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Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal

treatment medication would reduce both cigarette smoking and cocaine abuse. Varenicline is a clinically available, partial agonist at a4b2*

and a6b2* nicotinic acetylcholine receptors (nAChRs) and a full agonist at a7 nAChRs. Varenicline facilitates smoking cessation in clinical

studies and reduced nicotine self-administration, and substituted for the nicotine-discriminative stimulus in preclinical studies. The present

study examined the effects of chronic varenicline treatment on self-administration of IV nicotine, IV cocaine, IV nicotineþ cocaine

combinations, and concurrent food-maintained responding by five cocaine- and nicotine-experienced adult rhesus monkeys (Macaca

mulatta). Varenicline (0.004–0.04 mg/kg/h) was administered intravenously every 20 min for 23 h each day for 7–10 consecutive days.

Each varenicline treatment was followed by saline-control treatment until food- and drug-maintained responding returned to baseline.

During control treatment, nicotineþ cocaine combinations maintained significantly higher levels of drug self-administration than nicotine

or cocaine alone (Po0.05–0.001). Varenicline dose-dependently reduced responding maintained by nicotine alone (0.0032 mg/kg/inj)

(Po0.05), and in combination with cocaine (0.0032 mg/kg/inj) (Po0.05) with no significant effects on food-maintained responding.

However, varenicline did not significantly decrease self-administration of a low dose of nicotine (0.001 mg/kg), cocaine alone (0.0032 and

0.01 mg/kg/inj), or 0.01 mg/kg cocaine combined with the same doses of nicotine. We conclude that varenicline selectively attenuates the

reinforcing effects of nicotine alone but not cocaine alone, and its effects on nicotineþ cocaine combinations are dependent on the dose

of cocaine.
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INTRODUCTION

Both cigarette smoking and cocaine addiction are major public
health problems (Benowitz, 2009; CDC, 2002, 2004, 2005;
DAWN, 2010; SAMSHA, 2012), and there is a continuing
search for more effective treatment medications (Henningfield
et al, 2009; Mello and Mendelson, 2013; Pollock et al, 2009).
Most cocaine abusers also smoke cigarettes (Budney et al,
1993) and smoking increases during cocaine use (Roll et al,
1996; Roll et al, 1997). Nicotine enhances the reinforcing
effects of cocaine in rhesus monkeys (Mello and Newman,
2011), and similar findings were reported in behavioral
studies of nicotine-cocaine interactions in rodents (Bechtholt
and Mark, 2002; Horger et al, 1992; Levine et al, 2011) and
rhesus monkeys (Freeman and Woolverton, 2009; Mello

et al, 2013b). Nicotine’s enhancement of cocaine’s effects
may reflect an increase in dopamine levels because equally
potent doses of nicotine and cocaine have additive
effects on dopamine release from the nucleus accumbens
(Gerasimov et al, 2000; Sziraki et al, 1999; Zernig et al,
1997). Given that nicotine and cocaine alone each increase
dopamine levels (DiChiara, 2000; DiChiara and Imperato,
1988a; Pettit and Justice, 1991), although through different
mechanisms (Koob and LeMoal, 2006; Kuhar et al, 1991),
identifying medications that may reduce abuse of
nicotineþ cocaine in combination is an intriguing chal-
lenge.

Varenicline (Chantix/Champix) was approved for the
treatment of nicotine dependence by the FDA in 2006 and
has been effective in facilitating smoking cessation
(Cinciripini et al, 2013; Hawk et al, 2012; Hays et al, 2008;
Jorenby et al, 2006; Niaura et al, 2006; Tonstad, 2006).
Varenicline was designed as a partial agonist at a4b2*
nicotinic acetylcholine receptors (nAChRs) (Faessel et al,
2010; Rollema et al, 2007a) and a full agonist at a7 nicotinic
receptors (Coe et al, 2005; Mihalak et al, 2006). Activation of
the a4b2* nAChR receptors on mesolimbic dopamine (DA)
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neurons leads to dopamine release that modulates the
reinforcing effects of nicotine (Koob and LeMoal, 2006).
Reduction of the abuse-related effects of nicotine by
varenicline is usually attributed to its effects at a4b2*
receptors. Nicotine produced higher levels of dopamine
turnover and release than varenicline, and when varenicline
was combined with nicotine, it reduced nicotine’s effects on
dopamine levels to those of varenicline alone (Coe et al,
2005; Rollema et al, 2007b). Recent evidence suggests that
varenicline also acts as a partial agonist at a6b2* nAChRs in
both rat and monkey striatal synaptosomes (Bordia et al,
2012). The importance of a6b2* nAChRs in modulating
dopamine release is increasingly recognized (Exley et al,
2013; Wickham et al, 2013) For review, see (Quik and
Wonnacott, 2011). Interestingly, the binding affinity of
varenicline for a6b2* nAChRs was about 20-fold higher
than that of nicotine (Bordia et al, 2012).

There has been relatively little research on varenicline’s
effects on the abuse-related effects of cocaine and results
have been inconsistent. Clinical studies have reported
significant decreases in cocaine use during chronic
varenicline treatment (0.5–2 mg/day) (Plebani et al, 2012),
and no effect of varenicline (2 mg/day ) on cocaine use
(Poling et al, 2010). In rhesus monkeys, low doses of vareni-
cline (0.03 and 0.1 mg/kg, PO (salt)) had no effect on cocaine
self-administration, and higher doses (0.3–0.56 mg/kg, PO)
potentiated the reinforcing effects of cocaine as well as
cocaine’s discriminative stimulus effects (0.1–0.3 mg/kg, IV)
(Gould et al, 2011). However, varenicline did not substitute
for the reinforcing or discriminative stimulus effects of
cocaine (Gould et al, 2011). In rats, varenicline (2.0 mg/kg,
SC) decreased cocaine self-administration, and in reinstate-
ment studies, a high dose of varenicline increased and a low
dose decreased cocaine-seeking behavior (Guillem and
Peoples, 2010).

In contrast, preclinical studies of the effects of varenicline
on the abuse-related effects of nicotine have consistently
reported that varenicline reduced nicotine self-administra-
tion and substituted for the nicotine discriminative
stimulus. For example, in rats, varenicline reliably reduced
nicotine self-administration (George et al, 2011; Le Foll
et al, 2011; O’Connor et al, 2010; Rollema et al, 2007b;
Wouda et al, 2011). Most studies of nicotine discrimination
agree that varenicline substituted for nicotine in rats, at
levels that varied between 60 and 100% (Jutkiewicz et al,
2011; Le Foll et al, 2011; Lesage et al, 2009; Paterson et al,
2010; Reichel et al, 2010; Rollema et al, 2007b; Smith et al,
2007). Consistent with varenicline’s classification as a
partial agonist at nicotinic receptors (Faessel et al, 2010;
Rollema et al, 2007b), pretreatment with varenicline (1.0
and 3.0 mg/kg, SC) significantly antagonized nicotine dis-
crimination (Lesage et al, 2009). Mecamylamine, a nonselec-
tive nicotine antagonist, also blocked varenicline substitution
for the nicotine discriminative stimulus (Rollema et al,
2007a).

Most medications to treat drug abuse are derived from
advances in medicinal chemistry and neurobiology and
initially are not available for testing on humans. As a
consequence, preclinical models of drug addiction are
essential for guiding decisions about which classes of
medications are likely to be clinically useful. Retrospective
validation of these models, using medications that have

clinical efficacy, is one important component of the
translational evaluation process (Mello, 2005). Comparison
of clinical and preclinical studies of varenicline provides a
valuable opportunity for retrospective evaluation of treatment
medication effects on nicotine and cocaine in a nonhuman
primate model of drug self-administration. In addition,
there are many similarities between rhesus monkeys and
humans in neuroanatomy, physiology, and neurochemistry
of brain transmitter systems (Weerts et al, 2007). Moreover,
nicotinic receptor distribution in cortex, thalamus, basal
ganglia, and cerebellum is very similar in human and
monkey brain, and there is considerable overlap between
AChRs and mesolimbic dopamine neurons (Gotti and
Clementi, 2004; Gotti et al, 2007; Han et al, 2000; Han
et al, 2003). This is the first report comparing the effects of
chronic varenicline treatment (0.004 and 0.04 mg/kg/h) on
self-administration of nicotine alone (0.001–0.0032 mg/kg/inj,
base), cocaine alone (0.0032–0.01 mg/kg/inj), and combina-
tions of nicotine (0.001–0.0032 mg/kg/inj)þ cocaine
(0.0032–0.01 mg/kg/inj) in a nonhuman primate polydrug
model (Mello and Newman, 2011).

MATERIALS AND METHODS

Subjects

Four male and two female rhesus monkeys (Macaca
mulatta) that weighed between 6 and 10 kg were studied.
All monkeys had a history of cocaine and nicotine self-
administration. Although females were gonadally intact,
cocaine and nicotine self-administration disrupted men-
strual cycle regularity. Amenorrhea and abnormally short
menstrual cycles were observed, similar to disruptions
previously reported during chronic cocaine self-adminis-
tration (Mello et al, 1997). Each day, monkeys received
multiple vitamins, fresh fruit and vegetables and Lab Diet
Jumbo Monkey Biscuits (PMI Feeds, St. Louis, MO) to
supplement a response-contingent banana-flavored pellet
diet, fortified with vitamin C (Formula 4TUR banana flavor,
grain-based pellet, Purina Mills Test Diet, Richmond, IN).
Food supplements were given twice a day between 0900 and
0930, and between 1700 and 1730. Water was continuously
available from an automatic watering system. A 12-h light–
dark cycle was in effect (lights on 0700–1900), and the
experimental chamber was dark during food and drug self-
administration sessions.

Animal maintenance and research were conducted in
accordance with the guidelines provided by the NIH Office
of Laboratory Animal Welfare (OLAW), The Committee on
the Care and Use of Laboratory Animals, and the US
Department of Agriculture (USDA). The facility is licensed
by the USDA, and protocols were approved by the
Institutional Animal Care and Use Committee (IACUC).
Monkeys were observed at least twice every day, and any
changes in general activity were noted. The health of the
monkeys was periodically monitored by consultant veter-
inarians trained in primate medicine. Operant food and
drug acquisition procedures provided an opportunity for
enrichment and for monkeys to manipulate their environ-
ment (Line, 1987). Monkeys had many other enrichment
devices and visual, auditory, and olfactory contact with
other monkeys throughout the study.
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IV Catheter Implantation

Nicotine, cocaine, and nicotineþ cocaine solutions, and
varenicline or saline were administered through surgically
implanted venous catheters. Double lumen Silicone rubber
catheters (I.D. 0.028 in, O.D. 0.088 in; Saint Gobain Perfor-
mance Plastics, Beaverton, MI) were surgically implanted in
an internal or external jugular or femoral vein. All surgical pro-
cedures were performed under aseptic conditions. Monkeys
were initially sedated with ketamine (5–10 mg/kg, IM).
Atropine (0.05 mg/kg) SC or IM was administered to reduce
salivation. Following insertion of an endotracheal tube,
anesthesia was maintained with isofluorane (1–2% mixed
with oxygen). After surgery, monkeys were given procaine
penicillin G at 20 000 units/kg, IM twice daily for 5 days, or
cephalexin 20 mg/kg, PO twice daily for 5 days. An analgesic
dose of buprenorphine (0.032 mg/kg, IM) and metacam
(meloxicam) (0.1 mg/kg, SC) was administered twice daily
for 3 days.

The intravenous catheter exited in the mid-scapular
region and was protected by a tether system consisting of
a custom-fitted nylon vest connected to a flexible stainless-
steel cable and fluid swivel (Lomir Biomedical, Malone,
NY). This flexible tether system permits monkeys to move
freely. Catheter patency was evaluated periodically by
administration of a short-acting barbiturate, methohexital
sodium (4 mg/kg) through the catheter lumen. If muscle
tone decreased within 10 s after drug administration, the
catheter was considered patent.

Apparatus and Operant Procedures

Monkeys lived in stainless steel chambers (64� 64� 79 cm)
equipped with a custom-designed operant response panel
(28� 28 cm), a pellet dispenser (Gerbrands Model G5210,
Arlington, MA), and two syringe pumps (Model 981210,
Harvard Apparatus, South Natick, MA), one for each lumen
of the double-lumen catheter. During food self-administra-
tion sessions, the response key (6.4� 6.4 cm) on the operant
panel was illuminated with a red light. Completion of the
response requirement under a fixed ratio 2, variable ratio 16
(FR 2, [VR 16:S]) schedule resulted in presentation of a 1-s
red light beneath the response key. Completion of a second
VR16 resulted in delivery of a 1 g banana-flavored pellet.
During drug self-administration sessions, the response key
was illuminated with a green light, and completion of the
response requirement under an FR 2, [VR 16:S] schedule
resulted in delivery of 0.1 ml of saline or a drug solution
over 1 s through one lumen of the double-lumen catheter. A
10-s time-out followed delivery of each drug or saline
injection or food pellet, during which stimulus lights
remained off and responding had no scheduled conse-
quences. If 25 food pellets or 20 injections were delivered
before the end of the 1-hr session, then all stimulus lights
were turned off, and responding had no scheduled
consequences for the remainder of that session. Thus, a
monkey could earn a maximum of 100 food pellets/day and
80 drug or saline injections/day in four daily food and drug
self-administration sessions. The daily food self-adminis-
tration sessions began at 1100, 1500, 1900, and 0600 the next
morning, and the daily drug self-administration sessions
began at 1200, 1600, 2000, and 0700 the next morning.

Room lights were off during all experimental sessions.
Schedules of reinforcement were programmed with custom-
designed software and IBM-compatible computers and
interface systems (Med Associates, St Albans, VT). Addi-
tional details of this apparatus have been described
previously (Mello et al, 1995). Drug concentrations were
varied by computer-controlled changes in pump infusion
duration (Fivel, 2011).

Training procedure. Monkeys were initially trained to
self-administer banana-flavored food pellets and cocaine
(0.1 mg/kg/inj). Once cocaine-maintained responding was
stable, the unit dose was reduced to 0.01 or 0.032 mg/kg to
limit the disruptive effects of each IV cocaine injection, and
to facilitate higher levels of IV self-administration behavior
throughout the session. Extinction training consisted of
substituting saline for 0.032 mg/kg IV cocaine. Once saline
extinction was reliable, drug dose–effect curves were deter-
mined over a dose range of 0.001–0.0032 mg/kg/inj IV
nicotine. Combinations of doses on the ascending limb for
nicotine with two doses of cocaine (0.0032 and 0.01 mg/kg/inj)
were also tested. Saline and different doses of cocaineþ
nicotine were presented in an irregular order.

Drug dose-effect curve determinations. Training contin-
ued until monkeys met the following criteria for stable food
and cocaine self-administration under the FR2 [VR16:S]
schedule of reinforcement: (1) three consecutive days
during which the number of drug injections per day varied
by no more than 20% of the 3-day mean with no upward or
downward trend and (2) the mean number of food pellets
and injections delivered per day was equal to or greater than
60. Once responding was stable, self-administration of saline,
nicotine (0.001–0.0032 mg/kg/inj), and combinations of cocaine
(0.0032–0.01 mg/kg/inj)þ nicotine (0.001–0.0032 mg/kg/inj)
were studied. Each dose was substituted for a minimum of
7 days and until responding was stable according to the
above criteria, or for a maximum of 10 days. Following each
substitution test, monkeys were returned to the main-
tenance dose of cocaine, 0.01 or 0.032 mg/kg/inj, for at least
three days and until responding was stable to ensure reliable
baseline responding prior to the subsequent substitution
test. Drug doses were presented in an irregular order that
differed for each monkey.

Varenicline treatment procedures. Procedures for evalu-
ating the effects of varenicline on the reinforcing effects of
nicotine, cocaine, and combinations of cocaineþ nicotine
were similar to those used in our previous studies of the
effects of chronic buspirone treatment on cocaine, nicotine,
and cocaineþ nicotine self-administration (Mello et al,
2013b). Evaluation of the chronic effects of candidate
medications is important to determine if acute treatment
effects are sustained through time (Mello, 2005; Mello and
Negus, 1996). Varenicline or saline injections were delivered
every 20 min for 23 h each day through one lumen of a
double-lumen catheter. This procedure was designed to
ensure that steady-state levels of the treatment medication
and its metabolites were present during the four daily drug
and food self-administration sessions each day (Mello et al,
2013a; Mello et al, 2013b; Negus and Mello, 2003; Newman
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et al, 2010). Varenicline doses in mg/kg/h and the equivalent
doses in mg/kg/day were as follows: a varenicline dose
of 0.004 mg/kg/h¼ 0.1 mg/kg/day; a varenicline dose of
0.04 mg/kg/h¼ 1.0 mg/kg/day. The total injection volume
delivered was 6.9 ml in 69 injections.

The effects of varenicline (0.004 and 0.04 mg/kg/h) on the
ascending limb of the nicotine or cocaineþ nicotine dose
effect curve were studied first to determine which doses of
varenicline were effective, and to monitor possible side
effects. Subsequently, the most effective doses of varenicline
were tested on the dose-effect curve for nicotine alone, and
cocaineþ nicotine combinations. Each treatment dose was
studied for 7–10 days until responding was stable according
to the criteria described earlier. Successive varenicline doses
were separated by an interval of saline treatment until drug-
and food-maintained responding returned to baseline levels.
The saline treatment interval was necessary to prevent any
carryover effects from the preceding treatment condition.

Data analysis. The primary dependent variables were the
total number of drug or saline injections and food pellets
earned per day. The number of injections self-administered
on the last three days of each treatment condition were
averaged for statistical analysis. Repeated measures one-
way analysis of variance (ANOVA) was used to determine
varenicline’s effect on drug self-administration, and food-
maintained responding. A significant ANOVA (Po0.05)
was followed by Dunnett’s post hoc tests. To determine
whether the number of injections earned with cocaineþ
nicotine combinations were significantly higher than either
cocaine or nicotine alone, one-way ANOVA with Fisher’s
LSD post hocs were used. All statistical procedures and
figures were drawn using GraphPad Prism v. 6.0.

Drugs. Cocaine HCl was provided by the National
Institute on Drug Abuse (Rockville, MD) and prepared in
sterile saline (0.9%). (-)-Nicotine hydrogen tartrate was
obtained commercially (Sigma-Aldrich, St. Louis, MO) and
solubilized in sterile water buffered with NaOH to achieve a
pH of 6–7. Varenicline was prepared in sterile water. All IV
drugs were sterile-filtered with a 0.22-mm syringe-driven
filter. The cocaineþ nicotine solutions were combined in
the same syringe. Cocaine doses are expressed as the salt
form, nicotine doses are expressed as the base. Varenicline
was provided by Dr F Ivy Carroll, Center for Organic and
Medicinal Chemistry, Research Triangle Institute, Research
Triangle Park, NC.

RESULTS

Varenicline’s Effects on Self-administration of Cocaine
and Nicotine Alone

Cocaine. Varenicline (0.004 and 0.04 mg/kg/h) had no
effect on self-administration of a low dose of cocaine
(0.0032 mg/kg/inj) in comparison to saline treatment, and
there was considerable variability between animals (Figure 1,
top left). Varenicline also had no effect on self-administra-
tion of a higher dose of cocaine (0.01 mg/kg/inj) (Figure 1,
bottom left). Monkeys self-administered all the cocaine
available during saline and varenicline treatment at a unit
dose of 0.01 mg/kg/inj cocaine.

Nicotine. When nicotine self-administration was maintained
by a low, minimally reinforcing unit dose (0.001 mg/kg/inj),
varenicline decreased intake slightly by about 35% (Figure 1,
top right). At a nicotine unit dose on the ascending limb of
the nicotine dose-effect curve (0.0032 mg/kg/inj), the lower
dose of varenicline reduced nicotine self-administration
non-significantly (Figure 1, bottom right). The higher vare-
nicline dose reduced nicotine self-administration by 60
percent (Po0.05).

Varenicline’s Effects on Self-administration of
CocaineþNicotine Combinations

A combination of cocaine (0.0032 mg/kg/inj)þ nicotine
(0.001 mg/kg/inj) maintained high levels of responding
during saline control treatment. A low dose of varenicline
(0.004 mg/kg/h) did not decrease drug self-administration
significantly. A higher dose of varenicline (0.04 mg/kg/h)
decreased drug self-administration by 23% (Figure 2, top
left).

A combination of the same dose of cocaine (0.0032 mg/
kg/inj) with a higher dose of nicotine (0.0032 mg/kg/inj)
also maintained high levels of responding during saline
control treatment (Figure 2, top right). Chronic varenicline
treatment (0.004–0.04 mg/kg/h) dose-dependently and sig-
nificantly decreased cocaineþ nicotine self-administration
(Po0.025) (Figure 2, top right).

Figure 1 Effects of varenicline on cocaine and nicotine self-administra-
tion: each dose of cocaine or nicotine is shown above each set of bar
graphs. Ordinate: the number of cocaine or nicotine injections per day for
the last three days of the treatment period. Drug self-administration during
saline treatment is shown as open bars. Drug self-administration during
varenicline treatment is shown as gray bars (0.004 mg/kg/h) and black bars
(0.04 mg/kg/h). The top row shows drug self-administration when low
minimally reinforcing doses of cocaine and nicotine were available. The
bottom row shows drug self-administration when higher reinforcing doses
of cocaine and nicotine were available. The ANOVA found a significant
effect of varenicline on self-administration of 0.0032 mg/kg/inj nicotine
(F(2,6)¼ 6.43; p¼ 0.03) during treatment with 0.04 mg/kg/h varenicline
(p¼ 0.02). Varenicline did not significantly alter self-administration of
0.0032 or 0.01 mg/kg/inj cocaine and 0.001 mg/kg/inj nicotine (all Fso1.73;
ps¼ 0.28–0.44). Each data point represents the mean±SEM of 3–4
monkeys. *po0.05 vs baseline.

Varenicline, polydrug, and nicotine
NK Mello et al

1225

Neuropsychopharmacology



A reinforcing dose of cocaine (0.01 mg/kg/inj) combined
with the same doses of nicotine (0.0032 and 0.001 mg/kg/
inj) maintained high levels of drug self-administration
during saline control treatment (Figure 2, bottom row,
leftþ right). Chronic treatment with varenicline had no
appreciable effect on drug self-administration (Figure 2,
bottom row, leftþ right).

Food-maintained responding. The effects of saline, co-
caine, nicotine, and cocaineþ nicotine combinations on
food self-administration is summarized in Table 1. Under
most conditions, food-maintained responding did not
change from baseline levels of 92±8 to 100 pellets per
day. Food-maintained responding remained stable at the
lower dose of nicotine, but decreased at most by 20% during
treatment with 0.4 mg/kg/h varenicline.

Comparison of reinforcing effects of cocaine, nicotine, and
cocaineþnicotine combinations. Figure 3 shows that the
low dose of cocaine (0.0032 mg/kg/inj) alone produced
about 50% of the 80 cocaine injections available (38.40±
12.01 inj per day), whereas monkeys earned near maximal
injections available at a higher unit dose of cocaine
(0.01 mg/kg/inj; 79.8±0.20 inj per day). Nicotine alone
produced about 40% of the maximal available reinforcers at
the low dose (0.001 mg/kg/inj; 33.13±5.93 inj per day) and
about 57% of the maximal injections at the higher dose of
nicotine (0.0032 mg/kg/inj; 46.13±8.16 inj per day). Each
combination of cocaineþ nicotine maintained higher levels
of drug self-administration (73.3±3.9 and 77.47±1.6 inj
per day) than the low dose of cocaine (0.0032 mg/kg/inj)
alone or nicotine (0.001 and 0.0032 mg/kg/inj) alone.

DISCUSSION

This is the first report of the effects of chronic varenicline
treatment on the reinforcing effects of nicotine alone,
cocaine alone, and a combination of nicotineþ cocaine in
rhesus monkeys. Our major findings were that chronic
varenicline treatment dose-dependently and selectively
reduced self-administration of nicotine alone and combina-
tions of nicotineþ a low dose of cocaine. However, vare-
nicline did not reduce self-administration of cocaine alone
or the same doses of nicotine in combination with a high
dose of cocaine. Another major finding was that combining
low, minimally reinforcing doses of nicotine and cocaine
increased drug self-administration significantly above levels
maintained by the same dose of each drug alone. These
data confirm and extend our previous reports of the
behavioral effects of low dose nicotineþ cocaine combina-
tions in rhesus monkeys (Mello et al, 2013a; Mello and

Figure 2 Effects of varenicline on cocaineþ nicotine self-administration:
each dose of cocaineþ nicotine is shown above each set of bar graphs.
Ordinate: the number of cocaineþ nicotine injections per day for the last
three days of the treatment period. Drug self-administration during saline
treatment is shown as open bars. Drug self-administration during
varenicline treatment is shown as gray bars (0.004 mg/kg/h) and black bars
(0.04 mg/kg/h). The top row shows drug self-administration when low
minimally reinforcing doses of cocaineþ nicotine were available. The
bottom row shows drug self-administration when higher reinforcing doses
of cocaineþ nicotine were available. The ANOVA found a significant effect
of varenicline (0.04 mg/kg/h; p¼ 0.025) on self-administration of
0.0032 mg/kg/inj cocaineþ 0.0032 mg/kg/inj nicotine (F(2,8)¼ 4.936;
p¼ 0.04) but not on 0.0032 mg/kg/inj cocaineþ 0.001 mg/kg/inj nicotine,
0.01 mg/kg/inj cocaineþ 0.001 mg/kg/inj nicotine, or 0.01 mg/kg/inj
cocaineþ 0.0032 mg/kg/inj nicotine (all Fso1.08; ps¼ 0.38–0.44). Each
data point represents the mean±SEM of 4–5 monkeys. *po0.05 vs
baseline.

Table 1 Effects of Chronic Treatment with Varenicline on Food-maintained Responding

þSaline þ 0.004 mg/kg/h varenicline þ0.04 mg/kg/h varenicline

0.0032 mg/kg/inj Cocaine 100þ 0 96.33±3.67 78.92±19.77

0.01 mg/kg/inj Cocaine 100þ 0 95.89±4.11 93.78±6.22

0.001 mg/kg/inj Nicotine 100þ 0 96.89±3.11 77.22±22.78

0.0032 mg/kg/inj Nicotine 100þ 0 99.58±0.42 93.92±3.85

0.0032þ 0.001 mg/kg/inj Cocaineþ nicotine 94.80þ 3.51 98.87±1.13 90.80±6.73

0.0032þ 0.0032 mg/kg/inj Cocaineþ nicotine 100þ 0 99.07±0.93 91.20±6.97

0.01þ 0.001 mg/kg/inj Cocaineþ nicotine 92.00±8.0 100±0 90.75±9.25

0.01þ 0.0032 mg/kg/inj Cocaineþ nicotine 97.92±2.08 99.00±1.0 78.58±13.13

Mean±SEM number of food pellets earned during the last 3 days of control or varenicline treatment in rhesus monkeys responding for cocaine, nicotine, or
cocaineþ nicotine polydrug combinations. One-way ANOVAs found that chronic varenicline treatment had no significant effects on food-maintained responding
(all Fso2.77; ps¼ 0.14–0.42).
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Newman, 2011). Taken together with our earlier report of
the effects of buspirone on nicotineþ cocaine combinations
(Mello et al, 2013a), these findings indicate that this
polydrug model is useful for the evaluation of treatment
medications that may attenuate dual addiction to nicotine
and cocaine. The relation of these findings to some previous
studies of varenicline, and possible mechanisms accounting
for varenicline’s divergent effects on nicotine and cocaine
self-administration are discussed below.

Varenicline and Cocaine Interactions

Clinical and preclinical studies of varenicline’s effects on the
abuse-related effects of cocaine have inconsistent results.
Our finding that varenicline did not reduce cocaine self-
administration is consistent with one clinical study (Poling
et al, 2010), and one study in rhesus monkeys (Gould et al,
2011). Methadone-maintained cocaine users and cigarette
smokers reported that varenicline (2 mg or 0.028 mg/kg in a
70 kg man) had no effect on cocaine use, but decreased cigarette

smoking by 52.8%, whereas placebo treatment decreased
cigarette smoking by 8% (Poling et al, 2010). In rhesus
monkeys, varenicline at doses of 0.03 and 0.1 mg/kg, PO (salt)
had no effect on cocaine self-administration, and higher doses
(0.3–0.56 mg/kg, PO), potentiated cocaine’s reinforcing
effects. When varenicline was administered intravenously
(0.1–0.3 mg/kg), it also potentiated cocaine’s discriminative
stimulus effects, but did not substitute for cocaine in drug
discrimination or drug self-administration studies (Gould
et al, 2011). Comparisons between these studies in rhesus
monkeys are limited by differences in schedules of reinforce-
ment, drug doses, route and frequency of varenicline
administration, and frequency of access to cocaine.

In contrast, treatment-seeking cocaine-dependent volun-
teers significantly reduced cocaine use (as assessed by three
urine samples per week) during 8 weeks of varenicline
treatment (0.5–2 mg/kg) in comparison to placebo treatment
(Plebani et al, 2012). In rats, varenicline (2.0 mg/kg SC) also
decreased cocaine self-administration (0.75 mg/kg, inj) main-
tained on a fixed ratio 1 (FR1) schedule of reinforcement,
but other doses (0.3 and 1.0 mg/kg, SC) had no effect
(Guillem and Peoples, 2010). Varenicline had dose-related,
but opposite effects on cue and drug-induced reinstatement.
A high dose of varenicline increased whereas low doses
decreased cocaine-seeking behavior in a reinstatement
paradigm (Guillem and Peoples, 2010).

Varenicline and Nicotine Interactions

Varenicline significantly and selectively reduced self-
administration of nicotine and nicotineþ low dose cocaine
combinations, with no significant changes in concurrent
food-maintained responding. The selective and sustained
decreases in nicotine and nicotineþ cocaine self-adminis-
tration were due to varenicline treatment and not to sedation
or a general disruption of operant responding. All monkeys
resumed drug self-administration at baseline levels after
varenicline treatment was discontinued. This indicates that
IV catheters were patent and catheter malfunction did not
account for the observed decreases in drug-maintained
responding. The same monkeys were studied as their own
control across successive saline and varenicline treatment
conditions. Importantly, this was the first study of nicotine
and nicotineþ cocaine self-administration in which vareni-
cline was administered every 20 min for 23 h each day to
insure that treatment doses were present during each of the
4 daily drug and food self-administration sessions. These
data are consistent with our previous reports that chronic
buspirone treatment significantly and selectively reduced
nicotine and cocaineþ nicotine self-administration by
rhesus monkeys (Mello et al, 2013a).

Varenicline has activity at several receptor subtypes that
comprise nAChRs. The a4b2 receptor is one of the most
abundant, and appears to be an important modulator of the
reinforcing effects of nicotine (Benowitz, 2009; Picciotto et al,
1998; Rose, 2007; Watkins et al, 2000). Nicotine did not
stimulate dopamine release and did not maintain nicotine self-
administration in b2 knockout mice in contrast to wild-type
mice (Picciotto et al, 1998). Varenicline also acts as a partial
agonist at a6b2* nAChRs, and its binding affinity was very
similar to that of a4b2* nAChRs (Bordia et al, 2012; Grady
et al, 2010). In competition binding studies in monkey

Figure 3 Comparison of the number of injections of cocaine and
nicotine alone with cocaineþ nicotine combinations during saline control
treatment: Abscissa: doses of cocaine (0.0032 or 0.01 mg/kg/inj) shown as
light gray rectangles; doses of nicotine (0.001 or 0.0032 mg/kg/inj) shown as
dark gray rectangles; and the same doses of cocaine and nicotine in
combination are shown as black rectangles. Ordinate: number of drug
injections per day during saline treatment. Each data point is the average
(±SEM) of 5 monkeys during the last three days of each drug condition.
One-way repeated measures analysis of variance (ANOVA) with Fisher’s
LSD post hoc tests were used to determine whether self-administration of
the cocaine plus nicotine combinations was significantly higher than the
same doses of nicotine or cocaine alone as measured by the number of
injections per day. The ANOVAs found a significant main effect of
reinforcer when 0.0032 mg/kg cocaine, 0.001 mg/kg/inj nicotine, and
0.0032 mg/kg/inj cocaineþ 0.001 mg/kg/inj nicotine were compared
(F(2,8)¼ 5.495; p¼ 0.03) and when 0.01 mg/kg/inj cocaine, 0.0032 mg/kg/
inj nicotine, and 0.01 mg/kg/inj cocaineþ 0.0032 mg/kg/inj nicotine were
compared (F(2,8)¼ 16.97; p¼ 0.001). Post hoc tests found that self-
administration of the 0.0032 mg/kg/inj cocaineþ 0.001 mg/kg/inj nicotine
combination was significantly greater than either 0.0032 mg/kg/inj cocaine
or 0.001 mg/kg/inj nicotine alone (ps¼ 0.029 and 0.016, respectively).
Further, self-administration of 0.01 mg/kg/inj cocaineþ 0.0032 mg/kg/inj
nicotine was significantly greater than 0.0032 mg/kg/inj nicotine alone
(p¼ 0.0025) but not 0.01 mg/kg/inj cocaine alone (p� 0.725) *¼ po0.05.
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striatum, varenicline was B6 times more potent than
nicotine at a6b2* and a4b2* nAChRs (Bordia et al, 2012).
The similarities between varenicline’s effects at a6b2* and
a4b2* nAChRs suggests that both receptor subtypes are
important for its anti-smoking effects (Bordia et al, 2012).
Consistent with this interpretation, several recent reports
show that a6b2* nAChRs are an important modulator of
dopamine neurotransmission (Exley et al, 2013; Wickham
et al, 2013) For review, see (Quik and Wonnacott, 2011).

Although varenicline is a full agonist at a7 nicotinic
receptors (Coe et al, 2005; Mihalak et al, 2006), the contri-
bution of a7 receptors to varenicline’s effects on nicotine
self-administration is unclear (Shama and Vijayaraghavan,
2008). A series of novel compounds with high affinity
for a4b2 nicotinic receptors showed dose-dependent and
complete substitution for the nicotine discriminative
stimulus in rats (Smith et al, 2007). Other novel compounds
that were selective for a7 and b4 nicotinic receptors did not
substitute for nicotine. These data suggested that a4b2
receptors are critical for the discriminative stimulus
properties of nicotine, whereas b4 and a7 receptors are
not involved (Smith et al, 2007). In mice given oral access to
nicotine over the course of 5 months, the a7-knockout mice
decreased nicotine consumption in comparison to wild-type
controls, whereas b2 receptor-knockout mice increased
nicotine consumption (Levin et al, 2009). These data were
interpreted to suggest that a7 receptor antagonists might be
useful to treat nicotine addiction (Levin et al, 2009). It is
likely that varenicline’s actions as an a4b2 partial agonist
are more important than its a7 agonist activity in reducing
nicotine self-administration.

Nicotine-Cocaine Interactions

It is generally agreed that cocaine maintains higher levels of
IV self-administration than nicotine in nonhuman primates
(Le Foll et al, 2007; Mello et al, 2013a; Mello et al, 2013b;
Mello and Newman, 2011). For example, a nicotine dose at
the peak of the dose-effect curve (0.0032 mg/kg/inj) main-
tained 46 injections per day, whereas a cocaine dose at the
peak of the dose-effect curve (0.032 mg/kg/inj) maintained
76 injections per day in the same rhesus monkeys (Mello
and Newman, 2011). When marginally reinforcing doses of
cocaine (0.0032 mg/kg/inj), and nicotine (0.001 mg/kg/inj)
were combined, the number of drug injections per day was
significantly higher than for either drug alone (Mello et al,
2013a; Mello and Newman, 2011). Similarly, in the present
study, a combination of the same doses of cocaine and
nicotine maintained higher levels of self-administration
than either drug alone (Figure 3).

The extent to which simultaneous activation of dopamine
release by nicotine and blockade of dopamine reuptake by
cocaine may account for enhancement of the reinforcing
effects of low doses of nicotineþ cocaine in combination is
unclear. However, evidence from microdialysis studies
indicates that combinations of equi-potent doses of
cocaineþ nicotine produce additive effects on dopamine
release (Gerasimov et al, 2000; Sziraki et al, 1999; Zernig
et al, 1997). In addition, overlapping patterns of fos-related
protein expression in rat brains after nicotine (0.03 mg/kg/
inj) and cocaine (0.25 mg/kg/inj) self-administration, but
not after saline control self-administration, were interpreted

to suggest that there is a common anatomical substrate for
cocaine and nicotine addiction (Pich et al, 1997). In mice,
exposure to nicotine increased cocaine-induced locomotor
activity and conditioned place preference in comparison to
placebo, but exposure to cocaine did not enhance nicotine-
induced behaviors (Levine et al, 2011). These findings were
interpreted as evidence that nicotine alters the brain to
increase its susceptibility to cocaine by increasing synaptic
plasticity and increasing FosB responses to cocaine, secondary
to higher histone acetylation levels in the striatum (Levine
et al, 2011). Importantly, the priming influence of nicotine on
cocaine’s effects only occurred when multiple doses of nicotine
were given concurrently with cocaine, but not after a 14-day
nicotine-free interval (Levine et al, 2011). It remains to be
determined if this molecular mechanism accounts for the
enhanced reinforcing effects of nicotineþ cocaine combina-
tions in drug-experienced rhesus monkeys.

The Role of Dopamine in Nicotine-Cocaine Interactions

Interpretation of the differences in varenicline’s effects on
nicotine and cocaine is complicated by the fact that all three
drugs activate the mesolimbic dopamine system and
increase extracellular dopamine levels by different mechan-
isms. Nicotine and varenicline induce dopamine release by
stimulating nAChRs on the cell bodies of mesolimbic
dopamine neurons (Coe et al, 2005; Corrigall et al, 1994;
DiChiara, 2000; DiChiara and Imperato, 1988; Nisell et al,
1994; Stolerman and Shoaib, 1991; Watkins et al, 2000),
whereas cocaine blocks dopamine reuptake by the dopa-
mine transporter (Kuhar et al, 1991; Ritz et al, 1987, 1988).
When varenicline was combined with nicotine, dopamine
release was reduced to the level measured after varenicline
alone, with a corresponding decrease in nicotine self-
administration (Coe et al, 2005; Rollema et al, 2007a).
A parsimonious explanation of varenicline’s lack of effects
on cocaine self-administration could be that because
cocaine-induced increases in extracellular dopamine levels
occur independently of nAChR stimulation of mesolimbic
dopamine neurons, the resulting dopamine levels were
sufficient to maintain drug self-administration.

The importance of dopamine in the reinforcing effects of
nicotine was initially suggested by the fact that dopamine
D1-like and D2-like receptor antagonists, as well as nicotinic
receptor antagonists, reduced nicotine self-administration
in preclinical studies (Pierce and Kumaresan, 2006; Watkins
et al, 2000). There has been increasing interest in the
possible role of dopamine D3 and D4 receptor antagonists
and partial agonists for the treatment of both cocaine and
nicotine addiction (Newman et al, 2012). There is evidence
that D3 antagonists can modify some of the abuse-related
properties of both nicotine (Andreoli et al, 2003; Khaled
et al, 2010; Pak et al, 2006; Ross et al, 2007; Spiller et al,
2008) and cocaine (see for review (Heidbreder et al, 2005;
Heidbreder and Newman, 2010; Le Foll et al, 2005; Newman
et al, 2012; Newman et al, 2009; Newman et al, 2005). It has
been suggested that dopamine D3 receptor antagonists may
be valuable for the treatment of relapse to nicotine seeking,
but are less likely to substitute for nicotine or to attenuate
withdrawal signs and symptoms (Le Foll et al, 2007). The
contrast between the effects of buspirone and varenicline on
cocaine, nicotine, and nicotineþ cocaine further suggests
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the possible importance of the dopamine D3 and D4

antagonist component of buspirone (Mello et al, 2013a;
Mello et al, 2013b).

Translational Implications of Varenicline’s Reduction of
Nicotine and NicotineþCocaine Self-Administration

Varenicline is FDA approved for the treatment of cigarette
smoking, and this will greatly facilitate examining its clinical
effectiveness in persons with dual addiction to nicotine and
cocaine. Cocaine abusers are often heavy smokers, and a
medication that could safely reduce both cocaine abuse and
cigarette smoking, with minimal side effects would be clinically
useful. Clinical laboratory studies also have consistently
shown interactions between nicotine and cocaine. In cocaine-
dependent cigarette smokers, an acute dose of transdermal
nicotine (44 mg) enhanced reports of cocaine craving
induced by visual cues and paraphernalia related to crack-
cocaine, whereas placebo patches had no effect (Reid et al,
1998). In a subsequent study of cue-induced cocaine craving, a
nicotine antagonist, mecamylamine reduced reports of
craving in comparison to placebo (Reid et al, 1999). As
noted earlier, cocaine users report smoking more cigarettes
during cocaine use (Roll et al, 1996; Roll et al, 1997) and
smokers use more cocaine than non-smokers (Budney et al,
1993). The conflicting clinical data on varenicline’s effects on
cocaine use (Plebani et al, 2012; Poling et al, 2010) suggest
that further studies are warranted. Although varenicline may
not be equally effective in all smokers, these studies in rhesus
monkeys suggest it may be useful for some smokers, espe-
cially those who use low doses of cocaine recreationally.
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