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ABSTRACT

Motivation: High-throughput ChIP-seq studies typically identify thou-

sands of peaks for a single transcription factor (TF). It is common for

traditional motif discovery tools to predict motifs that are statistically

significant against a naı̈ve background distribution but are of question-

able biological relevance.

Results: We describe a simple yet effective algorithm for discovering

differential motifs between two sequence datasets that is effective in

eliminating systematic biases and scalable to large datasets. Tested

on 207 ENCODE ChIP-seq datasets, our method identifies correct

motifs in 78% of the datasets with known motifs, demonstrating

improvement in both accuracy and efficiency compared with

DREME, another state-of-art discriminative motif discovery tool.

More interestingly, on the remaining more challenging datasets, we

identify common technical or biological factors that compromise the

motif search results and use advanced features of our tool to control

for these factors. We also present case studies demonstrating the

ability of our method to detect single base pair differences in DNA

specificity of two similar TFs. Lastly, we demonstrate discovery of

key TF motifs involved in tissue specification by examination of

high-throughput DNase accessibility data.

Availability: The motifRG package is publically available via the

bioconductor repository.

Contact: yzizhen@fhcrc.org

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The emergence of high-throughput sequencing technology for

genome-wide profiling of transcription factor binding sites

(TFBS) has made precise categorization of their DNA motifs

possible. Harnessing the power of large quantities of data gen-

erated by this technology presents many computational chal-

lenges. Motif discovery is a classical bioinformatics problem

and has been an active area of research for decades. Existing

tools can be roughly classified as profile-based, such as MEME

(Bailey and Elkan, 1995), or pattern-based like CONSENSUS

(Hertz and Stormo, 1999) [see (Tompa et al., 2005) for a review

and performance study of popular motif discovery tools]. Most

of these tools, however, do not easily scale to large datasets.

Users typically limit the motif search to top ranking peaks,

thus sacrifice the power of the data, which may be critical for

accurate modeling of the TFBS and for identification of cofac-

tors. Large amounts of data also increase the power to detect

various non-random signals, many of which may not be directly

related to the problem of interest. The new challenge is to under-

stand the nature of motif signals and determine the relevant ones.

We propose to test the motif enrichment in a foreground dataset

against an explicitly stated background dataset, rather against a

non-informative null distribution. The background dataset

should be carefully selected to represent the systematic biases

present in the foreground.
Discriminative motif discovery is not a new approach.

Pioneering work includes, but is not limited to, DME (Smith

et al., 2006), DIPS (Sinha, 2006) and DEME (Redhead and

Bailey, 2007). These methods find a discriminative position

weight matrix (PWM) to optimize an objective function, which

for the case of DEME and DME, is the likelihood of the data

given the model and sequence class. However, the optimization

procedures of many of these methods are computationally

expensive, making them unsuitable for large datasets. Recent

works designed for high-throughput datasets use more simplified

statistical models. For example, DREME [MEME suite (Bailey,

2011)] and oligo-diff [RSAT suite (Thomas-Chollier et al., 2012)]

use Fisher’s exact test and PeakRegressor (Pessiot et al., 2010)

applies a linear regression model to fit peak scores by motif

counts.
In this study, we propose a new discriminative motif discovery

algorithm motifRG that distinguishes two sequence datasets.

We measure the discriminative power of a motif by a logistic

regression model, which shows some similarity to DREME

and PeakRegressor, but offers a better combination of robust-

ness and flexibility. We also provide an effective and efficient

iterative process for motif refinement and extension and apply

a bootstrap robustness test to avoid over-fitting in the optimiza-

tion process. The logistic regression framework offers direct*To whom correspondence should be addressed.
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measurement of statistical significance, and we demonstrate by

permutation tests that the associated z statistics reflect the prob-

ability of occurrence by chance. This framework also provides

flexibility to handle existing bias between the two datasets, and to

weight the sequences according to their importance, both import-

ant features when dealing with some challenging datasets (see

Section 3 for details). The method is implemented in R (R

Development Core Team, 2010) Bioconductor Core Team, and

is publicly available via the Bioconductor (Gentleman et al.,

2004) repository.
We applied this method in a comprehensive motif study of 207

ENCODE ChIP-seq datasets for TFBS. Under the default set-

ting, motifRG successfully discovered accurate motifs in 78% of

the datasets with known motifs, demonstrating its flexibility

in handling diverse applications. In many cases, biologically

plausible cofactor motifs are also discovered. Compared with

DREME, motifRG had comparable performance at identifying

the core motif, and generally ran about 40% faster. Its advan-

tages over DREME in terms of both accuracy and efficiency are

more obvious for longer motifs and motifs with degenerate

flanking sequences, probably due to a more effective refinement

procedure. By exploring the cases where we fail to detect known

motifs, we identify several common factors likely to compromise

the motif search results and propose strategies that exploit the

flexibility of motifRG to deal with these challenges. Using one

in-depth case study, we demonstrate the power of discriminative

motif analysis for the study of DNA binding specificity of similar

members of one protein family. We also show that this tool can

be applied to DNaseI accessibility datasets to identify TFBS that

are enriched at cell type specific accessible sites, which may act as

key regulators of cell lineage specific chromatin remodeling.
Ourmethod, and discriminativemotif discovery in general, rep-

resents powerful tools to exploit various types of high-throughput

datasets to answer many fundamental biological questions.

2 METHODS

2.1 Logistic regression modeling of motifs

We cast the problem of discriminative motif discovery in the framework

of logistic regression. For a given motif, let x be the motif count in each

sequence. The basic assumption of logistic regression is that sequences

with equal motif counts have equal probabilities P of containing binding

sites, and that the logarithm of the odds ratio is linearly related to the

count:

log
p

1� p
¼ �0 þ �1x

More generally, we fit

log
p

1� p
¼ �0 þ �1xþ �2w

where w represents �1 optional terms reflecting other biases such as GC

content. Model parameters (�i) are estimated by the principle of max-

imum likelihood. The statistical significance of each coefficient �i is esti-

mated by a Wald test, which calculates Z-statistics: Z ¼
~�i
se, where

~�i is the

maximum likelihood estimate of �i and se the estimated standard error of

�i. The z value is then squared, yielding a Wald statistic with a chi-square

distribution (Hosmer and Lemeshow, 2000; Sinha, 2006). Our motif

search optimization goal is to find a motif representation with maximum

absolute z-value. As motif counts have few unique values, we tabulate the

all values of x and fit the model with only the unique values, weighting

each unique value by its count. For applications in which the sequences

are weighted, the weight for each unique value is the sum of all weights of

the sequences with the given value. This reduced representation speeds up

the logistic regression model significantly for large datasets.

Regression was introduced to motif search by pioneering work of

Bussemaker et al. (2001), which models the correlation of motif occur-

rences and gene expression by linear regression. A similar model was

adopted by PeakRegressor for applications for ChIP-Seq datasets,

which uses peak scores as response. A potential pitfall of this model is

sensitivity to outliers. PeakRegressor tried to avoid the problem of out-

liers by using different regularization techniques such as L1-norm, ridge

regression and so forth, which involve additional parameterization.

Recent study suggests that other factors such as chromatin accessibility

(John et al., 2011; Neph et al., 2012) are likely to have greater effect on

intensities of ChIP-Seq signal than motif counts. We believe logistic

regression is an appropriate choice for this application because it offers

a good combination of flexibility and robustness.

2.2 Search strategy

We start by enumerating all nmers with a given width n, fitting the above

regression model and sorting the nmers by the absolute z-value. The most

significant nmer is chosen as the seed motif. To address the concern that

candidates with small enrichment can be highly statistical significant in

large datasets, we set an enrichment ratio threshold for the seed motif to

ensure that the enrichment is biologically meaningful. We further refine

the seed motif by extension and small perturbations by testing all variants

with Hamming distance of one over the full IUPAC nucleotide alphabet.

The general flow chart of this method is shown in Figure 1.

To extend the seed, we append a given number f of Ns at both sides of

the motif and enumerate all replacements of one N letter by a more

specific letter in the IUPAC alphabet. We choose the one with maximum

absolute z-value, which becomes the new motif if it improves the z-value,

and repeat this process. If no further improvement can be made at the

current motif length, append additional Ns to both ends so that each side

still has f Ns. If no replacement of Ns yields a better motif, terminate

and trim all flanking Ns. This process is illustrated in Supplementary

Figure S1B.

Next, we try to refine the motif by small perturbations. We enumerate

all candidates with Hamming distance of one that are compatible with the

seed and not previously tested. We then choose the candidate with the

most improved z-value as the new motif. Repeat this process until no

improvement can be made. This process is illustrated in Supplementary

Figure S1C.

If there are any changes made to the seed at extension or permutation

steps, the whole refinement process is repeated. Conceptually, we can

examine all extension and perturbation candidates at the same time.

We find that separating the two steps yields better performance and

Fig. 1. motifRG method outline (see also Supplementary Fig. S1)
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cuts down memory usage by decreasing the search space. We perform the

extension step first, as we think it is more important to determine the full-

length signature of the motif. In the extension step, the maximum number

of candidates tested is 2fM where f is the number of flanking Ns on each

side, and M the size of IUPAC alphabet. In the perturbation step, the

maximum number is lM, where l is the length of the pattern. The per-

turbed patterns must be compatible with the initial seed motif, and we

filter the candidates by requiring either an increase of total foreground

counts or a decrease of total background counts, so the number of

allowed candidates is a lot smaller. Using this strategy we can afford to

extend the motif as long as needed.

The refinement step can be subject to over-fitting, as a small z-value

improvement may not be meaningful. To improve robustness, we per-

form the following bootstrap test to determine the significance of the im-

provement: randomly sample the whole sequence dataset (including

positive and negative sequences) with replacement for a few times (default

5 times), calculate the z-values for the new and the original motif for

each sampling and compute the P-value by applying t-tests on two sets

of z-values. Accept the new motif if the P-value is under a given thresh-

old. Although the number of bootstraps we performed is small, we found

the variance estimate is reasonably accurate and informative to guide

refinement to be more aggressive or conservative (see Section 3 for

details).

Candidate enumeration, evaluation and bootstrap validation can be

performed in parallel in each iteration, and parallelization is implemented

by the ‘parallel’ package of Bioconductor. After refining the top motif, we

mask all of its occurrences and repeat the process to find the next motif.

3 RESULTS

3.1 motifRG accurately predicted annotated motifs

To assess the performance of our method for de novo motif dis-

covery in a real world application under different conditions, we

tested it on 207 ENCODE ChIP-seq datasets collected from two

groups, HAIB_TFBS by HudsonAlpha and SYDH_TFBS by

Yale and UCD (see Supplementary Table S1 for the complete

list). This dataset covers 82 unique TFs and 25 cell types with

different characteristics: the number of peaks varies from a few

hundreds to hundreds of thousands, the average GC content

ranges from 0.40 to 0.66 and median peak width varies from

100 to 1000 nucleotides (Supplementary Fig. S2). We made a

number of decisions to standardize/simplify the analysis and be-

lieve they have no real effect on the outcome. If the number of

peaks exceeded 50K, we randomly sampled 50K peaks. This

approach was further justified by the analysis presented below

in section ‘Motif significance and sample size’, which examines

the effect of number of peaks on motif prediction. For each peak

in each dataset, we first chose one corresponding background

sequence from the flanking regions, randomly chosen from

either side 0–200 nt from the edge of the peak, and with the

same width as the peak. We then predicted up to five enriched

motifs. Our software also identifies depleted motifs, but they

were ignored here. To find the annotated motif of the ChIP-ed

TF, we matched TF names/aliases with the motif names in the

motif databases Jaspar (Bryne et al., 2008; Redhead and Bailey,

2007) and Uniprobe (Newburger and Bulyk, 2009). If no exact

matches were found, we used the motif of a homolog; e.g. we

annotated Atf3 using the Atf1 motif. We then compared the

PWMs derived from the top five predicted motifs against the

motif database using Tomtom (Tanaka et al., 2011) with default

settings. We claimed success in finding the annotated motif if it

was among the Tomtom reported matches. We compared our

results to DREME, which was run on the same sets of fore-

ground and background sequences under the default setting

with maximum of five output motifs.

Among 148 ENCODE datasets with annotated motifs for the

TF, motifRG identifies a match to the annotated motif in 115

and does not identify a match in 33. By this criterion, we suc-

ceeded in finding the right motifs in 78% of datasets. In com-

parison, DREME found annotated motif in 116 datasets, almost

the same set as ours.
We hypothesized that the annotated motifs are not enriched

significantly in the datasets where motifRG and/or DREME

failed. To test this hypothesis, we scanned for the best PWM

match of the annotated motif in each sequence in both the fore-

ground and the corresponding background datasets, and com-

puted AUC (the area under the receiver operating characteristic

curve) (Brown, 2006) by varying the PWM threshold to discrim-

inate foreground from background. The datasets for which we

failed to find the motifs generally have low AUC, which suggest

low enrichment of the annotated motif relative to the control

(Fig. 2A). Therefore, we believe that failure to discover the

annotated motifs was likely due to the lack of the TF motif

enrichment in the datasets, rather than to the failure of the al-

gorithms. We plot the P-values inferred by Tomtom for motifs

predicted by motifRG and DREME against each other in

Figure 2B. The two methods predict similar motifs most of the

Fig. 2. Performance evaluation of motifRG and DREME. (A) AUC

scores for datasets with known motifs. The ROC curve is calculated

using the best PWM scores of each sequence based on the annotated

motif and measuring the discrimination between foreground and back-

ground as the PWM score threshold is varied. The datasets in which both

motifRG and DREME found motifs matching to the database are

marked by circle, DREME only by plus, motifRG only by triangle

and neither by cross. (B) Accuracy for matches of predicted motifs to

annotated motifs based on P-values inferred by Tomtom in–log10 trans-

formation. Datasets corresponding to the same TF are marked by the

same colors and symbols. The TFs of datasets in which motifRG and

DREME performed significantly differently are shown. (C) Comparison

of running time (in seconds) for motifRG and DREME
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time (Supplementary Table S2), whereas motifRG tends to infer
more information in the flanking regions of core motifs, mani-
fested by overall better P-values. To examine whether the differ-

ences were due to the fact that DREME uses maximum motif
width of 8 under default setting, we also ran DREME with max-
imum motif width of 12 (referred to as DREME12). However,

DREME12 did not demonstrate significant improvement, and in
some cases, it terminated without predicting any motifs
(Supplementary Fig. S3A). Next we examined two examples in

which DREME succeeded, whereas motifRG failed. For the case
of SP1 in HepG2, the top motifs predicted by both DREME and
motifRG were motifs for cell type-specific master regulators

FOX and HNF4. MotifRG predict additional variants of
FOX, HNF4 and motif for ETS. When configured to predict
more motifs, motifRG discovers an SP1 motif among the top

eight motifs. For the case of MEF2A in GM12878, motifRG
predicted a more degenerate variant of MEF2A, which was
not detected by TOMTOM as matching the MEF2A motif.
The running time of motifRG grows linearly with size of input

(Supplementary Fig. S3B), and runs �40% faster than DREME
(Fig. 2C), although such a difference can be easily affected by
implementation details and subject to change. DREME can be

configured to run with python package psyco for 2- to 3-fold
speedup, which we did not use due to lack of support by psyco
for 64-bit systems. Our method supports a parallel mode for

further speed-up, which we did not use for fair comparison.
DREME12 runs �3–4 times slower than DREME under default
settings (Supplementary Fig. S3C), which suggests significant

overhead for learning longer motifs, which is not the case for
our motif extension procedure. MotifRG uses a lot more
memory than DREME, as it is implemented in a high-level pro-

gramming language that exploits many third party functional-
ities. We performed memory profiling of motifRG to examine
the relationship between memory usage and input size

(Supplementary Fig. S3D), which suggested that memory usage
grows linearly with input size. Memory usage does not appear to
be a bottleneck for most applications, so we did not seek further

optimization at this point.
Next, we investigate the cases in which we failed to identify

the annotated motifs. The main compromising factors that we

identified include significant GC bias, noisy/indirect binding sites
inferred by ChIP-Seq or overshadowing cofactors motifs. Many
TFBS lie in GC-rich regions (including CpG islands) at both the

promoter or enhancer regions. Although we tried to select back-
ground sequences with similar genomic context, the GC content
variation can be local, so it is still likely for foreground sequences

to have higher GC content, resulting in prediction of generic
GC-rich motifs. One can control for GC bias by using shuffled
sequences of the foreground that maintain the same nucleotide

or di-nucleotide composition as control. But, this may not be
sufficient for adjusting other biases. Many TFs interact indirectly
with the DNA sequences through mechanisms such as tethering.

Indirect binding sites tend to have lower ChIP-seq signals com-
pared with directly bound sites and lower the motif enrichment
for the direct sites. We also note that many TFBS samples in the

same cell type are enriched for the same sets of motifs corres-
ponding to the master regulators in that cell type. For example,
most ChIP-Seq samples in GM12878 (a lymphoblastoid cell line)

have motif enrichment of RUNX, which is a key TF required for

lymphocyte differentiation (Wong et al., 2011). Although this is

an interesting phenomenon by itself, these motifs probably serve

a generic functional role in the given cell type rather than acting

as specific cofactor motifs for the ChIPped TF.
We designed the following strategy to cope with the above

issues: we used discretized (for efficiency) GC content as covari-

ant in the regression model, weighted the sequences based on

ChIP-seq signals that were then normalized by peak width and

chose background as accessible regions without ChIP-seq peaks.

Recent study suggests that most TFBS occur in the accessible

regions profiled by a DNaseI assay (Neph et al., 2012). By using

accessible regions without peaks as background, we hope to elim-

inate common motifs for all accessible regions and highlight the

ones that are specific for the ChIPped TF. Many other methods

can be used to adjust for discussed biases, such as using only the

top ranking peaks, using shuffled sequences as control and so

forth. But our approach provides enough flexibility to addresses

multiple issues while keeping the power of large datasets. We

applied this strategy to 29 of 33 cases where we previously

failed, selected based on availability of appropriate DNaseI

data (Fig. 3). We predicted annotated motifs in 9 cases, where

we previously failed. For 7 of 20 remaining cases, we identified

the same novel motif for the same TF (Brca1 and Six5, respect-

ively) across multiple cell types, whereas annotated motifs have

low enrichment across all cell types, suggesting that predicted

motifs are likely to be true motifs that are previously unknown.

We also found motifs for NFYA, a known cofactor (Li-Weber

et al., 1994) interacting with IRF homologs, to be strongly

enriched in two IRF3 samples, suggesting IRF3 is likely to

bind predominantly indirectly at its targets. The strongest pre-

dicted motif for JUND in HEPG2 corresponds to a known sec-

ondary motif for JUND. For RXRA in GM12878 and FOSL1

in H1hesc cell, it was puzzling why we failed in these cases,

whereas succeeded in the RXRA and FOSL1 ChIP-Seq samples

generated by the same laboratory using the same antibody for

the other cell lines. After closer examination, we found evidence

suggesting that the protein or the protein complex interacting

with DNA may be present at low abundance in the given cell

type (Supplementary Fig. S4), leading to poor ChIP-seq results.

We have remaining 6 cases that are unaccounted for, which may

be subject to other issues such as antibody specificity, PCR bias

and so forth, and require further biological and technical exam-

ination. Overall, we found our refined strategy to be flexible and

effective at addressing more challenging datasets.
Finally, we present the motifs predicted for proteins with no

annotated motifs in the database in Supplementary Table S3.

Although not annotated in the databases, numerous motifs

have been reported in the literature to bind the given TF or its

cofactors. For example, RAD21, a component of the cohesin

complex, is involved in chromosome cohesion, DNA repair

and apoptosis. We identified CTCF as its top motif, known

for recruitment of cohesin genome wide (Parelho et al., 2008).

Our method can be a powerful tool for curation of novel motifs

into motif datasets.

3.2 Application to sequence specificity of homologous TFs

The greatest advantage of discriminative motif discovery tools

over traditional methods is to facilitate direct comparison of two
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similar datasets. Here we demonstrate this in a case study to

assess DNA binding specificity for two similar TFs. MYOD

and NEUROD2 are both bHLH TFs that form heterodimers

with an E-protein and regulate myogenesis and neurogenesis,

respectively. Both bind a CANNTG E-box motif. A motif

search in MYOD ChIP or NEUROD2 ChIP sequences against

flanking background revealed RRCAGSTG as the MYOD

motif and RRCAGMTGG as the NEUROD2 motif (Fig. 4,

A1). Direct comparison of MYOD specific sites with

NEUROD2 specific sites (Fig. 4, A2) identified CAGGTG as

a MyoD private E-box and CAGATG as a NEUROD2 private

E-box, whereas the sites bound by both factors were enriched in

the CAGCTG E-box (Fong et al., 2012). The motif analysis

results were confirmed by gel shift and competition assays

(Fong et al., 2012).
We performed a similar comparison of MYOD and MSC in

Rhabdomyosarcoma. MSC is a bHLH protein that also forms

heterodimers with E-proteins and binds E-boxes and acts as an

inhibitor of muscle differentiation. We compared the binding

profiles of MYOD and MSC in the Rhabdomyosarcoma cell

line RD. The PWMs of the top motifs for both factors were

similar (Fig. 4, B1). Discriminative motif analysis by direct com-

parison of MYOD specific binding sites versus MSC specific

binding sites indicated that MYOD has more CAGGTG binding

sites (Fig. 4, B2), and MSC has more CAGCTGG sites.

Electrophoretic mobility shift assays confirmed the predicted

Fig. 3. MotifRG failure cases under default settings. Using a modified approach, we recover known motifs in many datasets. These datasets are

categorized as F (found), N (novel), C (interacting cofactor), A (secondary motif), W (weakly expressed ChIPped TF) and U (unknown). Columns

are cell type (Cell), TF, average GC content of the peak (gc), annotated motif (DB), categories (Tag), motifRG motifs that match the annotation and

corresponding P-values (motifRG) and the top four predicted motifs (Top motifs)
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flanking preference of CAGCTG E-box of these factors

(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-

throughput sequence datasets besides ChIP-Seq data. We used

this method to identify key TFs that are involved in regulation of

cell type-specific chromatin remodeling using DNaseI hypersen-

sitivity data. We collected 211 DNaseI hypersensitivity datasets

from the ENCODE Web site. Combining highly similar ones

yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by �5 profiles. To predict motifs in

each set of cell type specific sites, we chose background as the

random sampling of the cell type-specific sites in all cell types

that do not overlap with the foreground. The predicted motifs

for a set of well-studied cell types are shown in Figure 5 (full

results in Supplementary Table S4). We found many key TFs

that are known to regulate the given cell type. For example, we

found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich

motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in

Nt2d1, an embryonic cell line. All these factors are well known to

be markers of cell pluripotency. We found motifs for IRF1 in B

cells, a key factor for immune response. In various lymphocyte

cells, we found motifs for E2A (annotated as TCFE2A), Runx

and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of

which are critical immune system regulators. For various differ-

ential epithelial cells in kidney, colon, lung, breast, pancrease and

prostate, FOX family motifs are dominant and motifs for HNF

family are enriched in kidney and colon. Similarly, we found

significant enrichment of various Homeobox, NeuroD and

Zic2 motifs in nervous system and MyoD motifs in skeletal

muscle. A recent ENCODE study (Neph et al., 2012) used

motifs in curated databases or de novo predicted motifs to scan

accessible regions and compute enrichment in the given cell type.

We offer a more direct alternative by combining motif prediction

and discriminative analysis. The predicted motifs are conse-

quently optimized to highlight the distinction between fore-

ground and background, thus likely to be more informative in

this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-

vant motifs in a wide range of biological samples and application

settings. Here, we also give evidence that the z-value calculated

by our software is a true indication of a motif’s statistical signifi-

cance, and that the method is robust to variation in sample size

and motif enrichment level. To quantify motif significance, we

use the z-value statistic from the logistic regression model as the

‘motif score.’ To test its validity, we performed the following

experiment on the MyoD ChIP-seq dataset: we randomly

sampled 1–64K sequences from the combined foreground and

background datasets and then randomly permuted the class

labels within each sample. We repeated the permutation

5 times. The z-values for all enumerated 6mers in each permuta-

tion are approximately normally distributed, as shown by quan-

tile–quantile plots (Supplementary Fig. S5A), indicating an

accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers

using samples from 1 to 64K, and highlight CAGCTG, which is

identified as the most significant 6mer using all the data.

CAGCTG is consistently the most significant motif for each

sample size (Fig. 6A), and the motif score is linear with the

square root of the sample size (Supplementary Fig. S5B), in

accord with the central limit theorem. We also tested how the

motif scores correlate with motif enrichment level. For each sam-

pling with size from 1 to 64K, we randomly kept 20, 40 to 100%

of the original foreground samples and replaced the remaining

foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted

PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs

based on direct comparison of MyoD sites (foreground) with NeuroD2

sites (background), suggesting MyoD and NeuroD2 preferred ebox and

cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to

A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer

binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas

GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC

homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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the original class labels. CAGCTG remains the strongest 6mer,

even at low foreground proportion and small sample size (Fig.

6B) and the motif score is roughly linear to the true foreground

proportion (Fig. 6C). Therefore, this method can robustly detect

a motif present in a small subset of foreground sequences.

Next, we examined the effects of peak width on motif predic-

tion. Besides the MyoD dataset, we also studied YY1 ChIP-Seq

in H1-hESC, using YY1 as an example of degenerate motifs,

which are likely to be more sensitive to the choice of peak

widths. In each case, we started from the peak summits and

extended the peak to width ranging between 25 and 1600

bases. For the case of YY1, we did not have peak summits in-

formation, so we assumed that peak summits were in the middle

of the peaks. This seems to be a reasonable approximation

because the peaks were called by MACS, which assumes a sym-

metric distribution of reads at both sides of the binding sites. The

best matching motifs in each test are shown in Supplementary

Supplementary Figure S5C. For MyoD, the best matching motif

has maximum score at peak width of 200, which achieves the best

discrimination between foreground and background. At peak

width of 25, about half of peaks do not contain a consensus

motif because peak summits do not always indicates presence

of binding sites precisely. At peak width of 100, �90% of

peaks contain a consensus motif. We also noticed that when

peak width increases from 25, 50 to 100, the motif PWM be-

comes more informative, gaining specficity at the ebox flanking

region. This is probably because wider peaks increase the motif

occurences by chance. The method consequently fine tuned the

motif model to increase discrimination against background. For

the case of MyoD case, the method suceeded to find the motif in

peaks as wide as 1600 bp. For the case of YY1, we predicted

YY1 motif at peak width of 25 to 400, and the motif lost dis-

criminative power at peak width 800 and 1600 due to increasing

chance of random occurrence. The percent of peaks with the

motif ranges from �10% at peak width of 25, and 58% at

peak width of 400, whereas relative enrichment stabilizes be-

tween 2- and 3-fold. Assuming uniform nucleotide distribution

of the genome, a 5mer motif occurs once approximately every

1Kb, which explains why we lost discriminative power at peak

width of 800. In summary, informative motifs can be predicted in

Fig. 5. Predicted motifs for cell type specific accessible sites. The full list is included as Supplementary Table S4
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wide peaks, but keeping peaks with reasonable width is import-

ant for prediction of degenerate motifs.
Finally, we want to address the issue whether bootstrapping in

our refinement step usefully combats over-fitting. We used the

CAGCTG example shown earlier in text and tested all extension

variants at position �1 using different numbers of bootstrap

replicates, sample sizes and motif enrichment levels. We com-

puted the standard deviation of scores for each variant based

on bootstraps. The distribution of standard deviation does not

change significantly with number of bootstraps performed or

with the sample size (Supplementary Fig. S5D and E), but

correlate strongly with the motif enrichment level (Fig. 6D).
When enrichment level is low, the scores of better candidates
(based on datasets with the biggest sample size and highest en-

richment level) tend to be within confidence interval of worse
candidates (Fig. 6E), in which case, based on t-test results, we
terminate the refinement process early. Therefore, the bootstrap-

ping technique guides motif refinement to be more aggressive
when motif signal is strong, but conservative when motif signal
is low, effectively avoiding over-fitting at reasonable cost.

4 DISCUSSION

The main challenge of traditional motif discovery is to increase
signal to noise ratio due to lack of power from small input
datasets. High-throughput datasets present different challenges:

besides scalability concerns, they are likely to produce large num-
bers of statistically significant motifs due to the power of the
large sample size, many of which are hard to interpret. To ef-

fectively use the motif prediction results to guide further study, it
is important to understand the nature of these motifs and why
they are enriched. It is well understood that genomes are far from

random, which presents complicated higher order structure such
as dinucleotide sequence preference, repetitive sequences, nucleo-
some positioning signals and so forth. Genomic sequences in

promoters, which usually show enrichment of TFBS, also con-
tain different characteristics from other parts of genome such as

enrichment of CpG islands, common motifs for housekeeping
TFs and so forth. These factors can all cause certain sequence
patterns to be enriched in a given dataset. In addition, many

ChIP-Seq and DNaseI hypersensitivity studies suggest that TFs
tend to colocalize on a common set of accessible regions. It is
unclear if these TFs collectively determine the accessibility of the

given sites or some bind non-specifically at the accessible sites.
Discriminative motif analysis is a powerful tool to address
whether the predicted motifs are truly involved in the biological

problem under study by use of a rigorous control group, a meth-
odology frequently used in experimental design. The key to suc-
cess for this method is proper choice of background, which might

not be clear until we have a better understanding of factors that
affects binding of TFs. By examination of a large set of ChIP-Seq
profiles, we identified some common motifs for TFs in a certain

category. For example, TFs that bind predominantly in pro-
moter regions are likely to be associated with ETS, SP1 and

other GC-rich motifs, and TFs with most of sites in distal regions
tend to have enrichment of AP1 sites. To determine if the asso-
ciated motifs are truly specific to the given TFs, we can iteratively

test for potential biases as we find them, each time making the
background as similar to the foreground as possible except for
the defined difference under study. As accessible regions in the

given cell type can be viewed as the union of all TFBS that are
associated with active chromatin in that cell type, they present
some generic features common to most TFBS and can serve as a

good background for comparison with adjustment to other bias.
Further, downstream analysis can be used to validate predicted
motifs. For example, direct TFBS should contain a clear DNaseI

digital footprinting signature (Neph et al., 2012) and be close to
the centers of ChIP-Seq peaks (Bailey and Machanick, 2012).
We noticed that stronger peaks tend to be associated with

stronger motifs, as measured by the PWM scores, particularly

Fig. 6. Motif significance with respect to sample size and enrichment.

(A) Score distribution of for all 6mers. CAGCTG ebox, marked by

‘þ’, is the most significant 6mer for all sample sizes. X-axis: dataset

sample size. Y-axis: motif scores. (B). Correlation between motif scores

(Y-axis) against true foreground proportion (X-axis). Curves with differ-

ent symbols correspond to different sample sizes. (C) Distribution of all

6mers with varying sample size and proportion of true foreground;

CAGCTG is highlighted by ‘þ’. X-axis: the proportion of true fore-

ground in shuffled foreground, Y-axis: motif scores. Panels correspond

to different sample sizes. (D) The standard deviation of motif scores for

all CAGCTG �1 extensions based on bootstraps decreases with the pro-

portion of true foreground. Y-axis: the standard deviation. X-axis: the

proportion of true foreground. (E) When motif enrichment is low, motif

scores are more variable. X-axis: all �1 extensions of CAGCTG. Y-axis:

motif scores. The 95% confidence intervals are plotted based on boot-

strapping mean and variance. Upper panel: 160 bootstrap iterations, total

sample size 32 000 and 100% of true foreground; lower panel: using 5

bootstrap iterations, total sample size 500 and only 20% of true

foreground
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for TFs with long motifs, which is consistent with the theory that

PWM scores roughly reflect the DNA/protein binding affinities

in vitro (Stormo and Fields, 1998). In such cases, including

weaker peaks usually results in more permissive motifs, lacking

the full DNA specificity for the strong peaks. However, recent

work suggests that weak sites can be functionally important, e.g.

Prep1 regulates temporal expression of Pax6 via a pair of low

affinity DNA binding sites during lens formation (Rowan et al.,

2010). Our previous work also suggests that although strong

peaks are more likely to be associated with gene regulation, the

peak strength is not deterministic of function (Cao et al., 2010).

Several rank-based motif prediction methods designed for pro-

tein binding microarrays used the binding affinities measured by

probe intensities (Berger and Bulyk, 2009; Chen et al., 2007). Our

method provides support for sequence weighting, with which the

users have the flexibility to put more focus on a subset of se-

quences. These methods including our own, however, still build a

single PWM motif to represent all binding sites, whereas some

weaker sites are functionally more important than others

with similar PWM scores. We think a mixture or higher order

model may be more appropriate, a direction for our future

investigations.

One key feature of our method and other discriminative motif

discovery tools is the support for comparison of two similar

profiles. By comparison of NeuroD and MyoD, two similar

bHLH proteins, we have shown that although shared core

eboxes are involved in activation of chromatin, specific eboxes

are more directly involved in activation of differentiation pro-

grams in neurogenesis and myogenesis, respectively (Fong et al.,

2012). Similar studies can be performed systematically to identify

delicate specificity for members of other protein families that

share almost identical motifs, such as the ETS and FOXO

families. Such studies may shed more light of their functional

roles and evolution of protein families in general. We have also

demonstrated its application to DNaseI hypersensitivity data to

identify key regulators involved in cell type-specific chromatin

reprogramming. We can further zoom in to compare more simi-

lar samples, such as two different differentiated epithelial cells,

or, before and after a certain treatment. By applying this ap-

proach systematically, we can gain deeper understanding about

cell lineage restriction and differentiation program.
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