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ABSTRACT

One of the main topics in population genetics is identi-
fication of adaptive selection among populations. For
this purpose, population history should be correctly
inferred to evaluate the effect of random drift and
exclude it in selection identification. With the rapid
progress in genomics in the past decade, vast genome-
scale variations are available for population genetic
analysis, which however requires more sophisticated
models to infer species’ demographic history and
robust methods to detect local adaptation. Here we aim
to review what have been achieved in the fields of
demographic modeling and selection detection. We
summarize their rationales, implementations, and some
classical applications. We also propose that some
widely-used methods can be improved in both theoreti-
cal and practical aspects in near future.

KEYWORDS genomics, demographic history, local
adaptation, natural selection

INTRODUCTION

Identifying adaptive selection has been a central issue in the
study of molecular evolution, since Kimura Motoo (1968)
argued that it is neutrality instead of selection driving the
majority of variations in DNA. There has also been long
interest in understanding the nature of selection in study of
domestication since Charles Darwin (1859), during which
artificial selection leads to phenotypic and genetic variation
distinguishing domesticated organisms from their wild
ancestors (Mannion, 1999). The inference of demographic
history of related population(s) plays a vital role for these
aims, for the reason that a proper inferred model could offer

a null hypothesis for expectation of neutrality (Nielsen et al.,
2007). To distinguish selective traits from those caused by
bottleneck effects, understanding of the population history
that the first population captured from wild became domestic
population has also been a vital task (Axelsson et al., 2013).
Besides, demographic models inferred from genetic data
complement archeological evidence in understanding pre-
historical events, such as number and timing of major con-
tinental fluctuations of population size as well as migration.
Therefore, the research of demographic history as well as
adaptive selection play essential role in evolutionary biology.

In the past decade, there has been an explosive progress
in genomics (International Human Genome Sequencing
Consortium, 2001; Li et al., 2010; Huo et al., 2012; NCBI
Resource Coordinators, 2013). The explosion started from
the revolution of sequencing technique and stimulated
accumulation of genomic data, which subsequently pushed
the improvement of analysis methods. Today, the data
accumulation rate is hundreds of times higher than that when
the Human Genome Project was first stated (NCBI Resource
Coordinators, 2013). The available genomic data have been
extended for various species, from the initial goal of human
and key lab model species to primates and domesticated
animals and plants, and presently to endangered organisms
with special scientific or cultural values (NCBI Resource
Coordinators, 2013; Grigoriev et al., 2013). Such a data flood
made population genetics approaches widely applied in
numerous organisms, which in turn stimulated the develop-
ment of population genetic approaches, for example, to infer
more detailed demographic history, to identify adaptive
selection more accurately and sensitively, and to perform the
computation more rapidly with more data and less con-
straints (Nielsen et al., 2007; Crisci et al., 2012).

For demographic inference, the most straightforward and
simplest approach was based on polymorphic data organized

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

Protein Cell 2014, 5(2):99–112
DOI 10.1007/s13238-013-0004-1 Protein&Cell

P
ro
te
in

&
C
e
ll



in a Site Frequency Spectrum (SFS). A coalescent process or
diffusion process could be applied to trace the history of
species. In that way a series of parameters describing the
history could be inferred by maximum likelihood, Bayesian
approximation or Markov Chain Mento Carlo method
(MCMC) (Crisci et al., 2012). As for the identification of local
adaptation, population genetic statistic methods were applied
to seek the outliers of genetic variation and differentiation
across genomes within and between species driven by
selection forces (Sabeti et al., 2006). In this review we
focused on some recent advances on demographic inference
as well as identification of adaptive selection. We also pro-
vided some perspectives related to the improvement of those
mentioned approaches. We suggested that the genome point
of view might contribute to the future progress of population
genomics, in both theoretical and applicable aspects.

APPROACHES ON DEMOGRAPHIC HISTORY
WITH GENOME-SCALE DATA

To infer demographic history is to estimate population events
in the past with population data at present. With the devel-
opment of the next-generation genome sequencing tech-
nique, the present population data could be either mass of
genome-scale traditional molecular polymorphism data from
multiple individuals or heterozygosity data obtained from one
whole genome sequence. We will discuss them respectively.

Methods with polymorphism dataset

In order to make inference about the population history, two
steps are needed. One must firstly formulize the history of
the population with certain mathematical model, in which the
evolutionary affair during the history was described as a set
of parameters. Secondly statistical inference methods could
be implied on the parameters. In the past decade, the coa-
lescent process was the most widely used model (Nielsen
and Wakeley, 2001; Crisci et al., 2012). Recently, a diffusion
approach was adopted as well. These two approaches are
discussed in the section of “Coalescent process versus dif-
fusion process”. The statistical inference methods are dis-
cussed in the section of “Methods to infer demographic
parameters”.

Coalescent process versus diffusion process

The isolation-with-migration model (Nielsen and Wakeley,
2001) was one of the most common models to infer demo-
graphic scenarios, under which different methods could be
used to trace the evolutionary history of the genetic variation.
Straightforwardly, the genealogy of alleles could be traced
backward in time under the process of coalescence, during
which the parameters of demographic model could be
derived, including the change of effective population size
and the time point on events of bottleneck and exponential
growth. When two or more populations were considered, the

divergence time could also be derived. If not limited to the
consideration of the Wright-Fisher model, coalescent
method could consider migration rate and recombination rate
in the gene tree as well. Actually, coalescent method is the
most widely used method and has been applied in numerous
demographic inference programs (Wooding and Rogers,
2002; Adams and Hudson, 2004; Hey and Nielsen, 2004;
Thornton and Andolfatto, 2006; Becquet and Przeworski
2007; Lopes et al., 2009; Hey, 2010).

The polymorphism dataset could be organized as the Site
Frequency Spectrum (SFS), which is the distribution of allele
frequencies in a sampled dataset. In the case of multiple
populations, a joint SFS (JSFS) could be used, and the
evolution of genetic polymorphism among populations could
be described as the change over time of allele distribution in
the SFS/JSFS. In the context of neutral theory, the change
could be approximated with a diffusion process. The Kol-
mogorov forward equation for diffusion approximation of
neutrality could be introduced to approximate the distribution
of allele frequencies at given time (Hartl and Clark, 2007).
Different from the methods based on coalescent process,
the method based on diffusion process could provide more
flexible demographic history model with acceptable compu-
tational performance (Gutenkunst et al., 2009), and it has
been used to deal with complicated demographic model
including three populations with migration and recombination
based on genome-scale SNP dataset (Gutenkunst et al.,
2009; Zhao et al., 2013).

We would like to review some more about the imple-
mentation using the method of diffusion process, not only
because the diffusion process has been a classic model in
population genetics (Kimura, 1955), but also because it is a
distinctive and fairly novel method in demographic inference.
A comprehensive implementation named ∂a∂i has been
developed until recently (Gutenkunst et al., 2009). Based on
the joint distribution of allele frequencies across biallelic
variants from multiple populations, the program uses com-
positional likelihood method to infer expected SFS under a
specific demographic model via an evolution process simu-
lated with diffusion. With the assumption of infinite-sites
model and Wright-Fisher model, the evolution of density
distribution of derived mutations Φ(x1 , x2 , ... , xP ; t) in P
populations could be formulated as

∂
∂τ

Φ=
1
2

∑
P

i=1

∂2

∂x2
xi(1 -- xi)

vi
Φ

-- ∑
P

i=1

∂
∂xi

γ ixi(1 -- xi) + ∑
P

j=1
Mi ← j(xj -- xi)

" #
Φ ð1Þ

Here τ = t
2Nref

is the time unit, where t is the time in

generations and Nref is the reference effective population
size. x means the population frequencies runs from 0 to 1.

vi =
Ni
Nref

is the relative effective size of population

i. Mi ← j = 2Nrefmi ← j is the scaled migration rate, where
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mi ← j is the proportion of “chromosomes” per generation in
population i that are new migrants from population j. And
γ j =2Nref si is the scaled selection, in which si is the relative

selective advantage of variants in population i.
The program uses single nucleotide polymorphism (SNP)

data in a given genomic region as input dataset, the region of
which would be as large as the whole genome obtained by
genome resequencing. If outgroup is used, a statistical cor-
rection is needed for ancestral state misidentification (Her-
nandez et al., 2007). Such variations, which is caused by
varying mutation rates across sites and over time, violate the
parsimony assumption that the ancestral state of each SNP
matches the orthologous allele in the outgroup locus (Hwang
and Green, 2004). In the original paper of ∂a∂i which inferred
a population history of human, a tri-nucleotide transition rate
matrix for primate lineage was used for the correction of the
misidentification. Since the tri-nucleotide transition rate

matrix varies among different mammalian lineages, a cus-
tomized matrix should be inferred accordingly.

The usage of diffusion approximation offers several
advantages of ∂a∂i (Gutenkunst et al., 2009). It considers
multiple populations in historical time with population size
fluctuations and asymmetric migrations. It goes beyond the
assumption of independent non-recombining regions. It uses
the full dataset instead of a restricted summary to guarantee
the statistical power. Finally and most importantly, ∂a∂i offers
a great flexibility to the demographic model design and can
be used to model complicated demographic scenarios. With
the rapid falling of sequencing cost, ∂a∂i program has been
used in several model and non-model species for the whole
genome resequencing data. It has been used in soybean to
infer domestication history, usually including a bottleneck
and a following effective population size fluctuation in the
time span of thousand years (Lam et al., 2010). Besides two-
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Figure 1. Human and giant panda demographic history inferred by ∂a∂i (See details in Gutenkunst et al. (2009) and Zhao

et al. (2013)). Here we focus on the complexity of the two demographic models. Both involve the evolution of three populations (two

split from the ancestral population) and changes of the effective population size. (A) The demographic history of three human

populations. Population A is the ancestral population whose effective size is shown as NA. Population B is the population out of the

Africa with effective size NB. YRI is the Yoruba individuals from Ibadan, Nigeria. CHB means Han Chinese in Beijing, China. CEU

means CEPH Utah residents with European ancestries. (B) The demographic history of three giant panda populations. A is the

ancestral population with effective size NA. The non-QIN and QIN are divergent populations of population A, and MIN and QXL are

divergent populations of non-QIN. QIN and MIN represent the panda population in the Qinling Mountains and Minshan Mountains,

respectively. QXL represents a combined population from the Qionglai, Daxiangling, Xiaoxiangling, and Liangshan Mountains. The

asterisk in the figure shows the asymmetric migration from QIN to QXL.
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population models, ∂a∂i also works well in constructing
three-population models as shown in human and giant
panda (Gutenkunst et al., 2009; Zhao et al., 2013). In
human, a SNP data set of 68 individuals from four popula-
tions (YRI, CHB, CEU, and MXL) are used to model human
expansion out of Africa and settlement of the New World. To
take the out-of-Africa model as an example, three popula-
tions, YRI, CHB, CEU, are involved. Population A is the
ancestral population. After a population expansion, popula-
tion B diverges from population A, then split into CEU and
CHB with following increases of effective population size
respectively (Gutenkunst et al., 2009). In giant panda, a SNP
data set of 34 wild individuals from three populations, QIN,
MIN, and QXL, are used. The first stage was that ancestral
population split into two populations of QIN and non-QIN.
Then non-QIN experienced an increase and a following
decrease in population size. MIN and QXL split after the
decrease of non-QIN, whereas the QIN showed small fluc-
tuations after its split from the ancestor. Besides, a signifi-
cant asymmetric migration was found from QIN to QXL
(Zhao et al., 2013). The brief illustration of the models is
shown in Fig. 1.

Methods to infer demographic parameters

Demographic history is the population events in the past,
while the genetic diversity data available is contemporary.
Therefore, one has to find out proper estimation of historical
parameters which give the best fit to the present polymor-
phism dataset. Several alternative statistical inference pro-
cedures could be used for these purposes as discussed
below. Here we discuss maximum likelihood method and
Bayesian approximation method. We also discuss some
about Markov Chain Mento Carlo (MCMC) method, which is
widely used in Bayesian computation.

In essence, inference of demographic history could be a
statistical procedure. It looks for the most possible distribu-
tion pattern of SFS under the constraints of given demo-
graphic parameter set that fits the real dataset sampled from
the population. Therefore, it would be natural to introduce the
Maximum Likelihood (ML) method, which estimates the most
possible measure of probability in the probability space that
fits the known sample with the highest likelihood.

If the sites in the observed dataset are unlike, they could
be regarded as statistically independent. Thereby the log-
likelihood with the condition of a hypothetical population
history model is

L(D |H) = ∑
n -- 1

k=1
Sk lnσk ð2Þ

in which L(D |H) means the log-likelihood of dataset D under
the condition of population history model, Sk is the number of
site occurring k times in the sample and σk is the probability
of a polymorphism sites occurring k times in the sample
(Wooding and Rogers, 2002). The method has been used to

test the fluctuation of effective population size in human
population history. In ∂a∂i, the composite likelihood scheme
was used (Gutenkunst et al., 2009). With a given distribution
of polymorphism of P populations, the expected value of
each entry of the SFS was defined as M d1 , d2 , ... , dP½ �,
where the d is the same as the k in Wooding and Rogers
(2002). So the likelihood equation was written as

L(Θ |S)=
YP
i=1

Yni
di=0

e--M d1 ,d2 , ... ,dP½ �M d1 ,d2 , ... ,dP½ �S d1 ,d2 , ... ,dP½ �

S d1 ,d2 , ... ,dP½ �!
ð3Þ

In which S d1 ,d2 , ... ,dP½ � is the joint SFS of the P
populations, L(Θ|S) is the likelihood function of the joint
SFS under the diffusion model with the parameter set of Θ.

The Approximation Bayesian Computation (ABC) is
another method to simulate the parameter values from
demographic models that could have given rise to the
observed dataset. Suppose the observed dataset x and the
joint density of parameter values θ that defined the popula-
tion history model, the probability of θ with given x could be
considered as a posterior of p(θ|x) according to the Bayesian
formula. Thus the essential of the computations become the
integral of a certain function of the posterior distribution. The
method does work in the case that the posterior distribution
was simple or low dimensional, for example, the fluctuation
of effective population size on single population (Thornton
and Andolfatto, 2006). When the complicated model is
considered, the computation becomes a complicated high-
dimensional integral which is intractable. Therefore a sum-
mary statistics could be used to a restricted set of data to
simplify the computation. popABC (Lopes et al., 2009) was
following this way, which makes it possible to consider both
recombination and migration with genomic data. The pro-
gram as well as its successive implementations has been
used in the detection of rapid radiation in spiny lobsters
(Palero et al., 2009), the inference of Africa pygmies
demographic history (Batini et al., 2011), as well as the
recombination rate variation and the speciation study in
rodents (Nachman and Payseur, 2012).

Summary statistics only uses part of information in data-
set, which may reduce the statistical power. To use full
information of dataset and avoid complicated computation of
posterior, the Markov Chain Monte Carlo (MCMC) method
was introduced to overcome the difficulty of the complicated
high-dimension integral of the posterior in ABC. The method
uses a series of sampling based on constructing a Markov
chain to get a reliable inference to the probability distribution
of the total, instead of computation of high-dimension inte-
gral. It starts from settling an initial distribution of the total as
prior. Then a series of sampling from the total are performed.
For each sampling a distribution could be calculated as the
posterior distribution and used to correct the prior one. When
sampling times are large enough and the posterior distribu-
tion tends to be stable, the stable distribution of samples
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(exactly the equilibrium distribution of Markov chain) could
be considered as the distribution of the total (Beaumont,
2010). The MCMC method was powerful to give a simulation
result for the posterior distribution of Bayesian computation
particularly for complicated demographic pattern.

The methods for demographic history inference using
polymorphism dataset mentioned above were compared in
Table 1. From the table it can be seen that majority of the sim-
ulation method is coalescent process, that nearly half of the
inference procedures is maximum likelihood approach, others
is approximation Bayesian computation, and three of the five
ABC procedures uses MCMC method. Of the two methods
using ML in coalescent process (the first two lines in Table 1),
Wooding and Rogers’ method (2002) considered only one
population. While Adams and Hudson’s considered two popu-
lations. Comparing the two methods using MCMC with full
statistics (the line 3 and 4 inTable 1), Hey andNielsen’smethod
(2004) considered just two populations while Hey’s extensive
method (2010) considered more than two populations.

Model with heterozygosity dataset

Beside above mentioned approaches, another novel
approach using heterozygotes of one genome is applied to
obtain information of the population parameters (McVean
and Cardin, 2005). Such a method, named as the Pairwise
Sequentially Markovian Coalescent (PSMC) model, was
used to infer human population history (Li and Durbin, 2011).
The PSMC model considered the local density of heterozy-
gous sites along chromosomes which reflects how the con-
stant Most Recent Common Ancestors (MRCA, or TMRCA
abbreviated by Li and Durbin (2011)) were separated by
historical recombination events. Therefore the population
parameters, such as the past effective population size and
the recombination rate could be inferred.

PSMC deals with heterozygotes in diploid genome. The
free parameters of the PSMC model include the scaled
mutation rate, the recombination rate, and piecewise con-
stant ancestral population sizes. Indeed, the accuracy and
variance of the results depend on the number of

recombination events, and very small number of recombi-
nation events would increase the variance and reduce the
power of the model. Thus too ancient or too recent recom-
bination events would not make a precise inference, because
few of these events could be detected in genome. In the
original paper of PSMC which inferred a detailed population
history from human reference genome, the time span was
from 20 Kya to 2 Mya for human demographic history (Li and
Durbin, 2011). In the case of bears and giant panda, the time
range was 5 Kya to 1 Mya (Miller et al., 2012), and 10 Kya to 9
Mya (Zhao et al., 2013), respectively. For the same species
from different populations, the pattern of PSMC fluctuated in
a similar way, but skewed a little due to population sub-
structure (Li and Durbin, 2011). Fig. 2 showed the results of
population history inference in giant panda and human.

GENOME-WIDE SCANNING FOR LOCAL
ADAPTATION

From “Survival of the fittest” to “Neutral or near neutral
mutations”

The concepts of selection, adaptation, and evolution were
first described in the famous Origin of Species by Darwin
(1859). Natural selection changes the fitness by accumu-
lating tiny variations from generation to generation to adapt
to environments. Phenotypic adaptation is the result of
mutation and selection during evolution. A few decades
later, Ronald Aylmer Fisher (1930) proposed the idea of
“Fisher’s fundamental theorem”, where mathematical
approaches were applied to define the fitness rate as a
function of its genetic variation. Natural selection could then
be measured not only by fitness changes but also by
genetic variations.

Later, principles of population genetics were extended to
sequence data with the development of molecular biology.
The neutral theory considered that genetic variations were
accumulation of neutral mutation, and were removed by
genetic drift (Kimura, 1968). Successive theories argued that
with a broader definition of neutrality, majority of genetic

Table 1. Comparison of some recent demographic models

Citations Simulation method Inference
procedure

Summary
statistics

Migration Recombination

Wooding and Rogers, 2002 Coalescent process ML No No No

Adams and Hudson, 2004 Coalescent process ML No No No

Hey and Nielsen, 2004 Coalescent process MCMC No Yes No

Hey, 2010 Coalescent process MCMC No Yes No

Thornton and Andolfatto, 2006 Coalescent process ABC No No Yes

Becquet and Przeworski, 2007 Coalescent process MCMC Yes Yes Yes

Lopes et al., 2009 Coalescent process ABC Yes Yes No

Gutenkunst et al., 2009 Diffusion approximation ML No Yes Yes
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variations could be attributed to random drift during evolution
instead of adaptation to local environment (Ohta, 1992; Nei,
2005). Therefore it becomes a challenge to detect the sig-
natures under selection within genome via statistical
approaches, which has been one of the central tasks of
evolutionary genetics for the recent two decades (Kreitman
and Akashi, 1995).

Genome is shaped by two evolutionary forces: neutrality
during demographic history and natural selection. Generally,
genetic drift, population growth, migration, and other demo-
graphic events affect the whole genome; but natural selec-
tion by local environment changes make imprint on episodes
or a part of structures of the genome, which could have
effects on phenotypes and fitness. Natural selection also
changes the frequency of mutations across populations. The
advantageous mutations approach to genetic fixation under
directional selection; the advantageous heterozygotes are

maintained by balancing selection; and purifying selection
removes the deleterious mutants. The genetic signatures in
genome sequence open a door to detect natural selection.
Application of mathematical methods and statistical tests
throw light on interpreting the imprints of evolution and
adaptation.

Seeking genome-wide signatures of adaptation

Statistical methods are developed to distinguish causal
genetic variations subject to selection from neutral genetic
variations (Hartl andClark, 2007).Whole genome sequencing
provides large-scale genetic variation data for this purpose.
Two strategies are applied. The first one is based on genome-
wide selection scans (GWSS) to detect outliers or structure
violations as the signatures of selection. The second is based
on genome-wide association approaches, in which a prior
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Figure 2. Human and giant panda demographic history inferred by PSMC (See details in Li and Durbin (2011) and Zhao et al.
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represents the climate changes during the history.
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phenotype or environmental information is required to obtain
associated genetic variation loci as the potential candidates
for selection. Ultimately, the function of related genes should
be investigated to associate the candidate genetic variation
with the phenotype variation. For the first strategy, it is a
challenge to distinguish selective effect from that caused by
neutral events in past. For the second, there are less fine-
scaled phenotypic records in non-model species than those in
model species or domestic creatures. Nomatter what strategy
is applied, an experimental validation would be highly per-
suasive for candidate variations, but in most cases it would be
very difficult.

Comparative genomic data (between/among species)

The simple ratio of non-synonymous (dN) to synonymous
(dS) substitution of coding regions is often used to identify
adaptive loci deviation from neutral state between species.
Under neutral theory, ω = dN/dS is expected to reflect
selection types of species: ω = 1, >1, and <1, indicating the
sites tested under neutral state, positive selection, and
purifying selection, respectively. Comparison of average ω
indicator across gene or DNA segments will present the
most conservative results because the effects of real sites
under selection might be weakened by neutral sites unless
the whole region was under selection. Yang (1997, 1998) set
varying ω values across lineages or among protein sites to
estimate whether a specific lineage was subjected to Dar-
winian natural selection among protein sites or evolutionary
lineages. A likelihood test was applied to determine the null
and the alternative hypotheses (Yang, 1997, 1998). This
approach was incorporated in PAML software, which inclu-
ded branch model, site model, and branch-site model,
allowing ω varying across branches, or sites among pro-
teins, and both across branch and among proteins, respec-
tively (Yang, 1997, 1998; Yang and Nielsen, 2002; Zhang
et al., 2005; Yang, 2007; Yang and Nielsen, 2008; Yang and
dos Reis, 2011).

These methods have been widely applied in comparative
genomic analyses. In mammals, several studies using
extensive genomes in mammals have been performed to
detect the loci or lineages under selections (Clark et al.,
2003; Kosiol et al., 2008; Nielsen et al., 2005; Li et al.,
2010). For example, the results of Li et al. (2010) showed
that the positively selected genes were significantly enriched
in the functional categories of blood circulation and gas
exchange activity in mammals. Zhang et al. (2013) com-
pared two related bat genomes and identified genes
responsible for DNA damage checkpoint and NF-κB path-
ways subjected to strong selection, implying possible adap-
tation to flight. In addition, comparative analysis of two
falcons, peregrine and saker falcon, showed an accelerated
evolution rate on homeostasis-related genes responsible for
circulation (Zhan et al., 2013).

Comparative population genomic data (within and between
species)

Under the neutral theory, polymorphic and divergence data are
expected tobe theaccumulationofneutralmutationswithinand
betweenspecies respectively. Hudsonet al. (1987) established
a statistical test to examine whether the DNA sequence with
higher/lower evolutionary rate between species also presented
higher/lower polymorphic rate within species. Although Wright
and Charlesworth (2004) extended HKA tests by incorporating
maximum likelihood tests, the HKA has been rarely used in
genome-wide analysis for its constant effective population size
assumption (Nei and Kumar, 2000). McDonald and Kreitman
(1991) applied the ideaunderlyingHKA testsandproposed that
the ratio of dN:dSbetweenspecies is equal to the ratio of dN:dS
within species when sequences are selective neutrality. They
found an excess of the ratio in divergence than that in poly-
morphism across the ADH sequences among three species of
fruit flies, suggesting that beneficial alleles were maintained by
positive selection. Bustamante et al. (2005) also applied this
approach tocompare thedivergenceandpolymorphismdataof
human and chimpanzee to identify signatures under positive
and purifying selection across human genome. The positively
selected genes are predicted to be enriched in defense/
immunity, transcription, sensory perception and so on, while
negative selection are expected to affect processes of cell
structure and motility, ectoderm development, general vesicle
transport, and intracellular protein traffic.

Population genomic data within species

Evolutionary forces will skew genetic diversity and frequency
of loci across genomes. Various methods based on esti-
mators of genetic diversity within species have been devel-
oped to detect selection signatures. Here we mention tests
based on heterozygosity, tests based on FST, tests based on
Allele frequency, and tests based on haplotype. We also
discuss composite approaches combining multiple tests.

Local adaptation signals have two manifestations. Within
one population, they are expected to be with low heterozy-
gosity. Between populations they show higher genetic dif-
ferentiation measured by FST. These two indicators,
heterozygosity and FST, and their derived formations are
widely-used in population genomic analysis.

Rubin et al. (2010) applied Z-transformation to pooled
heterozygosity Z(Hp) across sliding windows of the genomes
in domesticated chicken, and identified that the loci for thy-
roid stimulating hormone receptor (TSHR) were under
selective sweeps. They further tested this gene across 271
birds from 36 geographic populations and proved that the
mutant allele is a domestication locus in chicken. The for-
mula they used is as follows.

Hp =
2×∑nMAX ×∑nMIN

(∑nMAX +∑nMIN)
2

ð4Þ
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and

Z(Hp) =
HP -- μHP

σHP
ð5Þ

Genome-wide scanning of adaptation signatures during
dog domestication applied the same idea to transform
heterozygosity and genetic differentiation index FST into
Z(Hp) and Z(FST) between dogs and wolves (Fig. 3),
identifying a series of genes in dogs with low Z(Hp) and
high Z(FST), which attributed to adaptation to starch-rich food
during domestication (Axelsson et al., 2013).

Genetic differentiation between populations is usually
measured with genetic fixation index FST. Generally, positive
selection gives rise to less heterozygosity within populations
and higher genetic differentiation of loci between popula-
tions. FST statistic has been developed to estimate selection
for decades (Wright, 1943; Weir and Cockerham, 1984;
Slatkin and Voelm, 1991; Cockerham and Weir, 1993). Pair-
wise FST between populations is compared to detect the
differentiated signals under positive selection directly (Akey
et al., 2002; Barreiro et al., 2008; Lam et al., 2010; Zhao
et al., 2013). The integrated approach based on different

estimation of FST has been successfully applied into detec-
tion of local adaptation signals in giant pandas population
genomics (Zhao et al., 2013).

Yi et al. (2010a) log-transformed FST into T value:

T = -- log(1 --FST) ð6Þ
They compared the braches of T values of Tibetan, Han,

and Denes populations to identify signals of Tibetan
adapting to high altitudes:

PBS=
TTH +TTD --THD

2
ð7Þ

Branch length indicated the genetic differentiation levels.
The outliers with larger branches than the average genomic
branch in Tibetan were considered to be candidates. To further
validate the power of the transformedmethods, a larger sample
of Tibetan was genotyped, and the frequency of advantageous
allele of the outlier loci EPAS1 was examined. The results
showed that the SNP in EPAS1 was associated with
erythrocyte count and hemoglobin quantity (Yi et al., 2010a).

The proportion of segregating sites in all sites of aligned

sequences θ̂S and the average proportion of pairwise
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Figure 3. Selection analyses identified 36 candidate domestication regions (cited from Axelsson et al., 2013). Neighbored

different colors in (B) and (C) distinguish different chromosomes. (A) Distribution of Z(Hp) of dog and wolf, Z(FST) between dog and

wolf. (B) Distribution of Z(FST) across genomes. The loci with Z(FST) over the dashed line cut-off are candidates for outliers.

(C) Distribution of Z(Hp) of dogs across genomes. The loci with Z(Hp) value lower than the dashed line are candidate for outliers. The

loci with higher Z(FST) and lower Z(Hp) values in dogs will be considered as the signatures across genomes under domestication of

dogs.
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mismatches over all compared sequences θ̂π could be used to
measure nucleotide variation in populations. Tajima (1989)
incorporated the two estimators and proposed a statistic test as

D=
θ̂π -- θ̂S

SE(θ̂π -- θ̂S)
ð8Þ

in which SE means standard error. Under neutral state, the

excess of low-frequency alleles will increase θ̂π and that of

intermediate-frequency alleles would affect θ̂S. A minus
D value might indicate population under purifying selection or
population growth; otherwise, a positive D suggests balancing
selection, or diversifying selection, and recent admixture of
different populations (Hartl and Clark, 2007). Fu and Li (1993)
incorporated mutations of external and internal branch to
estimate the nucleotide variation, and developed a G statistic
test to check the selection signals caused by increased sin-
gleton polymorphism. Fay and Wu (2000) proposed an H
statistic test to focus on signals from the higher-frequency and
intermediate-frequency data. A significant minus H means
neutral alleles approached to be fixed for genetic hitchhiking.
Among the three statistic methods, Tajima’s D is the most
widely used, while the latter two tests incorporated out-group
information such as related species to provide ancestral state.

Strong positive selection maintains excess high fre-
quency of beneficial alleles in populations, as shown in
Fig. 4. The new advantageous allele relative to its ancestral
allele exhibits higher frequency in populations under positive
selection. The allele from the related species was taken as
the ancestral allele, and the derived alleles were considered
the new ones after their divergence. Derived allele of each
locus across genomes was compared by simple frequency
or relative ratio of frequency among populations to localize
the selected new advantageous alleles and its adapted
populations, e.g. ΔDAF and DAF tests (Sabeti et al., 2006,
2007; Grossman et al., 2010). The DAF-based tests are

expected to identify recent selection events since species
divergence. In the example of human and chimpanzee, the
derived allele of human SLC24A5 gene shows higher fre-
quency across Europe populations but is absent in most of
Asian populations, which is suggested to be responsible to
skin pigment difference (Sabeti et al., 2007).

Haplotype provides integrative information of a set of
neighboring SNPs rather than a sum of individual SNPs.
Diversity and frequency of haplotype in populations will be
distorted under very recent positive selection. Since the
phased high-resolution human HapMap was available, sta-
tistic methods based on variance in heterozygosity, length
and frequency of haplotype were developed to detect very
recent adaptation within and between populations (Sabeti
et al., 2002, 2006; Voight et al., 2006). Extended haplotype
homozygosity (EHH test) was applied to identify long-range
haplotype with reduced heterozygosity as signatures under
recent selective sweeps (Sabeti et al., 2002). The ancestral
and derived haplotypes were compared using integrated
Haplotype Score (iHS test) to measure the selection strength
of each locus (Sabeti et al., 2006; Voight et al., 2006). Dif-
ferential frequency of haplotype between populations was
measured and compared in Cross Population EHH (XP-EHH
test) to localize population adaptive to local environment
(Sabeti et al., 2007; Grossman et al., 2010). The haplotype-
based methods were also widely used in domesticated
species to detect signals of local adaptation to new envi-
ronments under artificial selection. Vonholdt et al. (2010)
used FST and XP-EHH methods to identify several SNPs
involving memory formation and behavioral sensitization
during dog’s domestication. Toomajian et al. (2006) pro-
posed a haplotype-sharing statistical analysis and used
another haplotype-based method EHH as well to identify the
early-flowering alleles in Arabidopsis thaliana.

To get a reliable result, it is persuasive to combine multiple
tests based on different assumptions for the dataset, and only
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Figure 4. Derived allele frequency spectrum of SNPs under positive selected and neutral selections (modified from Zhao

et al,. 2013). Positive selection maintained an excess of lower and higher frequency of alleles within populations.
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the outliers supported by multiple tests are considered as
reliable candidates (Simonson et al., 2010; Zhao et al., 2013).
An alternative approach is to seek the genomic regions with
multiple contiguous outlier loci as the candidates under
selective sweep (Li et al., 2010). However, Grossman et al.
(2010) proposed a composite likelihood test (CMS) incorpo-
rating as many as six independent statistic methods (FST,
ΔDAF, DAF, XP-EHH, iHS, IHH) to identify truly selected
variants. A SNP locuswas estimated to bewith a probability of
selected / unselected of each independent test (Si). Bayesian
factor and CMS were calculated as follows:

BF =
Yn
i=1

P(Si | selected)
P(Si | neutral)

ð9Þ

CMS=
Yn
i=1

P(Si | selected)
P(Si | selected) ×π +P(Si | neutral) × (1 --π)

ð10Þ

in which the Greek π was the prior probability of selection,
being estimated from prior information of the data. The
distribution of posterior probability of CMS scores was
used to estimate the confidence intervals. A modified CMS
test was applied to detect region within genomes for
recent adaptation in human populations (Grossman et al.,
2013). The authors applied statistical methods to prove
that the CMS tests have more power in detection of
adaptive signals than independent test (Grossman et al.,
2010, 2013).

Functional analysis of candidates

Generally, three approaches are used to investigate biolog-
ical function of outlier candidates. One is the prediction of
potential gene function. For protein within the candidate
selective locus, the spatial structure of the protein will be
simulated to infer its potential conformation change influ-
enced by the variant locus (Sabeti et al., 2007; Grossman
et al., 2013). For all the outlier data, candidate loci will be
annotated by gene ontology database and the functional
categories enriched with candidate loci would be considered
as potentially selected. An alternative precise functional
analysis associates studies of outlier variations with pheno-
type variation or environmental change. Some researchers
have made good examples on genome-wide selection
scanning as well as genome-wide association analysis (Yi
et al., 2010; Grossman et al., 2013).

However, the prediction analysis and statistical association
analysis could only tell us about the general information about
potential biological function, it’s important to examine whether
the genetic variations with adaptive selection signals suc-
cessfully express the phenotype with high fitness into new
environment or not. In dog, expression and functional exper-
iments were performed after the GWWS analysis to test
adaptive signatures under domestication, which proved that
domesticated dogs havemore powers in enzymatic activity for
digestion of starch-rich diets than their ancestor wolves

(Axelsson et al., 2013).However, few cases could examine the
functions of polymorphic loci in inter-gene under selections
because of no protein expression.

PERSPECTIVES

A diffusion approximation model with recombination

The model used in ∂a∂i could give very complicated demo-
graphic model with the least constraints on dataset. The
Kolmogorov forward equation, based on Fokker-Planck
equation, was very solid in mathematics as well as in pop-
ulation genetics (Kimura, 1955; Haken, 1983). One possible
improvement of the model might include the consideration of
recombination. Here we suggest a concept of “loci group” to
discuss a possible method considering recombination in the
diffusion process of polymorphism distribution among pop-
ulations. In ∂a∂i, all derived mutations from one genome are
put into one pool or group to get a density distribution, which
could be used to infer demographic history. Thus a pre-
requisite of unlinked loci within the whole group is needed
and the recombination events between any two mutations
could not be considered. Here we suggest an improvement
that considers two such groups, group A and group B. Both
of them satisfy the condition of performing demographic
inference following the approach of ∂a∂i. Besides, each SNP
in one group has one and only one close-linked locus in the
other group. We could say the two groups are to some extent
“linked”. For group A, the evolution of the density could be
modeled following ∂a∂i’s approach as

∂
∂τ

ΦA =
1
2

∑
P

i=1

∂2

∂x2A

xAi(1 -- xAi)
vAi

ΦA

-- ∑
P

i=1

∂
∂xAi

γAixAi(1 -- xAi) + ∑
P

j=1
MA : i ← j(xAj -- xAi)

" #
ΦA

ð11Þ
Similarly for group B, one has

∂
∂τ

ΦB =
1
2

∑
P

i=1

∂2

∂x2B

xBi(1 -- xBi)
vBi

ΦB

-- ∑
P

i=1

∂
∂xBi

γBixBi(1 -- xBi) + ∑
P

j=1
MB : i ← j(xBj -- xBi)

" #
ΦB

ð12Þ
Since the group A and B are from the same genomes and

experienced the same history for the same populations.
Then we have

∂
∂τ

ΦA =
∂
∂τ

ΦB ð13Þ

The ΦA and ΦB should be influenced by the same
migration affairs in history. Suppose there is no selection
(γi = 0), we should have

∑
P

j=1
MB : i ← j(xBj -- xBi) = ∑

P

j=1
MA : i ← j(xAj -- xAi) ð14Þ
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Equations (13) and (14) determine that the drift terms in
(11) and (12) should also be equal

xAi(1 -- xAi)
vAi

=
xBi(1 -- xBi)

vBi
ð15Þ

Thatmeans, if there is a certain proportion of chromosomes
transformed from population i to j per generation detected in
groupA, there could be expected the sameproportion in group
B. However, if recombination exists, the linkage between A
and B might be broken in a probability ri ← j , the recombination
rate for onemigration event from j population to i population. In
this case, although one allele from group A was migrated, its
linked allele in group B was left in the original population in the
probability of ri ← j . Therefore one has

∑
P

j=1
MB : i ← j(xBj -- xBi) =∑P

j=1MA : i ← j(1 -- ri ← j)(xBj -- xBi) ð16Þ

Then the recombination rate could be included in the
extensive diffusion process of the density distribution Φ as

∂
∂τ

Φ=
1
2

∑
P

i=1

∂2

∂x2A

xAi(1 -- xAi)
vAi

Φ+
1
2

∑
P

i=1

∂2

∂x2B

xAi(1 -- xAi)
vAi

Φ

+ ∑
P

i=1

∂2

∂xA∂xB
∑
P

j=1
MA : i ← j(xAj -- xAi)

" #

× ∑
P

j=1
MA : i ← j(1 -- ri ← j)(xBj -- xBi)

" #
Φ

-- ∑
P

i=1

∂
∂xAi

∑
P

j=1
MA : i ← j(xAj -- xAi)Φ

-- ∑
P

i=1

∂
∂xBi

∑
P

j=1
MA : i ← j(1 -- ri ← j)(xBj -- xBi)Φ ð17Þ

For total P populations there will be P× (1 -- P) number of
r values, their mean value could represent the recombination
rate of the P populations within one generation. In the whole
process, the most urgent task is to determine the SNP pairs.
One pair of SNPs should be tightly linked so that there is only
one recombination event could happen between the SNPs, as
the same time every two pairs of SNPs should be distant
enough so that the linkage could be ignored within groups.
However, there is an arbitrary assumption which may be
violated in real data set in the model. We suppose that to make
sure equation (13) is equal, every term in the diffusion function
(11) and (12) are equal. Therefore we obtain equation (14) and
(15), whichmeanmigration and drift are equal betweengroups.
However, there does be possibility that drift andmigration have
similar effects, therefore equation (14) and (15) are not equal
but equation (13) isstill satisfied. If so, adeviationmayappear in
theestimationof recombination rate. Futurestudiesareneeded
to access the deviation by either simulation or real dataset.

Challenges for identifying genomic signature
of selection

In genome era, selection tests for recent positive selection
were well developed as shown above. However, the test for

the balancing and negative selection within species is rare.
Although some approaches and softwares made efforts to
test balancing selection (Excoffier et al., 2009; Excoffier and
Lischer, 2010) and negative selection (Tajima, 1989; Yang,
1998), it could not meet the needs for GWWS, e.g. few
balancing and purifying selection tests based on haplotypes.
Signatures for balancing and negative selection should be
interpreted and mined from large-scale genome data, which
calls for diversifying methods in the future.

Genomic signatures for selection detected by GWWS
could be distorted by demographic history and population
structure. Tajima’s D could not distinguish the signatures
caused by selection force from those caused by demo-
graphic fluctuation (Yang, 2006, Hartl and Clark, 2007).
Other estimators are also sensitive to population growth and
contraction (Hartl and Clark, 2007), and invisible population
structure and admixture will influence the heterozygosity and
haplotype diversity (Hartl and Clark, 2007). Hence it is
important to infer population genetic structure and demo-
graphic background to distinguish the effect of selection from
neutrality. Williamson et al. (2005) set a good example on
this idea. He used presumed neutral loci to construct a
population history. And then he used the simulation results
as the null hypothesis to infer selection signals. The more
genomic data available, the more intensive and integrative
methods are needed in the future to incorporate both
selection forces and demographic history influences.

Last but not least, it is still a barricade to test the selective
effect on certain loci using experimental approaches, either
for cellular and molecular approach or high-throughput
technique. The difficulties come from two aspects. Firstly, it
is still a hard task to avoid false negative results. The theo-
retical assumption may be violated in the populations of
certain species, genetic structure or demographic history
may not be totally excluded. Selection signals may be floo-
ded by noise. All these may introduce false negative results.
Secondly, present methods could give evidence of whether
one locus was under selection, but could not give clues that
in which levels the locus shows the selection: at molecular
level, or cellular level, or tissue/organ level, or individual
level. It is impossible to test every possible level for each
loci, let alone the permutation and combination of all loci. In
general, although it is easy to consider some possibilities
that the loci in non-synonymous sites would cause variations
in protein sequence and possibly cause the change of pro-
tein structure, to verify the biological effects of the identified
selective loci will lag behind the progress of identifying
selective loci in the next several years.
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