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ABSTRACT

Motivation: With the advancement of high-throughput techniques,

large-scale profiling of biological systems with multiple experimental

perturbations is becoming more prevalent. Pathway analysis incorp-

orates prior biological knowledge to analyze genes/proteins in groups

in a biological context. However, the hypotheses under investigation

are often confined to a 1D space (i.e. up, down, either or mixed

regulation). Here, we develop direction pathway analysis (DPA),

which can be applied to test hypothesis in a high-dimensional space

for identifying pathways that display distinct responses across multiple

perturbations.

Results: Our DPA approach allows for the identification of pathways

that display distinct responses across multiple perturbations. To dem-

onstrate the utility and effectiveness, we evaluated DPA under various

simulated scenarios and applied it to study insulin action in adipo-

cytes. A major action of insulin in adipocytes is to regulate the move-

ment of proteins from the interior to the cell surface membrane.

Quantitative mass spectrometry-based proteomics was used to

study this process on a large-scale. The combined dataset comprises

four separate treatments. By applying DPA, we identified that several

insulin responsive pathways in the plasma membrane trafficking

are only partially dependent on the insulin-regulated kinase Akt. We

subsequently validated our findings through targeted analysis of

key proteins from these pathways using immunoblotting and live cell

microscopy. Our results demonstrate that DPA can be applied to dis-

sect pathway networks testing diverse hypotheses and integrating

multiple experimental perturbations.

Availability and implementation: The R package ‘directPA’ is

distributed from CRAN under GNU General Public License (GPL)-3

and can be downloaded from: http://cran.r-project.org/web/pack-

ages/directPA/index.html
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1 INTRODUCTION

Pathway analysis has become a key approach to incorporate

prior knowledge for interpreting ‘-omics’ scaled data generated
from high-throughput techniques such as microarray, RNA-seq

and quantitative mass spectrometry (MS)-based proteomics.
It has the advantage of leveraging high dimensionality and

limited replicates by organizing genes and proteins into groups
and analyzing them in biological meaningful contexts (Nam and

Kim, 2008).
To date, numerous pathway analysis approaches have been

proposed (Emmert-Streib and Glazko, 2011) and several taxo-
nomies have been described to categorize them (Ackermann and

Strimmer, 2009; Goeman and Bühlmann, 2007; Huang et al.,
2009; Irizarry et al., 2009). One of the popular categorization

approaches is to classify pathway analysis methods as using
an over-representation approach or aggregate score approach

(Irizarry et al., 2009). The over-representation approach, exem-
plified by hypergeometric test using Gene Ontology (GO)

(Khatri and Drăghici, 2005; Rivals et al., 2007), requires a pre-
selected list of differentially expressed (DE) genes to be supplied

before the test. It could be sensitive to the cut-off applied to select
DE genes (Irizarry et al., 2009). The aggregate score approach,

exemplified by gene set enrichment analysis (GSEA) (Mootha
et al., 2003; Subramanian et al., 2005), alleviates this requirement

by considering statistics associated with all genes for testing path-
way differential regulation.

There are several recent extensions on pathway analysis. These
include the extensions from univariate to multivariate statistics

such as the use of Hotelling’s T2-statistics and N-statistics
(Klebanov et al., 2007; Kong et al., 2006) and from single ana-

lysis to meta-analysis such as combining results from multiple
studies (Shen and Tseng, 2010), different platforms (Poisson

et al., 2011) and/or multiple methods (Väremo et al., 2013).
Nevertheless, current pathway analysis methodologies are

mainly designed for testing hypotheses in a 1D space and focus
on identifying pathways that show up, down, either or mixed

differential regulations. Due to the growing complexity of
large-scale experiments where multiple treatments are applied,

for example, to dissect the signalling networks, a novel pathway
analysis approach that can incorporate multiple perturbations

into a single statistical analysis is desirable.
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The broad term experimental perturbations is used to describe

any situation in which a cell has been agitated and its reaction

quantified. Practically speaking when referring to multiple ex-

perimental perturbations, we may be referring to quantifying

the effects of a treatment versus control at various cellular

levels (DNA, RNA, protein). We could also consider multiple

experimental perturbations to refer to various treatment com-

parisons at the same cellular level.
In this study, we propose direction pathway analysis (DPA)

for integrating multiple perturbations in pathway analysis.

This method integrates multiple experimental perturbations by

coupling coordinate rotation with P-value combination tech-

niques. It extends on traditional pathway analysis in the follow-

ing aspects:

� The method increases statistical power by integrating mul-

tiple perturbations for testing in a high-dimensional space.

� The method improves biological interpretability by translat-

ing a biological question into a direction-specific test,

broadening the hypothesis space and allowing many more

biological questions to be investigated.

� The method is flexible and can be extended to n-dimensions,

where n is the number of experimental perturbations.

To demonstrate the effectiveness of P-value combination tech-

niques at answering various alternative hypotheses, we designed

and performed a set of simulation studies. These studies offer

insight into the selection of an appropriate combination tech-

nique for DPA in integrating information on testing pathway

enrichment.

To explore the utility of the method, we applied this approach

to MS-based proteomics data obtained from adipocytes aiming

to identify insulin action pathways under various treatments.

Adipocytes are one of the major targets of insulin action in mam-

mals. One of the major pathways downstream of the insulin

receptor is the phosphatidylinositol-3-kinase (PI3K)-Akt path-

way (Engelman et al., 2006; Manning and Cantley, 2007). To

date, the majority of evidence points towards Akt alone being

sufficient to elicit the majority of insulin’s intracellular

actions (Ng et al., 2008). However, there are PI3K-dependent

Akt-independent pathways that are activated by insulin stimula-

tion (Choi et al., 2010) and it is possible that such pathways may

also regulate protein trafficking events in response to insulin. To

dissect PI3K-Akt pathways and determine the contributions of

Akt-independent and Akt-dependent pathways, we used various

pharmacological agents to target different signal transduction

nodes and subsequently performed plasma membrane purifica-

tion and SILAC-based (Ong et al., 2002) quantitative proteomic

profiling (Ong and Mann, 2005). By analyzing the proteomic

profile using DPA, we identified that several pathways were

enriched in the plasma membrane following insulin stimulation,

and that these trafficking events were strongly dependent on

PI3K signalling. However, the translocation of these pathways

was not fully blocked in the presence of an Akt inhibitor, sug-

gesting that there are Akt-independent pathways that promote

membrane trafficking events in response to insulin. We validated

these findings through targeted analysis of several key proteins

from these insulin-regulated pathways using immunoblotting

and live cell microscopy.

2 MATERIALS AND METHODS

2.1 Direction pathway analysis

In this study, we propose a novel approach, called DPA, for a direc-

tion-specific pathway test (Fig. 1). Our approach consists of three main

steps:

(1) Rotating a matrix of test statistics such that large values of the test

statistics provide evidence against the null hypothesis in favour of

the alternative;

(2) Combining the statistics across multiple experimental perturb-

ations for each protein using a P-value combination method; and

(3) Combining the statistics across proteins within a pathway using a

P-value combination method.

The novelty of this approach is the concept of P-value rotation for

testing pathways in a specific direction and the tandem application

of P-value combination methods for integrating information across

multiple experimental perturbations of each protein (protein level

integration) and multiple proteins within a pathway (pathway level

integration).

2.1.1 P-value combination There are many methodologies for

combining information across studies or within pathways and the key

discriminating differences between many of these methods are their

assumed alternative hypotheses (Tseng et al., 2012). Let �j represent

test statistics for j ¼ 1, 2, . . . , n, where n are the number of tests.

Assume the null hypothesis that none features measured by these test

statistics have changed (H0 : �j ¼ 0, 8 j ¼ 1, 2, . . . , n). Li and Tseng

(2011) proposed to classify different alternative hypotheses into two

broad classes HA and HB. Alternative hypothesis HA is used to detect a

series of tests in which all the tests have changed (HA : �j40, 8 j ¼

1, 2, . . . , n). Alternative hypothesis HB is used to detect a series of tests

in which any of the tests have changed (HB : �j40, for at least one j in

1, 2, . . . , n).

For our DPA, we would like to identify pathways that have had any of

their proteins changed in all experimental perturbations in the direction

of interest. When put in the context of P-value combination, this would

then require the tandem use of combination methods that favourable

to testing H0 against HA when combining across experimental perturb-

ations andH0 againstHB when combining within a pathway, respectively.

Fig. 1. The workflow of DPA. The DPA pre-processing panel summar-

izes the combination and generation of a z-score matrix from multiple

experimental perturbations. The DPA main panel summarizes the

application of the rotation and integration steps to test for pathway

significance
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In our proposed DPA approach, we utilize Stouffer’s method (Stouffer

et al., 1949) to combine within pathways. This is defined as

Stouffer : �
1

n

Xn
j¼1

��1ðpjÞ

 !
;

where �ð:Þ is the cumulative distribution function for the standard

normal distribution and for independent P-values pj, j ¼ 1, . . . , n. To

combine across experimental perturbations, we will use a one-sided

version of Pearson’s method (Pearson, 1934), OSP, defined as

OSP : P �22n5� 2
Xn
j¼1

logð1� pjÞ

 !
:

This method is not that proposed by Pearson (1934) but is mentioned in

later work (Pearson, 1938).

The combinedP-values for Stouffer converge to zero if any one of the pj
also converges to zero making it appropriate for testing H0 against the

alternativeHB. For OSP to converge to zero, all pj must converge to zero,

thus making it appropriate for testing H0 against the alternative HA.

To demonstrate the behaviour of the P-value combination methods and

justify the selection of appropriate ones for our application, further

explanation and a set of simulation studies were performed (see Section

1 of Supplementary File).

2.1.2 Rotation and combination Our DPA takes as input three

vectors of test statistics. The left panel of Figure 1 describes how these

statistics may be generated and processed before performing the three

main steps of DPA (the right panel of Fig. 1). This process is described

more formally as follows. Define a matrix of test statistics �, where �ij is

the test statistic for the ith protein, i ¼ 1, 2, . . . , np, in one of three experi-

mental perturbations, j ¼ 1, 2, 3. Let tij correspond to the observed �ij.

These test statistics have most likely come from multiple two-sample

t-tests but could be other statistics such as regression coefficients. We

assume that a subset of these proteins belong to pathway P, and that

the �ij are independent, which may not be the case in practice. The test

statistics �ij may not be identically distributed. They can be converted into

identically distributed z-scores, zij, which are easier to manipulate by first

evaluating their corresponding one-sided probabilities pij ¼ Pð�ij4tijÞ.

The matrix of z-scores are then defined as zij ¼ ���1ðpijÞ, where

Pð�ij4tijÞ ¼ Pð�ij4zijÞ.

DPA tests if any of the proteins in pathway P have deviated from the

null hypothesis in the direction of the alternative hypothesis. A specific

example may be written as

H0 : �i1 ¼ 0, �i2 ¼ 0, �i3 ¼ 0; for all i 2 P
H1 : �i140, �i250, �i3 ¼ 0; for any i 2 P;

�
ð1Þ

testing if any proteins in pathway P have been upregulated in the first

perturbation, downregulated in the second perturbation and remain un-

changed in the third perturbation. The three steps of rotation, combination

at protein level and combination at pathway level are outlined in the right

panel of Figure 1 and described in more detail in the following:

Step 1. The matrix z is rotated such that large values within z provide

evidence against the null hypothesis in favour of the alternative

hypothesis. This is achieved as follows:

(a) Represent the direction of the alternative hypothesis using the

unit vector v ¼ ðv1, v2, v3Þ where each element corresponds to

the direction of interest in the experimental perturbation. If con-

sidering the example test described in Equation (1) then v would

be defined as v ¼ ð1=
ffiffiffi
2
p

, � 1=
ffiffiffi
2
p

, 0Þ.

(b) Represent the direction that we would like to rotate to as

u ¼ ðu1, u2, u3Þ ¼ ð1=
ffiffiffi
3
p

, 1=
ffiffiffi
3
p

, 1=
ffiffiffi
3
p
Þ and calculate the angle

between u and v as � ¼ cos�1ðu � vÞ ¼ cos�1ðu1v1 þ u2v2 þ u3v3).

(c) Let a ¼ u� v ¼ ðu2v3 � u3v2, u3v1 � u1v3, u1v2 � u2v1Þ, which is

a vector that is orthogonal to u and v.

(d) We can then define R as the matrix for a clockwise rotation

around the vector a by an angle of � as

R ¼ Iþsin �
0, � a3,a2
a3, 0, � a1
�a2,a1, 0

2
4

3
5þð1�cos �Þ a21 � 1,a1a2,a1a3

a1a2,a
2
2 � 1,a2a3

a1a3,a2a3,a
2
3 � 1

2
4

3
5: ð2Þ

(e) We define zrota ¼ zRT as the rotated z-scores.

Step 2. Now that the z-scores are orientated in the direction of interest,

they can be combined across experimental perturbations to provide

evidence that each protein is DE in the direction described by the

alternative hypothesis H1. The rotated z-scores are combined using

OSP for each protein to form the vectors pprot and zprot as follows:

p
prot
i ¼ P �265� 2

X3
j¼1

log
�
1��ð�zrotaij Þ

� !
: ð3Þ

These protein significance values can then be converted back to

z-scores by evaluating this combined P-value with respect to the

upper tail of the normal distribution

z
prot
i ¼ ���1ðp

prot
i Þ: ð4Þ

Step 3. We can then test if a pathway P is differentially regulated in the

direction described by the alternative hypothesis H1 using Stouffer’s

method. The z-scores can be combined for each pathway as follows:

z
path
P ¼

Pnp
i¼1

z
prot
i 1fi 2 PgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnp

i¼1

1fi 2 Pg

s : ð5Þ

Significance can be calculated for each pathway by evaluating

this combined z-score with respect to the upper tail of the normal

distribution

p
path
P ¼ �ð�z

path
P Þ: ð6Þ

2.2 Methods for quantifying insulin action in plasma

membrane trafficking

We collected data generated from our previous study (Prior et al., 2011)

and performed new proteomic profiling experiment in this study with

additional treatments (Fig. 2). In the previous experiment, cultured

3T3-L1 fibroblasts were left unlabelled (‘light’), SILAC labelled with
13C6-arginine and 2H4-lysine (‘medium’) or 13C6-

15N4-arginine and
13C6-

15N2-lysine (‘heavy’). The cells cultured with 13C6-arginine and
2H4-lysine were stimulated with 100 nM insulin for 20 min and the

cells cultured with 13C6-
15N4-arginine and 13C6-

15N2-lysine were treated

with 100 nM wortmannin, a PI3K inhibitor, for 20 min before insulin

stimulation. The unlabelled cell culture was left unstimulated to establish

basal condition. In this study, a second set of plasma membrane prote-

omic profiling experiments were performed with a similar procedure as

described earlier in text except that the ‘light’ cells were treated with

10 uM MK-2206, an Akt inhibitor (Tan et al., 2011), for 30 min before

the stimulation of insulin (100 nM) for 20 min, ‘Medium’ cells were left

unstimulated as basal condition and ‘Heavy’ cells were treated with 0.1%

DMSO for 30 min before the addition of 100 nM insulin for 20 min. After

establishing multiple treatments, cell lysates were mixed with ratio 1:1:1 in

both sets of experiments, and subcellular fractionation were performed to

enrich plasma membrane fraction. MS-based profiling was conducted

using a LTQ-FT Ultra mass spectrometer and an Orbitrap Velos mass

spectrometer (Thermo Fisher Scientific). The combined dataset was

quantified using MaxQuant (Cox and Mann, 2008) and 997 proteins

were quantified in all treatments.
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For DPA analysis validation, key proteins prioritized by DPA were se-

lected for immunoblotting and live cell microscopy. The extended

experimental procedures can be found in Section 2 of Supplementary File.

3 RESULTS

3.1 Direction pathway analysis on insulin action in plasma

membrane proteome trafficking

The PI3K-Akt pathway serves as a crucial channel for insulin-
regulated processes in adipocytes. This pathway contains two key

nodes; the lipid kinase PI3K (Engelman et al., 2006) and the pro-

tein kinase Akt (Manning and Cantley, 2007). Akt has been re-
ported to phosphorylate numerous substrates to elicit the control

over the numerous cellular processes regulated by insulin. While

much of insulin’s actions are attributed to the combined action of
the PI3K/Akt axis, little work has been done to establish the role

of PI3K and/or Akt independent pathways in these processes.
DPA could be applied as an exploratory tool for dissecting the

relative requirement for PI3K and Akt in the insulin response in

pathways associated with plasma membrane proteome. To this
end, we performed large-scale plasma membrane proteome quan-

tification using a quantitative MS-based protoemics approach

with SILAC labelling and subcellular fractionation. The PI3K
and Akt nodes were pharmacologically inhibited using wortman-

nin (Arcaro and Wymann, 1993) or MK-2206 (Tan et al., 2011),

respectively, before insulin stimulation, and the protein abun-
dance on the cell plasma membrane were quantified according

to the peak intensity from SILAC label. Let the test statistics

�i1, �i2 and �i3 represent the comparisons of basal condition to
the treatment of (i) insulin alone; (ii) wortmannin before insulin;

and (iii) MK-2206 before insulin, respectively, for the ith protein.

With these panels of perturbations, we are interested in testing the
following three scenarios described by Tests 1, 2 and 3:

� Test 1. A pathway P enriched within the plasma membrane
after insulin stimulation (‘4’) and this enrichment is reduced

to a negative level by prior inhibition of PI3K (‘5’) but

remain unaffected by Akt. These are PI3K-dependent,

Akt-independent events.

H0 : �i1 ¼ 0, �i2 ¼ 0, �i3 ¼ 0; for all i 2 P
H1 : �i140, �i250, �i340; for any i 2 P;

�
ð7Þ

with v ¼ 1ffiffi
3
p , �1ffiffi

3
p , 1ffiffi

3
p

� �
and u ¼ 1ffiffi

3
p , 1ffiffi

3
p , 1ffiffi

3
p

� �
:

� Test 2. A pathway P enriched within the plasma membrane

after insulin stimulation and this enrichment is reduced to a

negative level by prior inhibition of PI3K but only to the

unstimulated level by Akt (‘¼’). These are PI3K-dependent,

partially Akt-dependent events.

H0 : �i1 ¼ 0, �i2 ¼ 0, �i3 ¼ 0; for all i 2 P
H1 : �i140, �i250, �i3 ¼ 0; for any i 2 P;

�
ð8Þ

with v ¼ 1ffiffi
2
p , �1ffiffi

2
p , 0

� �
and u ¼ 1ffiffi

3
p , 1ffiffi

3
p , 1ffiffi

3
p

� �
.

� Test 3. A pathway P enriched within the plasma membrane

after insulin stimulation and this enrichment is reduced to a

negative level by prior inhibition of PI3K or Akt. These are

PI3K-dependent, Akt-dependent events.

H0 : �i1 ¼ 0, �i2 ¼ 0, �i3 ¼ 0; for all i 2 P
H1 : �i140, �i250, �i350; for any i 2 P;

�
ð9Þ

with v ¼ 1ffiffi
3
p , �1ffiffi

3
p , �1ffiffi

3
p

� �
and u ¼ 1ffiffi

3
p , 1ffiffi

3
p , 1ffiffi

3
p

� �
.

Note that by ‘reduced to a negative level’ we mean the inhib-

ition not only blocks the insulin simulation but also removes any

residual insulin effect compared with the unstimulated condition.

Therefore, this effect is denoted as ‘5’. The hypotheses under

testing in the aforementioned three scenarios are visualized in

Figure 3.

At the individual protein level, DPA prioritizes proteins based

on the z-score calculated from OSP across conditions (Fig. 3).

The most significant proteins from the tests are coloured in red,

whereas the least significant ones are in purple. The top ranked

proteins are listed under the panel of each tested directions

(Fig. 3). These proteins include Syntaxins (Syntaxin-6,

Syntaxin-7, Syntaxin-8 and Syntaxin-12) and vesicle-associated

membrane proteins (VAMP2, VAMP3 and VAMP8) from the

family of SNARE proteins, as well as several other proteins

known to localize with intracellular glucose transporter vesicles

including GLUT4 itself and the transferrin receptor (TfR). Also

highly ranked are the lipid phosphate phosphohydrolase 2

(PPAP2A) and lipid phosphate phosphohydrolase 3 (PPAP2B),

which regulate the glycerolipid synthesis and have been reported

to be involved in signal transduction at the plasma membrane

(Nanjundan and Possmayer, 2001).

Interestingly, many pathways associatedwith vesicle trafficking

and lipolysis are highly enriched described by Test 2 (Table 1).

These include Proteolytic cleavage of SNARE complex proteins,

clathrin derived vesicle budding, golgi associated vesicle biogenesis,

membrane trafficking and lysosome vesicle biogenesis which

are primarily associated with insulin-dependent glucose trans-

port, the primary action of insulin in adipocytes. Two pathways,

Sphingolipid metabolism and Triglyceride biosynthesis, are asso-

ciated with lipolysis, a process that is also known to be regulated

by the PI3K-Akt pathway in response to insulin stimulation.

These results indicate that protein molecules from these pathways

are enriched within the plasma membrane with insulin stimula-

tion, and while the inhibition of PI3K using wortmannin signifi-

cantly abolished their enrichment, the inhibition of Akt using

MK-2206 only had a partial effect. This implies that while insulin

actions are largely dependent on the canonical activation of PI3K

andAkt, there may exist a PI3K-dependent, but Akt-independent

branch of the insulin signalling that plays a significant but less

Mix lysates 1:1:1

Basal

(light)

Insulin

(medium)

Wortmannin

(heavy)

Subcellular fractionation

plasma membrane

enrichment

Mix lysates 1:1:1

MK-2206

(light)

Basal

(medium)

Insulin

(heavy)

Downstream Analysis

Fig. 2. MS-based plasma membrane proteomic profiling and analysis.

Two sets of SILAC-based quantitative proteomics were performed to

quantify plasma membrane proteome level in basal condition, insulin

stimulation, prior inhibition of PI3K using Wortmannin followed by

insulin stimulation and prior inhibition of Akt using MK-2206 followed

by insulin stimulation
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dominant role in insulin-regulated protein trafficking. The com-
plete list of pathways analysis results on the three tested directions

is included in the Supplementary Table.
To experimentally validate the PI3K-dependent and partial

Akt-dependent effect suggested by PDA analysis of plasma

membrane proteome, several key proteins from these enriched
pathways were selected for immunoblotting and live cell imaging.

3.2 Validating PI3K-dependent and partial Akt-dependent

regulations

Using DPA, we discovered that many pathways associated

with vesicle trafficking and glucose translocation in adipocytes

are regulated by insulin in a PI3K-dependent and partially Akt-
dependent manner. Here, we select several key proteins from

these pathways to validate the results from DPA analysis.

3.2.1 Immunoblotting of trafficking proteins Immunoblotting
analysis demonstrated that the cytosolic protein tubulin was

absent from the plasma membrane fraction, whereas a known

plasma membrane protein cadherin was highly enriched

(Fig. 4b). This confirms that the plasma membrane isolation

method resulted in a pure membrane fraction. Compared with

the loading control of 14-3-3, insulin treatment led to increased

phosphorylation of Akt at pThr308 and its downstream

substrates pThr642 AS160 and pSer246 PRAS40 (Fig. 4a).

Pretreatment of cells with either the PI3K inhibitor wortmannin

or the Akt inhibitor MK-2206 completely abolished Akt phos-

phorylation and its activity as demonstrated by complete dimin-

ution of substrate phosphorylation (Fig. 4a). These data indicate

that these inhibitors completely block PI3K or Akt activity.

To validate our observation from DPA results that many

insulin-responsive trafficking events are PI3K-dependent, but

partial Akt-dependent (Fig. 3), we chose two key vesicle traffick-

ing proteins, Syntaxin-6 and VAMP2, for immunoblotting.

Syntaxin-6 and VAMP2 are members of the SNARE family of

proteins and are known to regulate GLUT4 trafficking in

3T3-L1 adipocytes (Perera et al., 2003; Zhao et al., 2009). As

expected, insulin treatment increased plasma membrane levels
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Fig. 3. Projections of plasma membrane proteome using DPA. A total of 997 proteins with quantitation in all treatments are coloured by their statistical

significance calculated from OSP across perturbations on the tested directions. The red proteins are the most significant and purple are the least

significant proteins. Plots (a–c) are the scatter plots of plasma membrane proteome from testing in the directions described by tests 1, 2 and 3,

respectively. The top-10 proteins ranked on each direction are further listed below the scatter plots

Table 1. Significant pathways from Test 2 in insulin stimulated plasma membrane trafficking in adipocytes

Pathway Size Probability Rank Associated functions

Proteolytic cleavage of SNARE complex proteins 7 2� 10�9 1 Traffic and transport

Clathrin derived vesicle budding 17 2� 10�6 2 Traffic and transport

Golgi associated vesicle biogenesis 15 2� 10�5 3 Traffic and transport

Sphingolipid metabolism 7 2� 10�4 4 Lipolysis

Membrane trafficking 21 6� 10�4 5 Traffic and transport

Lysosome vesicle biogenesis 9 0.003 6 Traffic and transport

Triglyceride biosynthesis 7 0.034 10 Lipolysis

Note: The size column indicates the number of identified and quantified proteins of a given pathway, and the rank column shows the rank of each pathway.
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of both Syntaxin-6 and VAMP2, and wortmannin treatment
abolished the effect of insulin (Fig. 4c and d). In agreement

with the DPA results from proteomics experiments, Syntaxin-6
and VAMP2 had higher levels at the plasma membrane

when treated with the MK-2206 compared with wortmannin
(Fig. 4c and d).

3.2.2 Live cell microscopy of transporter proteins We next

sought to further validate this phenomenon by using live cell
microscopy. In adipocytes, one of the most physiologically im-
portant insulin responsive trafficking events is the translocation

of the insulin-responsive glucose transporter type 4 (GLUT4) to
the plasma membrane. The TfR has also been reported to traf-

fick to the plasma membrane in an insulin-responsive manner.
Both of two proteins ranked highly in our DPA results (Fig. 3a

and b). Given an incomplete inhibition of the SNARE protein
trafficking (e.g. Syntaxin-6 and VAMP2) to the plasma mem-

brane in the presence of MK-2206, we next determined whether
this pattern also held true for GLUT4 and TfR translocation

events. We made use of a dual colour GLUT4 construct and
TfR constructs (Burchfield et al., 2012) as read outs for

GLUT4 and TfR translocation, respectively.
In the time course live cell microscopy experiment, insulin

robustly increased GLUT4 and TfR plasma membrane levels

(Fig. 5). Wortmannin completely inhibited insulin mediated
GLUT4 translocation to the plasma membrane, whereas

MK-2206 exhibited only partial inhibition (Fig. 5c). A similar
trend was also observed for TfR translocation to the plasma

membrane (Fig. 5d).

4 CONCLUSION

In this study, we developed DPA for detecting biologically
relevant pathways under multiple experimental perturbations.

This method tests a hypothesis by rotating the test statistics
and combining across both proteins and multiple experimental

perturbations using P-value combination. Compared with

traditional pathway analysis, DPA allows many more biological
questions formulated as an alternative hypothesis and tested dir-

ectly. We subsequently applied DPA to identify pathways that
are significantly enriched at the plasma membrane in response to
insulin stimulation and differentially inhibited by different inhibi-

tors with the goal of dissecting insulin-regulated processes and
their dependence on PI3K and Akt kinases. By examining a
specific alternative hypothesis, we identified several key regula-

tory pathways to be plasma membrane enriched in a PI3K-de-
pendent and partial Akt-dependent way. We then validated the
key proteins in these pathways using immunoblotting and live
cell microscopy techniques. Collectively, this study demonstrates

the usefulness of the proposed DPA approach to aid the analysis
of global datasets generated from experiments consisting of mul-
tiple perturbations. In this case, DPA helped identify and dissect

the key signalling nodes of insulin regulation in adipocytes.
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