, resulting in an uncontrolled
proliferation of immortalised cells, which
causes further genetic mutations that aVect the
diVerentiation of the cell, as well as the
structural proteins dictating the interactions
with adjacent cells.148 The structural aberra-
tions allow the tumour cells to detach from
each other, break through the basement mem-
brane, attach to and degrade extracellular
matrix components, migrate through the tissue
into a vascular channel, and eventually spread
to a distant organ to establish a metastasis.
With advances in the understanding of the
interaction between epithelial cells, it is clear
that to generate a clone of cells capable of
metastasis, a vast amount of genetic damage is
required at a multiplicity of sites.

Although most tumours appear to develop
from a single cell, the mutations occurring
within the resultant tumour population lead to
the development of several phenotypes that
diVer with respect to their rate of growth, inva-
siveness, metastatic potential, karyotype, hor-
monal responsiveness, and resistance to anti-
cancer treatment. This realisation that
malignant tumours, although monoclonal in
origin, are, at least by the time they manifest
clinically, actually a heterogeneous population,
has led to extensive study into the “metastatic
phenotype”. The factor that predisposes the
original transformed cell to additional genetic
damage is not known, but most researchers
favour the notion that the original transforma-
tion event renders the cell’s genome inherently
unstable, making it susceptible to a high rate of
spontaneous mutations.149

The search for factors that aVect the
progression and behaviour of tumours has led
to the investigation of the eVect of the
microenvironment on particular tumours. It is
now known that the tumour microenvironment
can aVect the cellular heterogeneity of tumours
and this realisation has spawned a number of
studies.150 Many of them have been conducted
in vitro under well controlled conditions; how-
ever, the microenvironments produced have
not been reproduced in vivo. There have been

some in vivo studies that have attempted to
identify specific interactions. Drug resistant
variants were found to be increased in murine
carcinoma cells after exposure to activated
macrophages,151 whereas progression of hyper-
plastic alveolar nodules to adenocarcinoma in
mice was noted after natural killer cell infiltra-
tion of the nodules.152 Another microenviron-
ment that occurs in malignant tumours and
which is receiving attention is that of hypoxia.
Oxygen deprivation seems to be present in
almost all malignant tumours. With progressive
and rapid growth of the tumour population, the
blood supply is outstripped, resulting in cellu-
lar ischaemia and eventually the tumour
necrosis that is invariably seen in malignant
tumours. The eVects of this ischaemia are
listed below and provide compelling evidence
that tumour hypoxia may well be the factor that
initiates and promotes the metastatic cascade.

After the development of ischaemia within a
tumour, the resultant necrosis leads to the
release of infammatory mediators such as
cytokines, which recruit polymorphonuclear
leucocytes, macrophages, and other cells that
participate in the inflammatory process. Macro-
phages that are recruited to the site of tumour
necrosis act in a similar way to those that are
present at a site of non-neoplastic tissue damage.
One of the factors released by the macrophages
is nitric oxide synthetase (NOS), resulting in the
formation of nitric oxide (NO), which acts as a
free radical and is cytotoxic to tumour cells. It
acts by oxidising sulphhydryl groups on proteins
and reacting with superoxide anion to form
nitrogen dioxide (a strong oxidant) and the
highly reactive hydroxyl radical.153 The demon-
stration of increased NOS activity within breast
cancers of higher grade suggests that NO may
provide a positive growth signal within the
hypoxic tumour environment, resulting in in-
creased growth rate, vascular density, and
invasiveness.154

The peptide growth factors, basic fibroblast
growth factor (bFGF) and EGF, have been
found to reduce NO mediated neuronal death
in the hippocampus after exposure to an anoxic
environment.155 The reduction in neuronal
death implies that these peptide growth factors
might have a protective eVect on tumour cells
exposed to the cytotoxic eVects of NO. As has
been mentioned previously, EGF is found in
breast carcinomas, where it appears to be syn-
thesised by activated stromal cells within the
tumours.143–146 In addition, experimental work
on acute renal injury mediated by hypoxia has
revealed that there is induction of mRNA for
heparin binding EGF-like growth factor
(HB-EGF).156 A subsequent study by the same
group confirmed that HB-EGF was produced
in response to acute hypoxic renal injury.157

Production of HB-EGF appears to be impor-
tant in renal epithelial cell repair, proliferation,
and regeneration. From these results, it is pos-
sible to suggest that the increase in peptide
growth factors identified in carcinomas might
be the result of the hypoxic injury suVered by
the tumour. These growth factors might have a
similar protective eVect on the tumour cells as
they appear to have on hypoxic neurons. This
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protective eVect would not only allow a larger
percentage of the tumour cells to survive the
period of hypoxia before the ingrowth of new
vessels, stimulated by angiogenic factors, but
would also have the eVect of allowing the cells
prolonged exposure to the mutagenic eVects of
the free radicals produced by NO. Thus, once
the vascular supply has been re-established by
the process of angiogenesis, these cells may
have acquired enough genetic mutations over a
relatively short period to establish a clone of
cells possessing an aggressive malignant phe-
notype.

In several studies, the eVect of a hypoxic
environment on DNA synthesis and expression
has been investigated. Although DNA synthe-
sis appears to be inhibited by hypoxia, on
reoxygenation, the previously arrested cells
demonstrate large scale DNA replication.158–160

A similar eVect has been observed with gene
amplification.159 161 As a result, it appears that
large parts of the genome, including any newly
mutated parts (resulting from the damage pre-
cipitated as a result of the hypoxia) are
amplified in a non-specific manner. In addi-
tion, a hypoxia induced increase in metastatic
potential, which correlates with the generation
of cells with over-replicated DNA, has been
demonstrated in murine tumour cells.162 The
cells that exhibited the highest experimental
metastatic eYciency were those that were
exposed to the most severe degrees of hypoxia
because they were situated furthest away from
the vasculature.163 More recently, a number of
diVerent metastasis associated genes have been
studied in various tumour cell lines to try and
identify any correlation between increased
expression of these genes and metastatic
potential. No overall correlation between
changes in the mRNA levels for cathepsin B,
cathepsin L, nm23, tissue inhibitor of metallo-
proteinase 1 (TIMP-1), osteopontin, or vascu-
lar endothelial growth factor (VEGF) and
metastatic ability could be demonstrated.164 A
previous study from the same group using
similar cell lines had demonstrated increased
cathepsin B and cathepsin L, and increased
invasiveness after hypoxia and glucose
starvation.165 The variation in results obtained
in these two studies appears to confirm the
random nature of the genetic damage caused
by hypoxia.

The random damage demonstrated above is
by no means unique, with the literature being
littered at the present with numerous studies
indicating that a particular genetic mutation is
associated with metastasis in a particular carci-
noma. However, these findings are inconsistent
between diVerent research groups. An example
of these diVerences is the investigation of the
metastatic phenotype in squamous carcinomas
of the head and neck. Bockmühl et al found
that metastasising tumours frequently dis-
played deletions aVecting chromosomes 7q,
10q, 11p, 15q, and 20p.166 Over-representation
of chromosomes 19q and 20q were also noted.
In comparison, metastasising tumours studied
by Carey et al showed patterns of loss aVecting
chromosomes 3p, 4p, 5q, 8p, 9p, 10p, 13q, 18q,
and 21.167 Patterns of gain were found in chro-

mosomes 1q, 3q, 5p, 7p, and 11q. These con-
flicting results occurring in a similar tumour
population cannot be explained simply by the
use of diVering methodology and they indicate
that the “metastatic phenotype” may not be a
distinct pattern of chromosomal aberrations
within a specific malignant phenotype, but may
be unique to each tumour.

The release of peptide growth factors, such
as EGF and TNF-á, in response to hypoxia has
been mentioned above. The binding of these
factors in normal epithelia to the EGFR has
been described previously and results in down-
regulation of E-cadherin and reduced cell
adhesion. In the setting of a tumour, this inter-
action does not appear to be so simple. Reports
from recent studies indicate that the binding of
peptide growth factors to the EGFR is reduced
in the setting of hypoxia.168–170 In one of the
studies it was found that pretreatment with
suramin, which binds to growth factor, resulted
in increased tyrosine phosphorylation of the
EGFR after exposure to high oxygen
tensions.170 This suggests that either there is an
autocrine eVect, or that other factors within the
hypoxic environment are stimulating the
EGFR, which results in reduced cell adhesion.

The overall eVect of hypoxia on tumours
appears to aVect the prognosis adversely. Well
documented examples of this include carcino-
mas of the head and neck and cervical
carcinomas.171 172 The presence of hypoxia
within these tumours has been associated with
increased invasiveness and a propensity to
metastasise. Soft tissue sarcomas with reduced
oxygen levels have been shown to have a worse
prognosis compared with those with higher
oxygen tensions.173 Other instances where
tumours exposed to hypoxia assume a more
aggressive phenotype are those tumours that
have been subjected to subcurative radio-
therapy.174 175 In this setting, hypoxia appears to
be mediated by the vascular changes seen in
response to radiotherapy.

From the foregoing evidence, it is hypoth-
esised that the development of tumour hypoxia
is the initiating factor that sets the tumour on
the road to metastasis. To summarise, a malig-
nant tumour that undergoes uncontrolled
growth eventually outstrips its blood supply,
resulting in hypoxia and starvation because of a
lack of nutrients. The resultant necrosis
releases active substances, including cytokines,
peptide growth factors, and cytotoxic factors
such as NO. The result of this is a population of
cells exposed to sublethal ischaemia, which has
the eVect of reducing cell adhesion, increasing
DNA mutations, and stimulating angiogenesis.
With the ingrowth of new vessels and reoxy-
genation of the aVected cells, the resultant
clone assumes a more aggressive behaviour, as
a result of the acquisition of a large number of
genomic mutations imparting a “metastatic
phenotype”. The transformed, poorly adhered
cells with reduced E-cadherin expression then
have the ideal opportunity to invade adjacent
tissue and the newly formed delicate vessels
provided by the process of angiogenesis, using
previously described mechanisms of the meta-
static cascade. Therefore, although the devel-
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opment of hypoxia within the tumour is essen-
tial for the initiation and promotion of the
metastatic cascade, it is the resultant ang-
iogenic response that allows the tumour to
reach its full potential and metastasise.

Conclusion
The realisation that a reduction in cell–cell
adhesion is essential for a malignant tumour to
invade and metastasise has led to the identifica-
tion of several diVerent groups of cell adhesion
molecules, of which the cadherins and catenins
are important members. The finding that
reduction in E-cadherin expression in malig-
nant tumours was associated with a poor prog-
nosis and metastasis led to much research,
which has elucidated the structure of this mol-
ecule and its interactions and regulatory
factors. The understanding of the processes
involved in the control of E-cadherin expres-
sion, together with the explosion of research
aimed at investigating the metastatic cascade,
has allowed the formulation of the above
hypothesis, which implicates tumour hypoxia
as the principal initiator of the metastatic
cascade. It is important to remember that the
metastatic cascade is a result of complex inter-
actions between numerous factors and that to
regard a single factor as being the lynchpin on
which all other steps are dependent would be
naïve. Recent research into angiogenesis in-
hibitors is exciting and the results produced to
date are encouraging. However, they should
not be viewed in isolation but rather as part of
a multidrug treatment combined with existing
chemotherapeutic drugs. At present, work on
targeting the cell adhesion system is in its
infancy when compared with the progress
made in the field of angiogenesis. One possible
target area identified here is the peptide growth
factors, molecules that exert a protective eVect
against the hypoxia present within tumours,
which in turn seems to facilitate the generation
of genomic mutations within tumour cells. Use
of a peptide growth factor inhibitor in conjunc-
tion with an angiogenesis inhibitor might
facilitate the development of lethal hypoxia
within the target tumour, eliminating the
development of a metastatic clone of cells.

The author thanks Professor K Cooper for critical reading of
this manuscript.
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