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ABSTRACT

Motivation: Anatomical entities ranging from subcellular structures to

organ systems are central to biomedical science, and mentions of

these entities are essential to understanding the scientific literature.

Despite extensive efforts to automatically analyze various aspects of

biomedical text, there have been only few studies focusing on

anatomical entities, and no dedicated methods for learning to auto-

matically recognize anatomical entity mentions in free-form text have

been introduced.

Results: We present AnatomyTagger, a machine learning-based

system for anatomical entity mention recognition. The system incorp-

orates a broad array of approaches proposed to benefit tagging,

including the use of Unified Medical Language System (UMLS)- and

Open Biomedical Ontologies (OBO)-based lexical resources, word

representations induced from unlabeled text, statistical truecasing

and non-local features. We train and evaluate the system on a newly

introduced corpus that substantially extends on previously available

resources, and apply the resulting tagger to automatically annotate the

entire open access scientific domain literature. The resulting analyses

have been applied to extend services provided by the Europe PubMed

Central literature database.

Availability and implementation: All tools and resources introduced

in this work are available from http://nactem.ac.uk/anatomytagger.

Contact: sophia.ananiadou@manchester.ac.uk

Supplementary Information: Supplementary data are available at

Bioinformatics online.

Received on July 12, 2013; revised on September 17, 2013; accepted

on October 2, 2013

1 INTRODUCTION

During the past two decades, there has been increasing research

interest in the development of resources and methods for auto-

matically processing the biological and medical scientific litera-

ture to address the multiple challenges created by its size and

increasingly rapid growth. Annotated resources and tools target-

ing various aspects of scientific texts have been introduced,

including, for example, mentions of gene names (Smith et al.,

2008), chemicals (Kolluru et al., 2011) and organisms (Gerner

et al., 2010), relations such as protein–protein interactions

(Krallinger et al., 2007), drug–drug interactions (Segura-

Bedmar et al., 2011) and molecular events and biological pro-

cesses such as gene expression, protein phosphorylation, viral

infection and angiogenesis (Kim et al., 2011; Pyysalo et al.,

2012a, b).
Much of recent work in biomedical natural language process-

ing and text mining has focused on molecular level entities and

processes, addressing e.g. the detection of gene name mentions

and protein–protein interaction statements. However, a compre-

hensive analysis of biomedical text requires automatic systems to

address entities also at other levels of biological organization. In

this study, we focus on the development and large-scale applica-

tion of a machine learning-based system on for the recognition of

mentions of anatomical entities, organism parts at levels of

organization between the molecular and the whole organism

(Fig. 1). Building on a state-of-the-art entity mention tagger

based on conditional random fields, we implement and evaluate

a variety of approaches for improving mention recognition per-

formance. For training and evaluation, we extend existing cor-

pora through manual annotation to create a large, open-domain,

cross-species resource covering both publication abstracts and

full-text documents.
The developed integrated system, AnatomyTagger, can be

applied either as a standalone tagger, a component in

pipelines based on the Unstructured Information Management

Architecture (UIMA) (Ferrucci and Lally, 2004; Kontonatsios

et al., 2013) or as a web service, and complements existing tools

for the recognition of molecular entities and whole organism

mentions to facilitate comprehensive analysis of entity references

in biological and medical text. To further advance such analysis

and to demonstrate the feasibility of large-scale tagging, we apply

the system to all available open access domain publications,

recognizing 48 million anatomical entity mentions. The contri-

bution of this study is thus 4-fold: the introduction of a new

integrated corpus, the detailed evaluation of multiple methods

and resources for anatomical entity tagging, the implementation

of a new system incorporating the best-performing approach to

tagging and the application of this tagger to the entire open-

access literature. All contributed tools and resources are made

available under open licenses.

2 APPROACH

We next present the ontological basis, task setting and basic

system architecture applied in our work.*To whom correspondence should be addressed.

Fig. 1. Annotation example showing tagged anatomical entity mentions
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2.1 Ontological basis and entity types

We define the target of our analysis, anatomical entity mentions,

primarily with reference to the Common Anatomy Reference

Ontology (CARO) (Haendel et al., 2008) and the Foundational

Model of Anatomy (FMA) (Rosse and Mejino, 2003). CARO is

a small species-independent upper-level ontology proposed to

unite species-specific ontologies such as the extensive human-

specific FMA that it is based on. In defining the annotation

scope and types, we follow our previous work (Ohta et al.,

2012), in particular in annotating also pathological parts of or-

ganism anatomy—important in discussions of real-world, as

opposed to idealized canonical anatomy—and excluding from

scope two classes of entities, whole organisms and biological

macromolecules, whose recognition in text has been extensively

studied in previous work (e.g. Smith et al., 2008; Gerner et al.,

2010). We additionally differentiate cancers as a specific subtype

of pathological formations, giving the types presented with ex-

amples in Table 1.

2.2 Task setting

We formalize the basic task as identifying all contiguous non-

overlapping sequences of characters that refer to anatomical

entities in unstructured text and assigning each such mention

exactly one type from a given set of disjoint upper-level onto-

logical categories that jointly cover all targeted entities (Table 1).

As mentions are contiguous and non-overlapping and the
assigned types disjoint, mention detection and classification can

be cast as a standard sequential labeling task, where each token is

identified e.g. as (B)eginning, (I)nside or (O)utside an entity men-

tion, with the former two tag categories additionally identifying

the entity type (e.g. B-Cell). The basic task is addressed as

supervised sequential labeling using this representation.

2.3 Architecture

The developed system has the pipeline architecture illustrated in

Figure 2. Broadly, input text is first segmented into sentences and

tokens, lexical processing and shallow syntactic analysis is then

performed to assign features such as part-of-speech (POS) tags

and additional features are then generated through lookup

against various lexical resources. Entity mention recognition

and classification is then performed in two stages, with the

second stage incorporating non-local features derived from

the first-stage analysis. The following section details the methods

and resources applied to implement, train and evaluate the

system.

3 METHODS

We base the primary machine learning components of our method on

NERsuite (http://nersuite.nlplab.org/), a retrainable named entity recog-

nition (NER) toolkit building on the CRFsuite (Okazaki, 2007) imple-

mentation of Conditional Random Fields (CRFs) (Lafferty et al., 2001).

CRFs are frequently applied to sequential labeling tasks such as entity

mention recognition and are at the core of numerous state-of-the-art

taggers for various tasks. The following sections detail the processing

applied for feature generation, the application of the machine learning

method and other stages of the AnatomyTagger pipeline.

3.1 Text segmentation and preprocessing

The applied machine learning method operates on a token basis and

makes use of information regarding the relative position of tokens

within sentences. We thus initially segment input text into sentences

and those further into tokens. For sentence segmentation, we apply the

GENIA sentence splitter trained on the GENIA treebank (Tateisi and

Tsujii, 2006) with a heuristic post-processor to correct some common

errors. To allow the tagger to assign mention boundaries at a fine granu-

larity (e.g. in words such as ‘platelet-derived’), we apply an aggressive

tokenization strategy that preserves contiguous sequences of alphanu-

meric characters as tokens and assigns all other single characters into

separate tokens.

We additionally consider the effect of truecasing, generally defined as

the process of restoring the correct case to text with missing (or incorrect)

case information (Lita et al., 2003). In the context of processing text with

(largely) correct case, such as scientific publications, we understand true-

casing to involve restoring ‘neutral’ case to (i) all sentence-initial

Table 1. Entity types and implicit ontological structure

Type Examples

ANATOMICAL ENTITY
a cell, heart, blood

ANATOMICAL STRUCTURE
a cell, heart, head

ORGANISM
b human, drosophila

ORGANISM SUBDIVISION head, limb, hand

ANATOMICAL SYSTEM vascular system

ORGAN liver, heart, lung

MULTI-TISSUE STRUCTURE artery, cornea

TISSUE epithelium, bone

CELL epithelial cell

DEVELOPING ANATOMICAL STRUCTURE embryo, fetus

CELLULAR COMPONENT nucleus, plasmid

BIOLOGICAL MACROMOLECULE
b cyclin, insulin

ORGANISM SUBSTANCE blood, serum, urine

IMMATERIAL ANATOMICAL ENTITY lumen, bone cavity

PATHOLOGICAL FORMATION wound, ulcer, edema

CANCER tumor, carcinoma

Note: Indentation corresponds to is-a structure. aNot annotated: implicit structure

only. bNot annotated: out of scope.

Fig. 2. AnatomyTagger architecture. Parallel arcs indicate mutually independent stages of processing. Processing stages drawn shaded involve models or

tools newly introduced in this study
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(capitalized) words, (ii) words in Title Case in the titles of articles, sec-

tions, tables and so forth and (iii) words in ALL-UPPER case contexts

such as some publication titles. Given the limited scope of this task

compared with all-words truecasing and the comparative ease of the

task, we opted here to implement basic unigram-based truecasing, using

a model derived from a random sample of the 2012 PubMed� baseline

distribution. Truecasing is performed after sentence segmentation as it

eliminates sentence-initial capitalization, which is an important signal for

identifying sentence boundaries.

3.2 Morphosyntactic analysis

Features from morphological and syntactic analysis are commonly

applied in support of entity mention detection. In this work, features

identifying the POS and chunk (shallow parsing) tags and word base

forms (lemmas) are created using the GENIA tagger (Tsuruoka et al.,

2005) with a model trained on the Penn Treebank Wall Street Journal

subset (Marcus et al., 1993), the GENIA Treebank (Tateisi and Tsujii,

2006) and the PennBioIE corpus (Kulick et al., 2004). The tool performs

lemmatization using a base form dictionary derived from WordNet

(Miller, 1995).

3.3 Lexical resources

There is a wealth of lexical and ontological resources that could be used

to support anatomical entity mention detection, ranging from simple lists

of entities to extensive richly structured ontologies such as the FMA.

Owing to the large number of potentially applicable resources, we focus

here not on the use and evaluation of individual resources, but rather

on two major ‘metaresources’: the Unified Medical Language System

(UMLS�) Metathesaurus (Bodenreider, 2004) and the Open

Biomedical Ontologies (OBO) Foundry (Smith et al., 2007). We addition-

ally consider the effect of applying resources automatically derived from

large corpora of unannotated text. For each resource, we develop a

simple mapping from text spans to a set of binary features representing

e.g. semantic classes, as described in the following.

3.3.1 UMLSMetathesaurus The UMLSMetathesaurus is an exten-

sive resource integrating lexical and database resources from over 150

sources, including Medical Subject Headings (MeSH), SNOMED

Clinical Terms (CT), International Statistical Classification of Diseases

and Related Health Problems, 10th Revision (IDC-10) and many other

major vocabularies, and contains in total45 million names for over a

million concepts. The UMLS organizes concepts in its Semantic

Network, which provides numerous semantic relations as well as 133

semantic types, such as Amino Acid, Disease, Plant and Tissue.

These types are applied to categorize all UMLS concepts and provide, in

effect, informal shared upper-level ontology. The National Library of

Medicine (NLM)� has also developed an associated tool, MetaMap

(Aronson, 2001), capable of detecting mentions of UMLS concepts in

text. The tool is applied in MEDLINE indexing and various other tasks

(Aronson and Lang, 2010). MetaMap performs limited syntactic analysis

and disambiguation to improve its concept assignment and can thus pro-

vide a better mapping of text to UMLS than naive matching against

UMLS vocabularies.

Both standalone use of the UMLS Metathesaurus as well as its

application via MetaMap tagging have obvious potential benefits for

anatomical entity mention detection. In a previous study of anatomical

entity mention tagging, we found a substantial benefit from using

MetaMap for feature generation (Ohta et al., 2012). However, there are

challenges to the use of the UMLS Metathesaurus and MetaMap in

redistributable tools such as AnatomyTagger. First, the full MetaMap

distribution requires significant amounts of disk space, memory and pro-

cessing power to run, and its inclusion would substantially increase the

computational requirements of the tagger. Further, both MetaMap and

many of the UMLS Metathesaurus sources have licenses that make it

impossible to create distributable tools directly incorporating these

resources. Thus, instead of incorporating these resources directly, we

make use of the MetaMapped Medline� data (http://skr.nlm.nih.gov/

resource/MetaMappedBaselineInfo.shtml), a distribution of the output

of MetaMap run on the entire PubMed baseline distribution provided

by the NLM. We processed these data by first using the mm_print12

tool (http://metamap.nlm.nih.gov/#MetaMapPrint) to convert the

MetaMap prolog-like output to extensible mark-up language, which we

then parsed to determine semantic class assignments to each string. We

then extracted for each string the set of types that were associated with

that string in at least half of the cases in which the string appeared in the

data to generate a comparatively small number of text string-semantic

class pairs as a separate dictionary that can be applied in tagging.

3.3.2 OBO resources The OBO consortium aims to develop orthog-

onal, mutually interoperative, openly available biomedical domain ontol-

ogies. The OBO Foundry (http://www.obofoundry.org/) collects related

resources, and as of this writing lists 115 ontologies, of which 40 involve

the domain ‘anatomy’. These range from resources covering the anatomy

of individual species, such as FMA (human) to resources such as the

Plant Ontology covering an entire kingdom (Cooper et al., 2013), and

include two major species-independent resources focusing on specific

levels of biological organization: the cellular component subontology of

the Gene Ontology (Ashburner et al., 2000) and the Cell Ontology

(Meehan et al., 2011).

Many of the OBO anatomy-related resources could be used to generate

a rich array of features based on information such as the part-of or

develops-from relations provided by some ontologies, but as the re-

sources vary greatly in such aspects, we focus on features generated based

on basic information present in almost all of the ontologies: entity names

and synonyms and their mutual is-a relations. Names and synonyms

allow anatomical entity mention candidates to be easily identified using a

dictionary lookup approach, and is-a relations allow the likely types of

these mentions to be determined (Fig. 3).

We derived a mapping from text to upper-level ontological categories

from OBO following an approach we previously introduced for anatom-

ical term classification (Pyysalo et al., 2011). In brief, we first selected

from OBO a set of non-redundant anatomy-domain resources with non-

trivial is-a structure, giving a set of 26 ontologies (see Supplementary

Material). For each term in these ontologies, we follow is-a relations to

identify the relevant upper-level ontological categories comparable with

the targeted types (Table 1), mapping explicitly to corresponding CARO

terms when possible. We then extract term names and synonyms together

with these upper-level categories, and further apply the NLM Lexical

Variant Generator (McCray et al., 1994) to add e.g. spelling and plural-

ization variants to the forms found in the OBO resources. Finally, to

reduce the dimensionality and sparseness of the feature set, we selected

the most frequent 100 upper-level categories in the data and mapped the

remaining types to ‘other’.

Fig. 3. Term matching and classification using OBO resources. Example

simplified from FMA; figure modified from Pyysalo et al. (2011)
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3.3.3 Word representations Despite extensive efforts to annotate

corpora and create lexicons and ontological resources, the scope of the

literature continues to dwarf that of manually curated resources. The

availability of a large body of unannotated domain texts offers many

opportunities to support also supervised learning. One successful

approach is to induce word representations that can then be used to intro-

duce additional features for supervised learning. Associating each word

with an alternate representation (e.g. a vector) allows non-binary word

similarities to be defined, which can in turn alleviate sparseness issues in

supervised learning, for example by providing information on the mean-

ing of words not appearing in annotated data. A variety of methods for

inducing such representations from unannotated text have been proposed

(Brown et al., 1992; Collobert and Weston, 2008; Mnih and Hinton,

2009). These methods draw in one way or another on the observation

that words are known by the company they keep (Firth, 1957), i.e. that

words appearing in similar contexts tend to have similar meanings.

A number of word representations have been evaluated also in the

specific context of supervised sequential labeling tasks such as entity

mention detection (Turian et al., 2010). In our recent study of word rep-

resentations and their domain dependency (Stenetorp et al., 2012b), we

found that Brown clusters (Brown et al., 1992) induced on texts from the

same domain as annotated resources show clear benefits for various men-

tion recognition tasks. The Brown cluster representation assigns each

word a simple bit-string representing a position in a hard hierarchical

clustering. In addition to offering competitive performance, the represen-

tation is thus sparse, allowing both word-cluster mappings and feature

vectors including Brown cluster-derived features to be stored compactly.

We thus chose to focus on Brown clusters in the present study. We

evaluate performance with two sets of brown clusters: the clusters induced

by Turian et al. (2010) on newswire texts and newly induced

clusters following the approach of Stenetorp et al. on a random sample

of 500 000 biomedical publication abstracts. Following previous work,

we induce and compare clusterings with the cluster number

c 2 f100, 320, 1000, 3200g and introduce for each word new features

consisting of the 4-, 6- and 10-digit prefixes of its cluster identifier.

3.3.4 Feature generation with lexical resources The NERsuite

toolkit includes an efficient tagger for augmenting feature sets based on

mappings from text spans to binary features, operating on either a token

or phrase (maximal span) basis. Although this dictionary tagger can be

used also for the anatomical entity mention recognition task with the

resources described in the preceding sections, preliminary experiments

indicated that some aspects of its implementation were not ideal for the

task. First, the tagger implemented only leftmost-longest matching: when

multiple candidate spans overlap, only the longest of the leftmost spans is

tagged. This is potentially problematic when using broad-coverage

resources such as UMLS, where longer non-relevant expressions (e.g.

‘growth of cells’) could block the tagging of relevant embedded ones

(e.g. ‘cells’). Second, the implementation included a POS-based filter

that required each span to include at least one noun (word with a POS

tag starting with ‘NN’), which is reasonable for named entity recognition

but not optimal for resources involving also other expressions. To address

these issues, we modified the NERsuite dictionary tagger to support also

a tagging mode where all candidate mentions are marked and to allow

flexible configuration of the POS filter. We explore combinations of these

options in development test experiments.

3.4 Feature representation

The features presented in the previous sections are generated for each

token and can be combined in various ways to create a full feature rep-

resentation for machine learning. As is customary in feature representa-

tions for sequential labeling, features are generated for the ‘focus’ token

as well as for surrounding tokens in a small window, in our experiments

consisting of the two preceding and two following tokens. The original

surface form, normalized form (lowercased, etc), lemma, POS tag, chunk

tag and lexical resource (dictionary) matching-derived features are

generated in standalone and bigram combinations, and token internal

structure is captured by character-based n-gram and orthography fea-

tures. The feature representation is presented in full detail in the

Supplementary Material.

3.5 Non-local features

Sequential tagging setups typically directly provide information from

only limited local context to the machine learning method. Although

highly effective and sufficient for competitive performance at many

tasks, local features cannot capture a number of intuitively informative

properties of text, such as that all mentions of a word in a specific dis-

course tend to carry the same sense (Gale et al., 1992). To allow the tagger

to benefit from non-local information, we apply a two-stage tagging

strategy inspired by Krishnan and Manning (2006) where a standard

model is first applied to create a first-stage tagging that is then analyzed

to create additional document-level features for a separately trained

second-stage model that produces the final predictions. For the second-

stage tagging, we extend the standard feature set used for the first-stage

tagging with the following non-local features for each token, based on all

identical tokens in the document: (i) most frequent tag, (ii) most frequent

non-‘O’tag and (iii) first tag in the document. These features are intended

to allow the tagger to e.g. benefit from unambiguous mentions in context

to disambiguate ambiguous ones. To train the second-stage model, we

create a dataset that incorporates non-local features by training 10 dif-

ferent first-stage models in a cross-validation setup, using each to predict

the additional features for 10% of the data.

3.6 Parameter settings

In initial experiments, we observed that regardless of the settings of the

regularization parameters for CRF training, the resulting models system-

atically showed high-precision, low-recall results. This reflects a frequent

phenomenon where machine learning models tend to favor the majority

class—here ‘O’, for outside—that is reasonable when optimizing for ac-

curacy, but may not correspond to user preference and can lead to sub-

optimal performance in terms of other metrics, such as entity mention

detection F-score. To address this issue, a new feature allowing label bias

weights to be set in decoding was implemented in CRFsuite and

NERsuite, following the approach of Minkov et al. (2006). By assigning

lower weights to ‘O’ labels or higher weights to ‘B’ or ‘I’ labels, decoding

can be fine-tuned toward producing more entity mentions, without

requiring retraining of the model.

3.7 Corpus

For the training and evaluation of our methods, we created the extended

Anatomical Entity Mention (AnatEM) corpus. This corpus builds in part

on two previously introduced resources, the AnEM and Multi-Level

Event Extraction (MLEE) corpora. The Anatomical Entity Mention

(AnEM) corpus was introduced by Ohta et al. (2012) and consists of

500 randomly selected PubMed abstracts and full-text extracts (sections

and captions) annotated for anatomical entity mentions using the same

scope definitions and 11 of the 12 types applied in this work, with the

exception that AnEM lacks the PATHOLOGICAL FORMATION/CANCER dis-

tinction (Table 1). The MLEE corpus, introduced by Pyysalo et al.

(2012a), consists of 262 PubMed abstracts on the molecular mechanisms

of cancer, specifically relating to angiogenesis. Among its annotations,

MLEE is annotated for anatomical entities following the AnEM task

setting.

To create the AnatEM corpus, we initially combined the anatomical

entity annotations of the AnEM andMLEE corpora, and then proceeded

to perform manual annotation using the brat tool (Stenetorp et al.,
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2012a) for an additional set of 100 documents following the selection

criteria of the former and 350 documents following those of the latter,

for a selection of topics related to cancer. The resulting corpus thus con-

sists of 1212 documents, 600 of which are drawn randomly from abstracts

and full texts as in AnEM, and the remaining 612 are a targeted selection

of PubMed abstracts relating to the molecular mechanisms of cancer. We

also evaluated all PATHOLOGICAL FORMATION annotations in the previously

introduced corpora to introduce the CANCER type, and performed several

rounds of consistency checking, supported by automatic tools developed

for the task. Table 2 presents overall statistics of the AnatEM corpus,

contrasting it with a number of previously released corpora containing

annotations for at least some anatomical entity types: the Colorado

Richly Annotated Full Text (CRAFT) corpus (Bada et al., 2012), the

CellFinder corpus (Neves et al., 2012) and the Joint Workshop on

Natural Language Processing in Biomedicine and its Applications

(JNLPBA) corpus (Kim et al., 2004).

3.8 Experimental setup

The AnatEM corpus was split into separate training, development and

test sets, following the existing divisions of the AnEM and MLEE

corpora for documents drawn from these resources and dividing the

remaining documents randomly to create a 50%/17%/33% train/devel/

test split.

The selection of the regularization and label bias parameters (Section

3.6), fine-tuning of the feature representation and other comparable

detailed settings were performed by evaluation on the development set

only. The L2 regularization coefficient was selected from

f2�10, 2�9, . . . , 25g and the label bias parameter for begin (‘B’) labels

from f�5, � 4:5, . . . , 5g. The optimal feature representation and param-

eter settings were then applied in a single set of final experiments where

the method was trained on the combination of the training and develop-

ment sets and tested on the test set documents. Correspondingly, except

for the final evaluation results, all results are for optimal parameter values

on the development set, and a degree of overfitting is thus expected.

Results are reported using the precision and recall metrics and their

harmonic mean, the F1-score. These metrics are calculated on the entity

mention level. We apply right boundary match as the primary evaluation

criterion throughout, following Ohta et al. (2012). Types are required to

match exactly also in the multiclass setting.

4 RESULTS AND DISCUSSION

4.1 Evaluation on development data

The results of the evaluation of the various enhancements to the

baseline tagger are summarized in Table 3.
We find that truecasing gives only a modest positive effect,

possibly related to the inclusion of lowercased variants of

tokens in the base feature set. However, as this limited benefit

was found also in combination with other approaches (data not

shown), we opted to include truecasing in the final tagger. By

contrast, we find a substantial benefit from the incorporation of

non-local features through two-stage processing, giving a 7%

reduction in F-score error in the single-class setting and 3%

for the multiclass setting.

The evaluation of the effect of incorporating features based on

tagging against UMLS- and OBO-derived resources shows that

both provide notable advantages for anatomical entity mention

detection. The highest performance is found for UMLS when

tagging all phrases, which gives an impressive 21% relative

reduction in error in the single-class setting and a 12% reduction

in the multiclass setting. Although phrase-based tagging is found

to be more effective than token-based tagging for both resources,

the two resources show mixed effects regarding the benefits of

tagging longest phrases only versus all phrases, with OBO favor-

ing the former and UMLS the latter. This effect may be

explained in part by the presence of terms not related to anatomy

in the UMLS-derived resource, whereas the OBO-derived

resource only contains anatomy-relevant terms.
The results of evaluation using Brown clusters with various

numbers of clusters (c) indicate that the use of clusters induced

using out-of-domain texts (news) does not benefit tagging

Table 2. Corpus statistics

Name Entities Tokens Documents Sources Annotated anatomical entity types

AnatEM 13701 245 448 1212 Abstracts, full text extracts 12 anatomical entity types (Table 1)

AnEM 3135 91 420 500 Abstracts, full text extracts Same as AnatEM, but no PATHOLOGICAL FORMATION/CANCER distinction

MLEE 3599 56 588 262 Abstracts Same as AnatEM, but no PATHOLOGICAL FORMATION/CANCER distinction

CellFinder 3667 55 362 10 Full texts CELL COMPONENT, CELL, generic ANATOMY type

CRAFTa 14248 587 299 67 Full texts CELL COMPONENT, CELL

JNLPBA 12969 522 869 2404 Abstracts CELL

Note: Annotated types and entity mention counts shown for anatomical entities as defined in Section 2.1. aStatistics for publicly available part of corpus.

Table 3. Development test results (F-scores)

Method Single-class Multiclass

Baseline 86.93 81.23

Truecasing 87.12 81.45

Non-local features 87.81 81.82

UMLS, tokens 89.07 82.79

UMLS, longest phrases 88.57 82.64

UMLS, all phrases 89.65 83.50

OBO, tokens 87.58 81.76

OBO, longest phrases 88.81 82.56

OBO, all phrases 88.40 82.44

Brown, news, c¼ 100 87.20 80.92

Brown, news, c¼ 320 87.71 81.23

Brown, news, c¼ 1000 86.58 80.68

Brown, news, c¼ 3200 87.11 80.80

Brown, bio, c¼ 100 87.44 81.67

Brown, bio, c¼ 320 89.56 82.03

Brown, bio, c¼ 1000 88.94 81.78

Brown, bio, c¼ 3200 88.55 81.33
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performance, and may even affect it negatively. For Brown clus-

ters induced on in-domain data (bio), we find that all of the sets

provide some benefit, with a notably more positive effect on

single-class than multiclass tagging. Contrary to expectation,

there is no clear indication that larger numbers of clusters

would be more beneficial. The domain dependence of Brown

cluster features observed here agrees with our previous findings

using a different machine learning method (Stenetorp et al.,

2012b). The current evaluation confirms that the benefit of

using Brown cluster-derived features is strongly domain-

dependent also for CRF-based entity mention tagging.

4.2 Comparative evaluation on test data

For the final evaluation on the held-out test data, we trained the

full AnatomyTagger system using the best settings identified in

the development experiments presented in the preceding sections.

As points of comparison, we consider the dictionary-based

tagger introduced in the BioContext project (Gerner et al.,

2012) and MetaMap, restricted to tagging types relevant to anat-

omy (following Ohta et al., 2012). We additionally train and

apply three state-of-the-art machine learning-based taggers on

these data: the original NERsuite system that AnatomyTagger

is based on, the most recent version of the Illinois NER system

(Ratinov and Roth, 2009) and the recently introduced Gimli

system, which was reported to outperform all other available

biomedical domain taggers on two established reference tasks

(Campos et al., 2013). All machine learning-based taggers were

trained on the combination of the AnatEM corpus training and

development sets.

Table 4 summarizes the results of the comparative evaluation.

Please note that Gimli does not support the entity types applied

here and was only evaluated by replacing types with a single type

recognized by the system. Detailed results and error analysis are

presented in supplementary Tables 6–9. Interestingly, we find

that for these data, the unmodified NERsuite already outper-

forms both the general-domain Illinois tagger as well as the bio-

medical domain tagger Gimli. This may reflect in part the

specific focus of Gimli on biomolecular entity recognition. The

full AnatomyTagger further outperforms the unmodified

NERsuite, showing an additional 22% reduction in error for

the single-class and 10% reduction for the multiclass case. We

find the performance of the developed system on this corpus

highly promising, in particular in light of the earlier evaluation

results of Ohta et al. (2012), who reported a best set of results of

78.34% F-score for single-class and 68.37% for multiclass in a

comparable task. Our results indicate that anatomical entity

mention recognition can be performed at levels of reliability com-

parable with those of well-established domain tasks such as gene

mention recognition (Smith et al., 2008).

4.3 Literature-scale application

To apply the tagger at large scale, we created an implementation

of the tagger in UIMA framework (Ferrucci and Lally, 2004),

integrated in the U-Compare/Argo system (Kano et al., 2009;

Rak et al., 2012). The system was applied in the University of

Manchester HTCondor high-throughput computing system

(3000 cores) to tag all 606 389 PubMed Central� Open Access

articles. The processing averaged usage of �100 cores and

required a week to complete. The application resulted in the

recognition of 48 470652 anatomical entity mentions in total.

The statistics of tagged types are shown in Table 5 and further

details on the tagged entity mentions are provided in

Supplementary Material. Based on these results, we estimate

that there are on average 80 anatomical entity mentions in a

full-text document, and 26 mentions per 1000 words. The full

automatically annotated dataset is provided in the simple tab-

separated values-style standoff format first introduced in the

BioNLP Shared Task (Kim et al., 2011) and used in many

domain tools and resources.

4.4 Related work

Although a wealth of general machine learning methods could be

applied to train anatomical entity mention recognition systems,

we are not aware of previous efforts to develop such a system

dedicated to anatomical entities, a point noted also by Campos

et al. (2012) in their recent survey of domain tools. Anatomical

entities fall broadly within the scope of various general tagging

methods based on matching against lexical resources, such as

MetaMap (Aronson, 2001) and the NCBO annotator (Jonquet

et al., 2009). A related approach drawing on matching against

dictionaries derived from OBO was also applied by Gerner et al.

(2012), the only previous effort involving large-scale anatomical

Table 5. Tagged entity counts in PMC OA documents

Type Count

ORGANISM SUBDIVISION 2 429 093

ANATOMICAL SYSTEM 511 191

ORGAN 5101 355

MULTI-TISSUE STRUCTURE 6 855 622

TISSUE 2 541 481

CELL 16 062 208

DEVELOPING ANATOMIC STRUCTURE 478 429

CELLULAR COMPONENT 4 824 697

ORGANISM SUBSTANCE 3 717 117

IMMATERIAL ANATOMIC ENTITY 699 962

PATHOLOGICAL FORMATION 702 526

CANCER 4 546 971

Total 48 470 652

Table 4. Comparative evaluation on test data (F-scores)

Method Single-class Multiclass

BioContext 38.97 —

MetaMap 67.34 —

Illinois 81.01 75.22

Gimli 86.75 —

NERsuite 89.20 83.50

AnatomyTagger 91.61 85.11

Highest results highlighted in bold.
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entity mention detection that we are aware of. However, as

shown by our experiments, generic dictionary matching-based

methods tend to perform weakly compared with dedicated ma-

chine learning methods trained on sufficient resources, motivat-

ing the development of a dedicated tagger.

5 CONCLUSION

We have presented AnatomyTagger, a system for the recognition

of anatomical entity mentions in free text. The machine learning-

based tagger integrates a variety of techniques shown to benefit

tagging performance, including manually curated lexical re-

sources, word representations induced from unannotated text,

statistical truecasing and non-local features. Evaluation demon-

strated that all techniques incorporated into AnatomyTagger

were beneficial compared with a strong baseline tagger and

that the final integrated system outperforms previously intro-

duced methods for comparable tasks.
We then applied a UIMA implementation of the tagging pipe-

line to the entire open access biomedical literature—over 600 000

full-text documents—to create an automatically tagged resource

of448 million entity mentions. We are currently applying the

method to the entire Europe PubMed Central literature and

integrating the results into the Europe PubMed Central search

and analytics services.

All tools and resources introduced in this work are available

under open licenses from http://nactem.ac.uk/anatomytagger.
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