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ABSTRACT

Motivation: When identifying differentially expressed (DE) genes
from high-throughput gene expression measurements, we would like
to take both statistical significance (such as P-value) and biological
relevance (such as fold change) into consideration. In gene set
enrichment analysis (GSEA), a score that can combine fold change
and P-value together is needed for better gene ranking.
Results: We defined a gene significance score π-value by combining
expression fold change and statistical significance (P-value), and
explored its statistical properties. When compared to various existing
methods, π-value based approach is more robust in selecting DE
genes, with the largest area under curve in its receiver operating
characteristic curve. We applied π-value to GSEA and found it
comparable to P-value and t-statistic based methods, with added
protection against false discovery in certain situations. Finally, in a
gene functional study of breast cancer profiles, we showed that using
π-value helps elucidating otherwise overlooked important biological
functions.
Availability: http://gccri.uthscsa.edu/Pi_Value_Supplementary.asp
Contact: xy@ieee.org; cheny8@uthscsa.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In this article, we introduce a gene significance score, π -value,
for robust selection of differentially expressed (DE) genes, and
demonstrate its application in gene set enrichment analysis (GSEA).
In developing the concept, we are inspired by two facts. First, there
is discrepancy between the statistical and biological meanings of
differential expression. Second, a proper score is required to evaluate
and rank genes in GSEA.

It was pointed out in McCarthy and Smyth 2009 that statistically
speaking, genes showing systematic difference between two
conditions are considered DE, whereas in biological term, DE
means the difference in gene expression is sufficiently large.
In some biological applications, DE genes were selected by
gene expression level change (such as using 2-fold change as
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cutoff), and the variability of gene expression was not taken into
account. Meanwhile, some statistical methods consisted of finding
‘informative genes’ whose expression levels correlate with or are
predictive of class labels, such as in Ambroise and McLachlan
2002; Golub et al. 1999. These approaches usually found not all
DE genes, but a subset of DE genes that distinguished sample
classes. To detect all DE genes, we usually conduct hypothesis
testing of μ0 =μ1 against μ0 �=μ1 or the like, such as methods
based on expression ratio statistic Chen et al., 1997, distinctness by
Kolmogorov–Smirnov distance and similarity of expression profiles
by Pearson’s correlation coefficient Huang et al., 2010, t-statistic and
its variants Smyth, 2004; Tusher et al., 2001.

In hypothesis test-based statistical methods, P-value of the test
statistic is the basis of gene selection, as a result of which, we face
the following two issues:

• The ‘small fold change, small variance’ (SFSV) issue.
When a gene’s variance is small, a slight expression level
change may result in significant P-value and conclusion of
statistical significance. However, a small expression change
has questionable biological justification, which frequently
leads to false discovery.

• The ‘large fold change, large variance’ (LFLV) issue. A gene
with considerable fold change (FC) may possess a large
variance, such as dysregulated genes in a disease condition.
In such a situation, a large expression change may be
accompanied by a non-significant P-value, making it possible
for us to miss biologically meaningful but highly volatile
changes.

Since variance estimation is part of the issues, which is often
worsened by small sample size, improvements were proposed
to adjust estimated variance, such as SAM test Tusher et al.,
2001, empirical Bayes method (moderated t-test) Smyth, 2004 and
regularized t-test Baldi and Long, 2001. Nevertheless, even with
accurate variance estimation, problem may arise when we select
genes solely by P-value resulting from a hypothesis test.

To address the SFSV issue, it is common to combine P-value
and FC criteria, such as 2-fold change and P≤0.05. Such approach
is ad hoc Cui and Churchill, 2003; Yanofsky and Bickel, 2010.
Meanwhile, methods that incorporate or improve the original
FC criterion were proposed, such as a better defined FC limit
Mutch et al., 2002, a better statistical model Fu et al., 2006, or
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variable threshold according to intensity measurement Mariani et al.,
2003; Yang et al., 2002. Methods that directly incorporate FC
criterion into test statistics provide significant improvement to meet
the practical needs McCarthy and Smyth, 2009; Montazeri et al.,
2010. In McCarthy and Smyth 2009, TREAT, a hypothesis test
relative to a FC threshold, was proposed with H0 : |μ0 −μ1|≤τ and
H1 : |μ0 −μ1|>τ . TREAT requires that a threshold τ be chosen
prior to the test, and if τ changes, all genes need to be tested again
and P-values re-calculated. While TREAT has adequately addressed
the SFSV issue, the LFLV issue remains a problem, which is fairly
common in human clinical studies where patient-to-patient variation
far exceeds that of well-controlled cell culture or animal studies, and
better variance estimation does not help Wu et al., 2010.

Motivated by aforementioned difficulties, we propose a gene
significance score called π -value, which combines FC and P-value
into one score. It provides a decision trade-off between FC and
P-value, and offers a new means to rank and select genes. Our
unique contributions are as follows: (i) π -value does not introduce
any new statistical test, and its computation is simple; (ii) it is
convenient to adjust the number of selected DE genes by changing
the threshold, and no re-computation is needed; (iii) it addresses
both SFSV and LFLV issues. Unlike most existing methods, this
approach may retain some genes with large FCs but non-significant
P-values, because they may be biologically important and worthy of
further investigation; and (iv) π assigns one single score to a gene
by its FC and P-value, and thus it is useful in gene ranking and can
be naturally applied to GSEA.

2 MATERIALS AND METHODS

2.1 Definition
Given pre-processed and normalized microarray data of two sample classes
(C1 and C2) corresponding to two biological conditions (such as test and
control groups), we assume there are M1 and M2 samples under C1 and
C2, respectively, and N probe sets on each array. Each probe set usually
represents a gene, and we will use probe set and gene interchangeably unless
specified otherwise. Let g(k)ij be log2-transformed expression level of the
i-th gene in the j-th sample of class Ck (k = 1, 2), then the entire processed
microarray data can be represented in two data matrices, G1 and G2, where

Gk =

⎡
⎢⎢⎢⎣

g(k)11 g(k)12 ··· g(k)1Mk

g(k)21 g(k)22 ··· g(k)2Mk

.

.

.
.
.
. ···

.

.

.

g(k)N1 g(k)N2 ··· g(k)NMk

⎤
⎥⎥⎥⎦, k =1,2.

Let the mean expression of the i-th gene in sample class Ck be g(k)i·,
then the log-ratio (LR) and log-fold change (LFC) of this gene’s expression
are denoted as xi =g(1)i·−g(2)i· and φi =|g(1)i·−g(2)i·|, respectively. In the
literature, FC refers to the quantity 2φi , and an alternative definition is 2φi ·
sign(g(1)i·−g(2)i·).

To select DE genes between two sample classes, we can employ one of
the following decisions:

1. Correlation decision: selection of genes based on their correlation
between expression levels and the corresponding phenotypes.

2. FC decision.
3. P-value decision associated with equal-mean hypothesis test. Usually

a t-test or its variants is applied, and when multiple genes are involved,
P-values are often adjusted to account for the effect of multiple
testings, such as the Benjamini–Hochberg method Benjamini and
Hochberg, 1995.

4. Decision cascade: a common ad hoc combination of two or more
decisions.

5. A priori information fusion, such as incorporating FC threshold into
t-test in TREAT McCarthy and Smyth, 2009.

Here we propose a posteriori information fusion scheme, to combine FC
and P-value into one score after their individual evaluation, rather than fuse
them earlier. Given φi and pi, LFC and P-value of the i-th gene resulting
from a hypothesis test, we define π -value as

πi =φi ·(−log10 pi). (1)

π -value is non-negative, and the larger it is, the more significant
gene expression change is. The unique combination of FC and P-value
is motivated by our intention to transform P-value by FC, while still
maintaining the characteristics of P-value. To see what π suggests, we
observe that

πi = log10
1

pφi
i

⇒�=10−πi =pφi
i , (2)

thus �=10−πi can be viewed as a transformed P-value, and 0≤�≤1. When
φi =1, namely 2-fold change, we will have �=pi, and � equals the regular
P-value. For φi <1, namely less than 2-fold change, we have �>pi and
P-value is penalized; for φi >1, namely more than 2-fold change, we have
�<pi, P-value is enhanced. Therefore, by defining π to be the product of
LFC and log-transformed P-value, we adjust gene’s statistical significance
by the amount of FC. A discussion of decision boundaries of FC, P-value
and π -value on volcano plot is provided in Section 2.3. IN Supplementary
Materials

In Equation (1), pi can be P-value from regular t-test, SAM Tusher et al.,
2001 or moderated t-test Smyth, 2004. Moreover, π is not tied with specific
hypothesis testing; for instance, it can be based on test of variance (such
as F-test) or TREAT. Finally, pi can be raw P-value or adjusted P-value.
These facts make π a versatile gene significance score and suited for other
applications such as GSEA. In this article, we will simply use P-value of the
regular t-test in π .

2.2 Statistical characterization
Assuming LR follows a normal distribution, P-value follows a uniform [0,1]
distribution, and LR and P-value are independent, we can show that the
probability density function (PDF) of π is (Section 1.1 in Supplementary
Materials),

f�(z)=
√

2

πσ 2
λ

∫ ∞

0

1

x
e−(x2/2σ 2+λz/x)dx, z≥0, (3)

where λ= ln10, and σ 2 is the variance of LR. In reality, LR and P-value
are dependent. The distribution of π under independence and dependence
assumptions are shown in Figure 1 (simulation details are provided in Section
1.1 in Supplementary Materials). In either case, the PDF of π peaks at 0,
decreases monotonically with π and decreases approximately exponentially
when π is sufficiently large. The dependent PDF drops less steeply than the
independent case, although they have similar trends.

To use π for detecting DE genes at a given significance level α, we need to
determine its critical value with respect to α. P-value’s distribution does not
change by dataset and platform. However, LR follows a normal distribution
whose variance σ 2 can vary by dataset and platform, which impacts the
distribution of π as well as critical values. The method of computing critical
values under independence or dependence is provided in the Supplementary
Materials. Table 1 shows an example of the critical values of π with respect to
different α’s under the independence and dependence assumptions (σ =0.48
for the LR), respectively, and the simulation details are in the Supplementary
Materials. Table 1 is not a generalized result, but rather a demonstration of
the difference between the dependence and independence conditions. We
have implemented a significance assessment tool for dependence condition
given any input microarray dataset (Supplementary Material).
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Fig. 1. PDF of π when LFC and P-value are dependent (blue) or independent
(magenta).

Table 1. CV of π under dependence or independence

α CVdep CVind α CVdep CVind

0.2 0.4079 0.2572 0.001 3.8434 2.1281
0.1 0.7319 0.4292 0.0005 4.4122 2.4503
0.05 1.1082 0.6274 0.0002 5.1559 2.8988
0.02 1.6657 0.9246 0.0001 5.7964 3.2543
0.01 2.1270 1.1733 0.0001 6.4407 3.6233
0.005 2.6138 1.4408 0.00002 7.1713 4.1308
0.002 3.2939 1.8213 0.00001 7.7298 4.5291

CV, critical value.

2.3 GSEA
In the original GSEA Subramaniana et al., 2005, a set of genes are first
ranked by P-value or FC, then a Kolmogorov–Smirnov like test is performed
to evaluate the significance of differential expression as a whole set. Later,
generalized GSEAmethods were developedAckermann and Strimmer, 2009;
Jiang and Gentleman, 2007, such as in Tian et al. 2005, where a t-statistic
based enrichment score (ES) is suggested for a set of n genes,

ESt = 1

n

N∑
i=1

Iiti, (4)

where N is the total number of genes, and Ii is an indicator function, with
n=∑N

i=1 Ii. Similarly, we can use P-value for enrichment score. To follow
the convention that a larger score indicates higher enrichment, we can define

ESp = 1

n

N∑
i=1

Ii(−log10 pi). (5)

A discussion of ESt and ESp is provided in Section 1.3 in Supplementary
Materials.

π -value can be employed in GSEA in two ways: the first is to use the
original GSEA method, but rank genes by π -value instead of P-value or FC;
and the second is to use generalized GSEA by defining

ESπ = 1

n

N∑
i=1

Iiπi = 1

n

N∑
i=1

Iiφi(−log10 pi). (6)

Whichever GSEA method we adopt, π -value-based algorithm has the
advantage of combining FC and P-value information.

In generalized GSEA, a gene set is considered enriched if the statistical
significance (P-value) of its enrichment score is below a threshold, and
a method to compute P-value of ES is provided in Algorithm S4 of the
Supplementary Materials.

2.4 Data resampling methods
Given a gene expression dataset, which usually contains both non-DE and DE
genes, it is useful to extract or generate a dataset that satisfies null hypothesis,
called background data or null data. Null data can be used for obtaining the
empirical distribution and critical values of π -value, for instance. We can
also impose differential expression on pre-chosen genes on the null data, and
regard the pre-chosen DE genes as the ground truth. This technique is useful
in evaluating the performance of gene selection criterion where true DE genes
must be known in order to compute sensitivity and FDR. Two algorithms
are developed for generating background data from a real dataset. The first
algorithm, maResampling, is based on resampling and suitable for large
unbalanced samples. The second one, maBootstrapping, is a parameterized
bootstrapping scheme for small or large balanced samples. They are listed
as Algorithms S2 and S3 in the Supplementary Materials.

2.5 Datasets
Dataset 1 (Breast Cancer Data): a total of 286 lymph node-negative primary
breast cancer samples (GSE2034) described in Wang et al. 2005 were
downloaded from GEO (http://www.ncbi.nih.gov/geo), and more details are
provided in the Supplementary Materials. To derive a null dataset from it, we
used the resampling method in Algorithm S2 in Supplementary Materials,
(G1,G2) = maResampling (G, 50, 50). To add DE genes, we randomly
chose 1114 (5%) genes and make them DE by adding 	μi to randomly
selected 557 genes in data matrix G1, and adding 	μi to the remaining 557
genes in G2. Each 	μi is uniformly distributed in [0.5, 4].

Dataset 2 (Burn Injury Data): in a recent study on burn injured rats,
we have obtained 68 gene expression profiles, from which a data matrix
G consisting of five replicate arrays is taken for further manipulation
(Section 1.5 in Supplementary Materials). To generate a null dataset from
G, we adopted Algorithm S3 in Supplementary Materials and used function
(G1,G2) = maBootstrapping (G, 5, 5). Adding DE genes to the null data
is similar to Dataset 1.

3 RESULTS

3.1 Identification of DE genes
To test π -value in the identification of DE genes, we use the Breast
Cancer Data derived null dataset (M1,M2 = 50) described before,
with 1114 (5%) artificially designed DE genes as the known truth,
whose mean differential expression levels are uniformly distributed
in [0.2, 2]. We use receiver operating characteristic (ROC) curve as
performance measure, and compare the following gene selection
criteria. The moderated t-test, shrinkage t-test and TREAT are
available in R package. The ROC curves are obtained from the
average result of 100 times of simulations.

(1) π -value: π -value is computed from P-value of regular t-test.

(2) LFC: Log-fold change criterion;

(3) RegPval: P-value criterion using regular t-test;

(4) ModPval: P-value criterion using moderated t-test;

(5) TREAT: P-value criterion using TREAT with LFC threshold
τ =0.5; and

(6) ShrPval: P-value criterion using shrinkage t-test.

Figure 2a shows that π -value criterion generally outperforms
other criteria with the largest area under curve (AUC). The π -value

803



[10:10 14/3/2014 Bioinformatics-btr671.tex] Page: 804 801–807

Y.Xiao et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1−Specificity

S
en

si
tiv

ity

π-value ( 0.949 )
LFC ( 0.948 )
RegPval ( 0.945 )
ModPval ( 0.946 )
TREAT ( 0.940 )
ShrPval ( 0.946 )

(a)

0 500 1000 1500

0
10

0
20

0
30

0
40

0
50

0

Number of genes selected

N
um

er
 o

f f
al

se
 d

is
co

ve
rie

s

(b)

Fig. 2. ROC curves and FDR for various gene selection criteria. (a) ROC curves. AUC for each ROC curve is provided in the parentheses. DE genes have
	μi uniformly distributed in [0.2, 2]. (b) Number of false discoveries among top n selected genes.

criterion performs best in the high specificity region. For example,
when specificity equals 0.95, indicated by a dashed line in Figure 2a,
π -value has the highest sensitivity, 0.94. Regular t-test, moderated t-
test and shrinkage-t are less sensitive, with FC criterion and TREAT
being the least sensitive. The number of false discoveries among
the top n selected genes for each criterion is shown in Figure 2b.
π -value, regular t-test, moderated-t and shrinkage-t have similar
performance and have fewer false discoveries than FC and TREAT.
When n<920 and n≥1000, π -value has the lowest FDR among all
criteria. The robustness of π -value criterion is further demonstrated
in Supplementary Figure S2 when we reduce the synthetic DE genes’
differential expression 	μi to the range of [0.1, 1]. π -value still
has higher sensitivity in the high specificity region [0.8, 1] (left
of the dashed line, Supplementary Fig. S2a and the lowest FDR
Supplementary Fig. S2b). We have also evaluated the capability of
π -value through an additional simulated dataset and an empirical
dataset (Section 2.2 in Supplementary Materials). In simulations
adopted from a hierarchical model Smyth, 2004, π -value has
comparable performance as moderated-t, TREAT and shrinkage-t
in similar and balanced variances conditions. Simulation results on
an empirical dataset again demonstrate that π -value has comparable
or better performances. It is especially noteworthy that (in the
hierarchical model simulations), although FC and regular t-test
do not perform robustly in the condition of similar and balanced
variances, π -value, which integrated the two methods, has good
FDR and AUC values competitive to other more complex methods
(moderated-t, TREAT and shrinkage-t) which need extra prior
assumption and complicated computations. All the above results
indicate that π -value is a desirable criterion for DE gene selection.

3.2 Application to GSEA
π -value provides a new ranking method for genes based on
combination of expression change and statistical significance, and
it can be readily applied to GSEA.

We use Burn Injury Data derived dataset to demonstrate the
application of π -value to generalized GSEA [Equation (6]), and the
procedure is summarized in the Supplementary Materials. t-statistic,
P-value and π -value based enrichment scores are denoted by
ESt,ESp and ESπ , respectively.

π -based enrichment score is less sensitive to low FC but equally
sensitive when LFC ≥0.4. To study the sensitivity of enrichment
scores with respect to LFCs of genes in GSEA, we designed the
following experiment. We created several gene sets, each containing
20 genes. In each gene set, 10 genes have different mean expressions
in class C1 and C2, with g(1)ij ∼N (μi,σi), g(2)ij ∼N (μi +	μ,σi),
and 	μ varies from 0.0 to 1.0 across the gene sets. The detection
rates of t-, P- and π -based enrichment scores with respect to 	μ

are shown in Figure 3a. As expected, the higher the LFC 	μ is, the
more sensitive a enrichment score is to detect enrichment. ESπ is less
sensitive than ESt and ESp when 	μ<0.4; however, it is equally
sensitive when 	μ≥0.4, and all three enrichment scores achieve
near 100% detection rate. Finally, it is noted that when 	μ is near
0, the gene set is probably not truly enriched, a low detection rate
is thus desirable. Figure 3 shows ESπ has the lowest detection rate
when 	μ∼0, indicating the lowest FDR.

π -based enrichment score is robust with respect to intrinsic
variance. To study how gene variance affect the detection of
enriched gene sets, we designed genes sets similar to the previous
experiment, but with fixed differential expression and controlled
minimum variance. In particular, we fixed 	μ to be 0.5 to guarantee
the high confidence of enrichment, and let the DE genes have
g(1)ij ∼N (μi,min(σi,σmin) and g(2)ij ∼N (μi +	μ,min(σi,σmin).
σmin varied from 0.0 to 1.5 across the gene sets. As expected and
shown in Figure 3b, when σmin =0 (no minimum gene variance is
imposed), all three enrichment scores have near perfect detection
rate. However, when σmin gradually increases to 1.5, ESπ can still
maintain about 90% detection rate, while the detection rate of ESt
drops to <60%, and ESp has the worst detection rate, <20%.
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Fig. 3. Top figures: detection rates with respect to (a) varied LFC and (b) varied minimum variance. In (a), x-axis denotes LFC 	μ; in (b), x-axis denotes
the minimum SD σmin, with 	μ=0.5 fixed. Bottom figures: false discovery rates (FDRs) with respect to (c) zero-fold change and varied maximum variance,
and (d) slight FC. In (c), 	μ=0, and x-axis denotes the upper limit of SD σmax; in (d), 	μ varies from 0.0 to 0.05, and σmax is not restricted.

π -based enrichment score protects against false discovery. The FDR
can be assessed when 	μ=0 or is very small (Fig. 3c and d).
Figure 3c shows the result of an experiment where we designed
several gene sets with no FC and varied maximum variance (similar
to previous experiments, we controlled σmax of 10 selected genes
in each gene set). The FDR for ESπ is consistently <5%, almost
always smaller than ESt and ESp, and ESt has the largest FDR.
Since 	μ→0 constitutes a heavy penalty on π -value, a highest
degree of protection against FDR is observed when σmax is smaller
(≤0.5), such that smaller variance is correlated with larger t and
smaller P-value, leading to higher ESt and ESp. The protection of
ESπ against FDR can be further extended when FC is non-zero but
too small for the gene set to be considered enriched. In an extended
experiment, we let 	μ vary from 0 to 0.05 without variance control,
and observed again that ESπ has a consistent lower FDR than ESt
and ESp (Fig. 3).

3.3 Application to gene expression profiling of estrogen
receptor sensitive breast cancer

In the previous sections, we based our simulations on controlled
datasets where differential expressions were artificially added to
null dataset (satisfying null hypothesis), for convenient evaluation
of performance. Now we will apply π -value to the original breast
cancer dataset.

The breast cancer dataset (GSE2034) contains 77 estrogen
receptor negative (ER−) and 209 estrogen receptor positive (ER+)

samples of breast tumor, and we use it as the reference to
compare three enrichment scores, ESt,ESp and ESπ . It is well
documented that ER+ and ER− breast cancer patients respond
to drugs differently and have distinct prognosis, and it is shown
that estrogen regulates pathway in breast cancers Lewis-Wambi
and Jordan, 2009. Therefore, we choose an estrogen-related Gene
Ontology term ‘response to estrogen stimulus’ (GO:0043627) to
form our interested gene set. Using 1091 biological process terms
(each term corresponding to a gene set) recorded in the Gene
Ontology database, we have conducted a generalized GSEA using
the method outlined in Section 2.4 in Supplementary Materials.
Results in Table 2 (top 3 rows) show that our interested gene
set (estrogen stimulus) is highly enriched with high rankings
among 1091 gene sets for all three enrichment scores ESt,ESp
and ESπ . The rankings (rankref) of the gene set among all gene
sets using ESt,ESp and ESπ are 67, 47 and 27, respectively. The
P-values (pref) of ESt,ESp and ESπ are 0.003, 0.002 and 0.001,
respectively.

In order to test the performance of different enrichment scores
in small sample setting, we used the original 283 samples as a
pool, and randomly drew a subsample consisting of 27 ER+ and
10 ER− profiles 1000 times, to which we applied GSEA based
on the three scores. The results are listed in Table 2 (bottom 3
rows). Among three enrichment scores, ESπ provides the highest
average ranking (rankavg = 58) of the interested gene set and also
has the most significant average P-value (pavg). Using P < 0.05 as
an enrichment criterion, ESπ has the highest enrichment rate in 1000
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Table 2. Results of GSEA

Estrogen stimulus ESt ESp ESπ

rankref 67 47 27
pref 0.003 0.002 0.001
rankavg 138 130 58
pavg 0.03 0.03 0.007
Enrichment rate (%) 60.0 60.8 94.3

Rank refers to the ranking of a gene set’s ES score in descending
order. Average P-value of ES is obtained from 1000 times of
simulations. Enrichment rate is determined by the percentage of
the gene set satisfying the criterion P-value of ES ≤0.05, in 1000
times of simulations.

times of simulations. These results show that π -value has desirable
performance in GSEA, especially in small sample setting.

4 DISCUSSION
We defined π -value as a gene significance score combining
FC and P-value, and derived its distribution. To identify DE
genes by π -value, we can specify a significance level α and
use the corresponding critical value as threshold. Under certain
assumptions, critical values can be obtained theoretically;
otherwise, they can be estimated from simulation, as shown in the
Supplementary Materials.

One may choose ad hoc π threshold of 1.3 or 2.0, noting that
at 2-fold change, P=0.05,0.01 translate to π =1.3,2.0, and the
thresholds are also close to the dependent CVs at α=0.05,0.01
(Table 1). Moreover, the definition of π -value in Equation (1)
implies that 2-fold change is a neutral position: a smaller FC will
penalize P-value, and a larger FC will boost P-value.As an extension
to this concept, if we consider n-FC as a reasonable decision
boundary for DE genes, we can adopt an alternative definition of π =
(φ/log2n)·(−log10p), and choose decision threshold accordingly.
Further comparison of π -value, P-value and FC to serve as DE gene
selection criteria is discussed in the Supplementary Materials.

Among various selection criteria for identifying DE genes,
π -value is the most robust. We have found that

• π -value performs well at the high specificity region, and its
ROC curve stays above all other criteria in the region. π -value
also has the lowest FDR when the number of selected genes
increases.

• Overall, π outperforms other criteria by having the largestAUC
(area under curve) of ROC.

In the simulations, π -value was computed based on regular t-test,
therefore its computational complexity is less than moderated t-test,
TREAT, or some other improvements to the regular t-test.

In generalized GSEA, π -based enrichment score is also more
robust than t-statistic and P-value based scores. In the experiments,
we designed half of the genes in a gene set to be DE, to mimic the
real world scenario. We have found that

• ESπ has comparable detection rate of enriched gene sets as ESt
and ESp when differential gene expression 	μ≥0.4, although
it is less sensitive when 	μ<0.4.

• ESπ has a robust high detection rate when DE genes in an
enriched gene set have increased variance.

• ESπ protects against false discovery when 	μ is close to zero,
especially when part of the genes have low variance.

In the application to breast cancer, we utilized various scoring
methods of GSEA to evaluate the performance on small subsets
of ER+ and ER− breast tumor samples. Based on 1000 times of
simulations, we have found that π -value based enrichment score
provides higher ranks of the estrogen-related GO term, higher
enrichment rate and smaller P-values. The results demonstrate
the advantages of π -value to serve as enrichment score in GSEA
applications.

In conclusion, we find that π -value is a robust score for detecting
DE genes, reflected in the ROC curve consisting of sensitivity versus
specificity and the false discovery rate plot. In generalized GSEA,
π -value based enrichment score has a comparable performance
with P-value and t-statistic based enrichment scores in general. In
special situations, ESπ behaves more robustly than ESp and ESt ,
in that it improves sensitivity in the LFLV situation, and protects
against false discovery in the SFSV situation. When applied to
breast cancer data, π -value also shows its potential in identifying
enriched gene sets involved in key biological functions. Most
existing microarray analysis infrastructure, including software and
public domain databases, provide FC and P-value information. FC
is an important factor in biological discovery, which represents the
variation of mRNAabundance across different biological conditions.
P-value of t-test signifies the confidence of difference between case
and control, based on which null hypothesis will be rejected or
accepted. By integrating the two factors, π -value can improve the
performance of microarray analysis without using prior information
or recalculating a new statistic. Therefore, it provides us an option
to improve on the current infrastructure without major changes. Not
limited to regular-t test, π -value can be extended to integrate other
kinds of P-values, such like moderated t-test, ANOVA or linear
regression, to satisfy various demands in microarray analysis.
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