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Abstract
Cadherins belong to a superfamily of cell–
cell adhesion receptors that bind to the
same type of molecules (homotypic inter-
action) in a calcium dependent manner.
DiVerent members of the family are found
in a wide variety of cell types and cadherin
adhesive function plays a role in cell fate,
segregation, and diVerentiation, which
ensures the higher order of organisation
found in many tissues. This review will
focus on the role that cadherin adhesive-
ness plays in the diVerentiation of epithe-
lial cells, and how cadherin function can
be regulated by proteins of the small
GTPase family. In the text, readers are
referred to recent reviews and other chap-
ters covering important topics that are not
discussed here because of space limita-
tion.
(J Clin Pathol: Mol Pathol 1999;52:197–202)
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E-cadherin and P-cadherin are found in
epithelia and their function is essential to
establish and maintain the diVerentiated epi-
thelial phenotype (reviewed by Gumbiner).1 It
is possible that the role of cadherin receptors
during epithelial diVerentiation is purely me-
chanical: the close apposition of membranes
may facilitate the formation of other junctional
components and cytoskeletal rearrangement.
Alternatively (or in conjunction with their
mechano-adhesive function), adhesion medi-
ated by cadherin receptors may eVectively trig-
ger signalling events. Evidence is now accumu-
lating for the involvement of cadherin in the
induction of gene expression, cellular diVeren-
tiation, growth control, and the distribution of
cytoplasmic proteins.2–7

During tumorigenesis in epithelial cells,
E-cadherin adhesiveness is frequently reduced
or abolished in a variety of diVerent ways
(reviewed by Christofori and Semb).8 Loss of
E-cadherin mediated adhesion results in in-
creased dediVerentiation of tumour cells (tran-
sition from adenoma to carcinoma).9 Interest-
ingly, in some cases, the transformed cells
switch on the expression of other types of cad-
herin receptors normally found in mesenchy-
mal and fibroblast cells.10 11 However, in
contrast to E-cadherin,8 expression of these
receptors can neither restore the epithelial
morphology nor prevent invasiveness. Thus,
the reduction of metastatic potential by the
expression of functional E-cadherin may be the

sum of two factors: sticking cells together and
influencing the diVerentiation status of tumour
cells.9

Regulation of cadherin function
Formation of a cadherin mediated adhesive
contact can be devided into three steps that
have diVerent requirements and use distinct
receptor domains (for a recent review see Yap et
al).12 (1) Cadherins dimerise at the cell surface,
and the extracellular domain alone is suYcent
to induce dimerisation in the absence of
calcium ions (fig 1A).13–15 (2) Homophilic
binding occurs as: the receptors interact with
dimers on opposing cells in an antiparallel
fashion. Formation of this cadherin adhesive
unit requires the extracellular domain and cal-
cium ions.14–17 (3) Adhesive receptors cluster
laterally at sites of cell–cell adhesion (fig 1A),18

in a process in which interaction of the
cadherin tail with intracellular proteins and
the actin cytoskeleton are determinant
factors.15 19 20 These three steps yield an in-
crease in the number of binding sites and in the
adhesive strength of the receptors for each unit
area of the membrane.19 21 22 In addition, the
interaction with the cytoskeleton keeps the
clustered receptors together and provides a
framework for the localisation of many diVer-
ent cytoskeletal and signalling proteins at
intercellular junctions (see below; reviewed by
Yamada and Geiger).23

Because of the important cellular functions
in which cadherins participate, there is much
interest in understanding how their function is
regulated. The association of cadherins with
actin filaments is mediated by proteins called
catenins.24–27 Cadherin interacts directly with
â-catenin, and á-catenin links this complex to
actin filaments.28–34 The direct interaction of
cadherin complexes with tyrosine kinases,35

receptor tyrosine phosphatases,36–38 and kinase
substrates39–41 suggests that the phosphoryla-
tion of the complex may be modulated.
However, the functional importance of phos-
phorylation for cadherin adhesion is not
clear.42–45 Activation of many signalling path-
ways can perturb intercellular contacts, but
neither their specificity, with respect to cad-
herin receptors, nor the mechanism involved
have been established (reviewed by Yap et al).12

Recently, key regulators of cadherin mediated
adhesiveness were identified as proteins of the
small GTPase family, and their role is dis-
cussed below.

Small GTPases
The Ras superfamily of small GTPases con-
tains proteins whose function is dependent on
the type of guanine nucleotide bound. The Ras
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subfamily members are involved in growth
control and diVerentiation. The Rho subfamily
(Rho, Rac, and Cdc42) participates in cellular
events involved primarily in cytoskeletal reor-
ganisation, but these proteins can also activate
kinase cascades, induce gene transcription, and
induce DNA synthesis (reviewed by Van Aelst
and D’Souza-Schorey46 and Mackay and
Hall47).

Inside the cell, members of the Ras family
are normally found associated with GDP in an
inactived state (fig 1B).47 Activation is brought

about by binding to GTP, a process that is
tightly modulated by the GAP (GTPase
activating protein) and GEF (guanine nucle-
otide exchange factor) regulatory proteins (fig
1B). The importance of appropriate control of
the GTPase cycle is reflected by mutations that
lock the molecule in an activated state. For
example, activating mutations are frequently
present in the Ras protein found in tumour
cells (oncogenic form, H-Ras). Similar muta-
tions in the Rho genes have not been found in
tumours, even though activation of Rho
proteins in tissue culture can induce
transformation.48–50 However, deletions have
been identified in exchange factors specific for
the Rho subfamily members that result in the
activation of small GTPases (such as the onco-
genes Lbc, Vav, and Dbl) (reviewed by Cerione
and Zheng).51

The Rho subfamily
One of the first clues that the small GTPases
might be involved in cell–cell adhesion came
from work on drosophila.52 53 In mammalian
epithelial cells, the activity of endogenous Rho
and Rac is required for the formation of
cadherin dependent contacts, as well as for the
cytoskeletal reorganisation that stabilises cad-
herin receptors in the plasma membrane (fig
2).54 Inhibition of the small GTPases specifi-
cally removes cadherins from stable contacts,
and this temporally precedes the release of
other molecules involved in cell–cell
adhesion.55 56 Moreover, the regulation of
cadherin function by Rho or Rac depends on
the maturation status of the junctions and the
cellular context (table 1).57 58 The diVerential
response of cadherin receptors to the small
GTPases, which is dependent upon the cell
type, is surprising because of the high homol-
ogy among the members of the cadherin and
small GTPase families. In addition to cadherin
dependent contacts, in simple epithelial cells,
Rho may also regulate the function of other
adhesive structures, such as tight junctions.59 60

In Madin–Darby bovine kidney (MDCK)
cells, exogenously expresssed Rac is found at
cell–cell contacts, but both the activated and
inactivated forms show the same staining
pattern.55 61 The functional importance of this
is not clear but, in MDCK cells, proteins that
can either activate (Tiam-1)62 or inactivate
(IQGAP)63–65 the small GTPase Rac also local-
ise to cell–cell contact sites.64−66 Interestingly,
IQGAP can bind directly to E-cadherin–â-
catenin complexes, in an apparent competition
with á-catenin.67 The physiological importance
of this association is not clear, but IQGAP can
also bind and crosslink actin filaments and so
could potentially replace á-catenin in the inter-
action of cadherin complexes with the
cytoskeleton.68 Although expression of the
IQGAP gene does not remove E-cadherin from
cell–cell contacts when cotransfected into
fibroblasts, it is thought that the IQGAP–
cadherin interaction renders the receptors less
adhesive.67 The latter is possibly the result of a
weaker association of the complex with the
actin cytoskeleton and/or an inactivation of the
small GTPases at junctional structures.
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Figure 1 (A) Clustering of cadherins at sites of cell–cell contacts: cadherin receptors may
exist as dimers at the cell surface, constitutively associated with cytoplasmic proteins called
catenins. The receptors interact with the same type of molecules in neighbouring cells
(homophilic binding). This interaction occurs in a antiparallel fashion and results in the
lateral clustering or zipping up of cadherin complexes at sites of cell–cell contact. Functional
adhesion requires calcium ions (to stabilise the extracellular domain) and association of the
receptors with the actin cytoskeleton, which is indirectly mediated by the actin binding
proteins á-catenin, vinculin, and á-actinin. The phosphorylation of the cadherin tail and/or
the catenins might be involved in the clustering process, interaction with the cytoskeleton, or
the shuttling of catenins from cytosolic pools to adhesive sites. The turnover of â-catenin
cytoplasmic pools also involves phosphorylation events. (B) The GTPase cycle: most small
GTPases are found associated with GDP, in an inactivated state. Replacing GDP with
GTP activates the small GTPase, and this is the form competent for intracellular signalling.
The hydrolysis of GTP to GDP occurs very rapidly and switches the molecule oV. These two
steps are tightly controlled by regulatory proteins: activation is mediated by guanine
nucleotide exchange factors (GEFs), whereas GTP hydrolysis is facilitated by GTPase
activating proteins (GAPs).
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It appears that Rho and Rac are required in
distinct pathways in the regulation of cell–cell
adhesiveness,54 55 61 as opposed to spreading on
the substratum, in which a hierarchy among the
small GTPases has been demonstrated.69 In
epithelial cells, actin recruitment to clustered
cadherin receptors is dependent on the activity
of Rac, but not of Rho.54 It is conceivable that

Rac can modulate cadherin function by
regulating the association of the complexes
with actin filaments, and this is in line with the
reported role of Rac in actin polymer-
isation.70 71 However, Rac function is necessary,
but not suYcient, to promote accumulation of
actin at the cell periphery because the presence
of functional cadherin mediated adhesion is
also required.58

On the other hand, transfection of activated
Rac into MDCK cells results in an enhanced
immunostaining of cadherin receptors and
actin at sites of intercellular contacts, but its
importance has not been established.55 66 Al-
though a strengthening of cadherin mediated
adhesion by activated Rac is suggested by these
results, it is not clear whether the augmented
cadherin staining signal reflects an increase in
the density of receptors at cell–cell contact
sites.

The Ras subfamily
Another member of the superfamily, H-Ras,
also interferes with cadherin adhesiveness (fig
2). Activating mutations in H-Ras are found
frequently in human tumours, and are accom-
panied by loss of epithelial characteristics and
increased migration. Oncogenic H-Ras can
activate diVerent intracellular pathways that
contribute to Ras transformation72 73: phos-
phatidylinositol 3 (PI3) kinase, mitogen acti-
vated protein kinase (MAPK), and the small
GTPases Rac and Ral (reviewed by Van Aelst
and D’Souza-Schorey).46 In addition, activa-
tion of each of these pathways individually is
suYcient to promote morphological transfor-
mation in fibroblasts.49 73–76

Microinjection of activated H-Ras into
MDCK cells promotes the disassembly of cad-
herin receptors from junctions (fig 2).77 In epi-
thelial cells, oncogenic Ras transfection leads
to changes in both catenin phosphorylation
and the association of the cadherin complex
with the actin cytoskeleton.78 In some cases,
these changes do not necessarily result in the
abrogation of cell–cell adhesion and epithelial
morphology, but rather a weakening of inter-
cellular contacts.56 78 It is possible that different
levels of expression of ras and the balance
between the diVerent activated pathways in
distinct cell types can account for these
discrepancies79 (reviewed by Marshall).80

Figure 2 EVects of small GTPases in cadherin mediated adhesion. Keratinocytes grown in
the absence of cell–cell contacts were microinjected with diVerent recombinant proteins, and
calcium dependent adhesion was induced. Cells were fixed and immunolabelled for
E-cadherin to detect cadherin mediated adhesion (E-cadherin). Injected cells were identified
by co-injection of fluorescent dextran (injected). Recombinant proteins microinjected were:
dominant negative Rac (N17Rac); constitutively active Rac (L61Rac); constitutively
active H-Ras (oncogenic form, V12 H-Ras), and Ras blocking functional antibody
(Y13-259).
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E-cadherin Table 1 Summary of the eVects of small GTPases in the
regulation of cadherin dependent adhesion in diVerent
cadherin receptors and cell types

Receptor Cell type

Regulation by

Rho Rac

E-cadherin Keratinocytes54 + +
MCDK (kidney epith.)55 + +
MCF10 (breast epith.)56 + +
L-cells (fibroblasts)58 + −
Small lung cells57 + ND

P-cadherin Keratinocytes58 + +
VE-cadherin Endothelial cells58 − −

CHO cells58 + +

Cdc42 activity has no eVect on E-cadherin adhesiveness.55

In small lung carcinoma cells, Rho inactivation leads to an
enhanced aggregation of cells in suspension, as opposed to in
the other adherent cell types, where Rho inactivation inhibits
E-cadherin mediated adhesion.
CHO, Chinese hamster ovary cells; ND, not determined.
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So far, the Ras pathway responsible for the
specific perturbation of cadherin adhesiveness
has not been identified. Inhibition of the
MAPK and PI3 kinase pathways can prevent
the destabilising eVects of H-Ras on MDCK
junctions.77 Both MAPK and PI3 kinase are
involved in the migration and invasiveness of
epithelial cells after diVerent stimuli, such as
activation of small GTPase or growth factor
treatment.77 81–85 However, activation of either
the MAPK or PI3 kinase pathway by itself is
not suYcient to remove cadherin receptors
from cell–cell contact sites.77 Because of their
known eVects on cytoskeletal proteins, it is
possible that activation of MAPK and PI3
kinase contributes to the Ras induced disor-
ganisation of the cytoskeleton and hence
destabilisation of junctions in epithelial cells.

In Ras transformed MDCKf3 cells, cadherin
dependent adhesion, and polarised morphol-
ogy can be restored by transfection of activated
Rac or Tiam-1, an exchange factor for Rac.66

Interestingly, the restoration of epithelial mor-
phology by Rac in MDCKf3 cells is modulated
by adhesion to diVerent types of substrata
because it is seen in cells plated on fibronectin,
but not those plated on collagen.84 Although
the mechanism remains to be investigated, in
MDCKf3 cells a crosstalk between cadherins
and diVerent extracellular matrix receptors
might operate to influence the activation of
distinct pathways by Ras. Similar crosstalk has
been reported in other systems, suggesting an
intracellular coordination of the regulation of
cell–cell and cell–substratum adhesion.86–92

Future directions
Work from many laboratories now suggests
that the small GTPases are key players in the
regulation of intercellular adhesiveness, but the
mechanism is far from elucidated (fig 3). The
task now is to define whether cadherin
adhesiveness can trigger the activation of the
Rho family of small GTPases and to dissect
further the pathway(s) activated by Rho and
Rac that are important for cell–cell adhesion.
Small GTPases are ideal candidates to partici-

pate in complex biological processes involving
cell–cell and cell–matrix adhesion during
epithelial morphogenesis, wound healing, and
metastasis. Identification of the putative targets
of the small GTPases that can modulate
cadherin function will greatly enhance our
understanding of the molecular mechanisms
that operate in these important cellular proc-
esses.
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