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Abstract

Chemical exchange saturation transfer (CEST) imaging is a novel MRI technique that is sensitive
to biomolecules, local pH and temperature, and offers considerable advantages for in vivo
applications. However, the magnitude of CEST effect for dilute CEST agents undergoing slow or
intermediate chemical exchange is typically small, requiring the use of signal averaging to
enhance its sensitivity. Given that T»-induced signal loss can be normalized by asymmetry
analysis, the magnitude of CEST effect is independent of echo time. Therefore, CEST imaging
with multi-echo echo planar imaging (EPI) readout should yield the same CEST effect as
conventional single echo acquisition. Importantly, CEST multi-echo (CESTme) EPI images can be
averaged to enhance CEST MRI sensitivity. The goal of this study was to validate CESTme EPI
using a creatine-agarose gel CEST phantom with similar T, as biological tissue. Using least-
squares optimization, we found that the sensitivity of CESTme sequence is significantly higher
than that obtained by conventional single echo CEST-EPI acquisition. Specifically, signal to noise
ratio (SNR) and contrast to noise ratio (CNR) from the proposed CESTme EPI were
approximately equivalent to that obtained by doubling the number of signal averages of the
standard single echo CEST MRI sequence. In summary, our results demonstrate CESTme EPI for
sensitivity-enhanced CEST imaging.
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1. INTRODUCTION

Chemical exchange saturation transfer (CEST) MRI is capable of measuring dilute labile
protons, pH and temperature, and holds great promise for a host of biomedical applications
(1-4). To date, CEST MRI has been applied in studies to image biomolecules, gene
expression and enzyme activity, yielding novel results that have greatly enhanced our
understanding of the underlying biological systems (5-9). In addition, endogenous amide
proton CEST (APT) imaging is sensitive to pH and mobile protein or peptide levels, and
may provide novel insights in disorders such as acute stroke, multiple sclerosis, and tumor
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(10-18). However, the magnitude of CEST effect is typically small, requiring that the CEST
image sensitivity be enhanced for routine use (19-23).

For diamagnetic CEST (DIACEST) agents undergoing slow and intermediate chemical
exchange, the CEST effect approaches its steady state exponentially (24,25). Hence, the
conventional CEST MRI sequence includes long RF irradiation followed by image readout,
including gradient echo, rapid acquisition with relaxation enhancement (RARE), fast low
angle shot (FLASH), steady-state free precession (FISP) and echo planar imaging (EPI) (26—
31). Given that signal decays following the same T, relaxation, asymmetry analysis
normalizes the confounding T»-decay in the control, reference, and label images, and the
obtained CEST effect is independent of the echo time and T,. Because echo planar imaging
(EP1) provides reasonable spatiotemporal coverage with readout time shorter than typical in
vivo T values, there should be significant residual MR signal following the first echo
acquisition, which has not been utilized fully by the routine CEST-EPI sequence. Our study
aimed to develop and test whether CEST multi-echo (CESTme) EPI sequence provides
significant sensitivity enhancement than the standard CEST single-echo EPI acquisition. To
do so, we prepared a tissue-like creatine gel pH phantom, and evaluated the magnitude of
the CEST effect, signal to noise (SNR) and contrast-to-noise ratio (CNR) as a function of
the number of echoes and signal averages. Our results showed that the CEST effect obtained
using CESTme MRI was independent of the echo time, and the use of a least-squares
optimization algorithm provided significant sensitivity enhancement compared to the
conventional single echo CEST-EPI sequence.

2. RESULTS

T4 and T, maps showed very modest change with pH. For the respective pH 6.5 and 6.0
compartments, T, was 2.76 + 0.05 s and 2.71 + 0.05 s; T, measured 79.9 + 2.1 ms and 81.7
+ 3.4 ms, respectively. Fig. 1a shows the CESTme MRI control images, whose intensity
decayed with the echo number (i.e., TE) due to T, relaxation. Fig. 1b shows TE-dependent
signals (lg, Irer and ljgpe) OF the inner pH compartment. The reference images were
consistently lower than the control image due to direct RF saturation. In addition, the CEST
label images were lower than the reference images, giving evidence of the pH-sensitive
CEST effect. Notably, there appeared to be an oscillation pattern between even and odd Carr
Purcell Meiboom Gill (CPMG) echoes, which is attributable to subtle flip angle error and
phase dispersion of refocusing pulses (32—34). The decay in signal intensity with respect to
echo time can be described by a mono-exponential decay function (i.e., I(TE)=I*exp(-TE/
Toeff))- Toeff Was 99.1, 99.1 and 99.4 ms for the control, reference, and label images,
respectively, indicating negligible effects from CEST RF saturation. This also suggested that
To-relaxation-induced signal decay should not affect the magnitude of CEST effect resulting
from normalization by asymmetry analysis. It is important to point out that T derived
from CESTme MRI was slightly longer than the T, measured using the single spin-echo
MRI sequence. This is because the CPMG sequence can more effectively suppress T,* and
background gradient-induced signal loss than the conventional single spin-echo MRI (35—
37).

Fig. 2a shows CEST images reconstructed from each echo of the CESTme EPI
independently (i.e., CESTR(i)=(Iref(i) = lapel(i))/1o(i)), where i is the ith echo number. The
magnetic field homogeneity was —1.8+1.4 Hz within the slice, and no field correction was
necessary (38). Because the control, reference, and label images decay at the same rate,
CESTR showed very little change with TE (Fig. 2b). Specifically, CESTR as a function of
echo time can be described by linear regression as CESTR(TE)=14.0 — 2.19*1073xTE %
and CESTR(TE)=8.19 +1.02*1073x TE %, respectively for the pH 6.5 and 6.0
compartments (Fig. 2b). There was no significant correlation between CESTR and TE
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(P>0.15) for either pH compartment. However, the standard deviation of the CEST effect
increased over TE due to To—induced signal decay. Indeed, whereas the contrast between the
two pH compartments was independent of TE, and expressed as ACESTR=5.85
-3.21*1073*TE % (Fig. 2b), the CNR decayed with TE with an effective time constant of
92.2 ms (Fig. 2c).

Fig. 3 shows CEST images obtained from the least-squares optimization of CESTme MRI
(number of signal averages (NSA)=2). CESTR maps up to ith echo were averaged based on

N N
| (Do cms TR, ) /3 et
normalized T, decay coefficient (i.e., \ ;= = ). The CNR for

the CESTR images was 11.0, 13.9, 15.0, 15.5 and 15.4 from the first echo alone and the
least-squares optimized superposition of CEST images from the first two, three, four and
five echoes, respectively (Fig. 3a). It is important to note that CNR plateaued when
superimposing the first five images, with CNR 41% higher than that obtained using the
conventional single echo CEST-EPI. We also compared CNR of CEST images for NSA of
1, 2 and 4. We found that the CNR gain from the proposed CESTme MRI is approximately
equivalent to that obtained by doubling the number of signal averages (Fig. 3a). In addition,
SNR for each pH compartment was evaluated as a function of spin echo number, with
sensitivity gain similar as CNR (Supplemental Materials). We compared CEST maps from
the proposed CESTme EPI and the standard single echo CEST EPI (NSA=2). For the single
echo CEST-EPI map, CESTR was 14.1 + 0.5 % and 8.2 = 0.5 % for the 6.5 and 6.0 pH
compartments, respectively (Fig. 3b). In comparison, least squares optimization of the first
five echoes obtained using the proposed CESTme MRI yielded CESTR of 13.9 + 0.3 % and
8.3 £ 0.4 %, respectively (Fig. 3c). The CNR increased from 11.0 to 15.4.

3. DISCUSSION

Our study demonstrated that for the same scan time CESTme MRI provides significantly
improved sensitivity from the conventional single echo CEST-EPI sequence. This is
advantageous because the sensitivity gain from the proposed sequence can be harnessed to
improve the spatiotemporal resolution, particularly important for time-sensitive studies such
as acute stroke MRI. Our study demonstrated CEST multi-echo EPI in vitro using a
commonly used 4.7 T preclinical Bruker scanner, and future work will translate and evaluate
CESTme EPI in clinic. Notably, because endogenous amide proton CEST MRI contrast is
small, it is important to balance the spatial and temporal resolution, which the proposed
CESTme EPI may help address. When large image matrix size is necessary, it is necessary
to minimize multi-echo acquisition time in order to maximize its sensitivity. This can be
somewhat addressed by using fast acquisition strategies including partial k-space sampling,
segmented acquisition, spiral EPI and compressed sensing techniques, which are beyond the
scope of our current work. Interestingly, because T is longer at lower field strength, T,-
induced signal attenuation is mitigated at typical clinical field strengths, which should aid
the sensitivity gain of the proposed CESTme MRI. In addition, the multi-echo EPI
acquisition strategy can be implemented in a host of emerging CEST sequences, including
frequency-labeled exchange (FLEX), chemical exchange rotation transfer (CERT) and
saturation with frequency alternating RF irradiation (SAFARI) (39-41). Moreover,
improved sensitivity should facilitate ongoing development of quantitative CEST (QCEST)
analysis (42-47).

The proposed CESTme MRI forms an image from every echo independently, and multi-
echo images are averaged using the least squares optimization algorithm to enhance its
sensitivity. This is different from CEST MRI sequences where multiple echoes are used to
fill out k-space for a single image (31,48). Because CEST effect is often calculated using the
asymmetry analysis, the effect of refocusing pulse on concomitant magnetization transfer
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contribution to CEST measurement should be reasonably small. Indeed, Zhu et al.
demonstrated similar contrast between cerebellum and cerebrum between the fast low angle
shot (FLASH) sequence and gradient echo and spin echo (GRASE) sequence (48). Because
our study showed that sensitivity gain of CESTme EPI plateaued after five echoes (Fig. 3),
we expect the effect of a relatively small number of refocusing pulses on CEST
measurement should be negligible. It is important to note that because SNR of the raw
images was relatively high, and the asymmetry analysis calculated the difference between
the normalized reference and label images, the Rician noise can be approximated by
Gaussian noise to yield a sensitivity gain despite the use of magnitude images (49). This can
be improved by taking into account the phase information. However, there may be a subtle
yet non-negligible phase shift among echoes, the correction of which requires sophisticated
reconstruction algorithms that are beyond the scope of this current work.

4. CONCLUSIONS

Our study demonstrated that CEST images from the proposed CESTme EPI exhibited
significantly enhanced sensitivity compared to images acquired using the routine single echo
CEST-EPI sequence. These findings hence indicate that CESTme MRI provides a sensitive
acquisition strategy that is promising to augment applications of CEST imaging.

5. EXPERIMENTAL

PHANTOM

MRI

A CEST phantom was prepared using creatine and low gelling point agarose, as described
previously (4). We prepared 1.5% agarose and copper sulfate (0.65 mM)-doped phosphate-
buffered saline (PBS) solution (Sigma Aldrich, St Louis, MO). The mixture was microwave
heated and immersed in a water bath set at 50°C (Cole-Parmer, Vernon Hills, IL). When the
temperature of the gel solution stabilized, we added creatine to reach a concentration of 50
mM, and titrated the pH to 6.5 and 6.0 (EuTech Instrument, Singapore). We then transferred
the creatine gel solution into a 2-compartment concentric phantom container; pH was 6.5
and 6.0 for the inner and outer compartments, respectively. The phantom was solidified at
room temperature before MRI experiments.

Images were acquired using a 4.7 Tesla small-bore scanner (Bruker Biospec, Billerica, MA).
We used single-shot single-slice EPI (slice thickness = 5 mm, field of view=50x50 mm,
image matrix = 64x64, bandwidth=225 kHz). For CEST imaging we probed the creatine
amine proton exchange at 6.6 ppm (1.9 ppm from bulk water resonance). Fig. 4 shows the
CESTme MRI sequence, which includes a long continuous-wave RF irradiation pulse,
followed by CPMG multi-echo EPI acquisition (repetition time (TR)/saturation time
(TS)=10/5s, B1=0.75 uT). We obtained five echoes with TE multiples of 24 ms. CEST
experiments were repeated with the number of signal averages (NSA) varied 1, 2, and 4
times. Their scan time was 30, 60 and 120 s. In addition, Tq map was measured using an
inversion recovery sequence with six different inversion times (T1) of 0.25, 0.75, 1, 2, 3 and
55 (TR/TE=10 s/23 ms, NSA=2), and T, map was derived from five separate spin-echo
images with TE of 30, 60, 90, 120 and 150 ms (TR=10 s and NSA=2)(50). Furthermore, we
obtained the field map using To*-weighted MRI (TR= 10 s and NSA=2), with asymmetric
echo time shift of 1, 3, 5 and 7 ms. Images were processed using the Matlab (Mathworks,
Natick, MA), and values were reported as mean + standard deviation (SD). We calculated
the CEST effect as CEST ratio (CESTR), following standard asymmetry analysis, using the
equation CESTR=(T;ot—T1abe1 ) /To, Where ljapel and lpef are the label and reference images
with RF irradiation applied at the labile proton frequency (Awg) and reference frequency
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(—Aws), respectively; lg is the control image without RF irradiation. Furthermore, SNR was
calculated (i.e. CESTR /o) for each pH compartment, where o is the CESTR standard
deviation of each pH compartment (i.e. opH=¢ 5 and opH=6.0)- CNR was calculated as (i.e.

ACESTR

\/ (UEH:6.5+U§H:G.O> / 2), where ACESTR is the CESTR difference between the two pH
compartments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

CESTme MRI signal as a function of echo time. a) Image intensity decays with respect to

TE. b) The decay of control, reference, and labels images with respect to TE can be
described by T relaxation.

Contrast Media Mol Imaging. Author manuscript; available in PMC 2015 March 01.



1duasnuein Joyny vd-HIN 1dussnuein Joyny vd-HiN

1duosnuey Joyiny vd-HIN

Sunetal. Page 10

a)
# of echo CESTR (%)
b) c)
20 15
15 pH=6.5
o Q
S5 o-0-b b 0] %
a4 Q
!71 10 pH=6.0 6
bbb o.
kuj ¢ 4) 5 Q.
5 el
0 0
0 50 100 150 0 50 100 150
TE (ms) TE (ms)
Fig. 2.

Evaluation of CEST images obtained from the proposed CESTme MRI. a) CEST-weighted
images reconstructed from each of the echoes. b) CEST effect shows little change with TE.
c) The CNR between two pH compartments decays with TE due to T,-induced signal loss.
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Fig. 3.

Evaluation of sensitivity gain of CESTme MRI. a) CNR from CESTme MRI increased and
plateaued with the number of echoes. b) CEST image reconstructed from the first echo. c)
CEST image calculated from the least-squares-optimized CESTme MRI of all five echoes.
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INlustration of the proposed CESTme MRI sequence, including a long RF irradiation pulse

followed by CPMG multi-echo EPI.
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