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We introduce a numerical model for the spread of a lethal infectious disease in wildlife. The reference model
is a Susceptible–Exposed–Infectious system where the spatial component of the dynamics is modelled by a
diffusion process. The goal is to develop a model to be used for real geographical scenarios, so we do not rely
upon simplifying assumptions on the shape of the region of interest. For this reason, space discretization is
carried out with the finite element method on an unstructured triangulation. A diffusion term is designed to
take into account landscape heterogeneities such as mountains and waterways. Numerical simulations are
carried out for rabies epidemics among raccoons in NewYork state. A qualitative comparison of numerical
results to available data from real-world epidemics is discussed.
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1. Introduction

Epidemiologists have long used mathematical models to simulate the transmission of a disease
throughout populations. These models allow for an understanding of the processes at work and
for predicting future epidemics. The large majority of these epidemiological models have a com-
partmentalized design and are composed of a system of ordinary differential equations in time.
Though some aspects of compartmentalized models are extremely well developed (such as the
rate of infection and stability of solutions for simple cases), these models do not always account
for the movement of individuals from one region to another. This can be a significant limitation,
especially when dealing with wildlife diseases, as the daily movement and seasonal migration of
animals can have major effects on the transmission of the disease itself. Describing the movement
of individuals across a region in a mathematically rigorous and epidemiologically tractable way
has been done following different approaches [14,18]. The canonical procedure is to discretize the
population and the geography into geopolitical units and to consider the movement of individuals
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from unit to unit [18,29]. Although better than ignoring movement, this approach suffers from
several limitations. The average movement of animals generally does not fit the scale and shape of
geopolitical units, requiring the introduction of artifacts such as long-distance translocations [30],
whose features can be difficult to interpret. Moreover, geopolitical subdivision is of little efficacy
when one wants to include the geographical heterogeneities of the landscape.

In this article, we model movement as a continuous process across the geographical region
of interest by means of a time-dependent diffusion process. This results in a system of partial
differential equations (PDEs) of parabolic form [14,17,28]. Parabolic (diffusion) PDE’s can be
regarded as a macroscopic representation of Brownian motion and are therefore a natural candidate
for modelling the movement of wild animals. Our aim is to describe the spread of the infection in
a real two-dimensional region of interest �, with no simplifying assumptions on the shape of the
region. Simple finite difference schemes, as used for instance by Miller Neilan and Lehnart [22],
cannot incorporate realistic geographic features. Instead, we turn to unstructured discretization
grids, which naturally lead to using finite elements in space, as they are well suited for these
kinds of triangulations. Other researchers have used finite elements for the diffusion of age-
structured populations [1,7,12,19,23], but carried out numerical tests only on simple geometries
such as rectangles or one-dimensional intervals. Finite elements in an epidemiological context
are considered by Kim and Park [20], but they focus only on proving stability and convergence
results for the scheme and do not provide numerical results.

For illustration purposes, we focus throughout this article on the diffusion of rabies among
raccoons in the state of New York in the USA. A representation of the region of interest has been
retrieved by satellite maps, and the specific geographical features are included in the coefficients
of the diffusive terms. Rabies, a viral encephalomyelitis, has the longest extant record of reports
of any zoonotic disease in the USA. Raccoons (Procyon lotor) are a major carrier of the disease
across North America, together with foxes, bats and skunks [26,31]. While a successful vaccine
for humans and other mammals against rabies exists, and human fatalities are rare, the economic
cost of widespread animal vaccination and the danger of rabies to threatened species makes
understanding the spread of rabies in wildlife hosts important to epidemiologists [27,31]. It is
worth noticing, however, that the results we provide can be extended to other types of infectious
diseases in wildlife and to different regions of interest.

The structure of the article is as follows. In Section 2, we introduce the Susceptible–Exposed–
Infectious (SEI) model with diffusion. We describe in Section 3 how we incorporate spatial
heterogeneities of the landscape in the diffusion coefficients. Section 4 introduces the space and
time discretization of the associated system. Finally, in Section 5, we provide a proof of concept
of our numerical model by simulating the disease in New York. We first perform a sensitivity
study with respect to the parameters of the model. Subsequently, in order to investigate a practical
application, we simulate the spread of an epidemic of rabies in raccoons from 1990 to 1994, and
compare those results qualitatively with the available public health data [25].

1.1. Notation

Let � ⊂ R
2 be a two-dimensional domain of interest with coordinates x, y. We denote by s(x, y, t),

e(x, y, t), and i(x, y, t) the densities of the susceptible (individuals that can be infected by the dis-
ease), exposed (individuals that have been exposed to the virus but do not have evident symptoms
yet), and infectious populations, respectively, at location (x, y) and time t. The total number of
SEI individuals at time t are given by

S(t) =
∫

�

s(x, y, t) dx dy E(t) =
∫

�

e(x, y, t) dx dy I(t) =
∫

�

i(x, y, t) dx dy,
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respectively. We introduce the auxiliary variable,

ntot(x, y, t) = s(x, y, t) + e(x, y, t) + i(x, y, t),

representing the population density at location (x, y) and time t, and the total population at time
t is given, therefore, by

Ntot(t) =
∫

�

ntot(x, y, t) dx dy.

The vector of unknowns [s, e, i]T(x, y, t) will be denoted by u(x, y, t).
In this article, we refer to the variational formulation of the SEI model, which relies upon the

definition of proper functional spaces. In particular, we denote by L2(�) the space of functions f of
x, y such that

∫
�
(f (x, y))2 dx dy < ∞. If, in addition, ‖f ‖2

1 ≡ ∫
�
(f 2 + (∂xf )2 + (∂yf )2) dx dy <

∞, we say that the function belongs to the Sobolev space H1(�). When f is also function of
time, the quantity ‖f ‖1 depends on time. If this function is such that

∫ T
0 ‖f ‖2

1(t)dt < ∞, we say
that f ∈ L2(0, T ; H1(�)). We use the same notation with bold font for vector functions whose
components each belong to this space. Bold characters will be used generally for vectors or vector
functions (according to the specific context).

2. The SEI model with diffusion

The SEI model divides the population into SEI individuals. In more general cases, a fourth group
of recovered individuals could be considered (resulting in an SEIR model). For simplicity, we
do not include the effect of vaccination in this work, and so the recovered class is empty in this
setting, since rabies is lethal for raccoons. We point out, however, that the following arguments
can be straightforwardly extended to an SEIR model.

We model the spread of an epidemic in � by the following nonlinear system of reaction–
diffusion equations of parabolic type:

∂ts = α(s + e) − βsi − μ0sntot + div(νs∇s),

∂te = βsi − σe − μ0entot + div(νe∇e),

∂t i = σe − μ0intot − φi + div(νi∇i)

(1)

for all (x, y, t) ∈ � × (0, T). Here, we assume that only susceptible and exposed individuals are
able to reproduce, and we denote by α the (constant) reproduction rate. Such an assumption is
quite reasonable, since on the one hand, the expected survival of a rabid raccoon is much too short
to carry on a pregnancy, and on the other hand, even in the case a pregnant rabid female is able
to deliver, her offspring are very unlikely to survive, as the mother is going to die shortly. In a
more general epidemic, where the life expectancy of an infectious individual is longer, such an
assumption can be relaxed, and the birth term can be replaced by αntot. In Equation (1), β denotes
the infectiveness of a contact between a susceptible and an infectious individual, σ the reciprocal
of the latency period, and φ the reciprocal of the life expectancy of a rabid raccoon. We assume
a density-dependent mortality rate in the absence of epidemic μ0ntot. The diffusion coefficients
are organized in three 2 × 2 tensors, νs, νe, νi, designed to take into account the heterogeneities
of the landscape, and are thus dependent on the spatial location. The epidemiological parameters
above (β, σ , φ) can be considered constant for a well-studied and understood disease. Concerning
the parameters of the vital dynamics, the mortality rate μ0 depends on the carrying capacity of
the environment, it can vary from one region to another to account for hospitality of different
areas, but it can be considered constant within the regions. It can also change in time to model
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abrupt variations in the environment itself (flood, drought, fires). Finally, the reproduction rate α

can be either considered constant to average births along the year or time-dependent to introduce
seasonality in the process.

The vector compact representation of system (1) reads

∂tu − div(ν∇u) = (A − B(u))u (2)

with

u =
⎡
⎣s

e
i

⎤
⎦ , ν =

⎡
⎣νs 0 0

0 νe 0
0 0 νi

⎤
⎦ , A =

⎡
⎣α α 0

0 −σ 0
0 σ −φ

⎤
⎦ ,

B(u) =
⎡
⎣−μ0ntot −βs 0

βi −μ0ntot 0
0 0 −μ0ntot

⎤
⎦ .

This representation points out that our system is in fact a vector generalization of the well-known
(scalar) normalized Fisher’s equation

∂tu − ∂xxu = (1 − u)u

that has been introduced in [10] for genetic studies. An analysis of this equation and, more
specifically, of its travelling waves solutions (i.e. solutions of the form u(x, t) = g(x − γ t), for
g(·) a function and γ a scalar number to be identified) can be found in [28].

System (1) is completed by some suitable initial conditions

s(x, y, 0) = s0(x, y) > 0, e(x, y, 0) = e0(x, y) ≥ 0, i(x, y, 0) = i0(x, y) ≥ 0

for (x, y) ∈ �, and by boundary conditions to be prescribed over the entire boundary ∂�. If we
assume that the region of interest is isolated, we prescribe homogeneous Neumann boundary
conditions

n · ∇s = n · ∇e = n · ∇i = 0 for (x, y, t) ∈ ∂� × (0, T).

Other boundary conditions could be considered as well. For instance, a non-zero function of time
in the Neumann conditions corresponds to some (known) migratory flux. To instead force s =
e = i = 0 (homogeneous Dirichlet conditions) would assume that outside the region of interest,
the habitat is so hostile that no individual survives. Alternatively, a non-homogeneous Dirichlet
condition would assume that data on the actual size of the different populations at the region
boundary are available. Robin conditions could also be used to have the migration dynamics
depend on the population itself.

Hereafter, we consider an isolated system (homogeneous Neumann conditions).

2.1. Variational formulation of the problem

The finite element solution of the problem relies upon its variational formulation. Let v(x, y, t) be
an arbitrary three-component vector in H1(�). We multiply Equation (2) by v and integrate over
� to get

d

dt

∫
�

u · v + ν∇u : ∇v dω =
∫

�

(A − B(u))u · v dω, (3)

where we have exploited the Green formula and the homogeneous Neumann conditions. The vari-
ational formulation of the problem we consider can be stated as: Find u(x, y, t) ∈ L2(0, T ; H1(�))
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such that Equation (3) holds with the initial condition u(x, y, 0) = u0(x, y). Note that if � has a
Lipschitz continuous boundary, each term of this formulation is well defined, since thanks to the
Sobolev embedding theorem, the product of two functions belonging to H1(�) in two dimensions
is in L2(�), and so

∫
�

(A − B(u))u · v dω is integrable [21].

3. Modelling of landscape heterogeneities

In this work, we consider two kinds of geographical heterogeneity in the region of interest that
are modelled in two different ways.

(1) Localized heterogeneous effects, such as the close proximity of a major waterway that locally
drives the movement of the wild animals.

(2) Extended heterogeneous regions, where the dynamics of the infection are significantly affected
by particular features. This is the case of lakes, for instance.

In the latter case, we consider a splitting of the domain of interest into homogeneous subregions.
In the former one, we modify the diffusivity tensors to describe the effects of the heterogeneity
on the population dynamics.

3.1. Localized heterogeneous effects

Some features of the region of interest can induce local modifications to the dynamics. This
can be modelled by a proper dependence of the coefficients in Equation (1) on the geographical
coordinates x, y. For instance, we can argue that mobility of the animals in the mountains is
reduced by the presence of physical obstacles. We therefore set a reduced value for the diffusivity
in these zones.

Rivers also present an obstacle, as movement across the waterway is restricted. Since their
dimension is small in comparison with the region of interest, we do not introduce a bidimensional
description of the rivers to avoid useless computational burdens. Instead, we resort to a monodi-
mensional representation, where the waterways’ impact on the raccoons’ dynamics is represented
by a modification of the diffusivity coefficient. More precisely, we reduce the mobility of raccoons
across the rivers by a diffusion reduction in the direction normal to the river. In practice, to each
point of the river, we associate a local tangent/normal frame of reference (Figure 1, left) with
unit vectors eτ , en, respectively. In a neighbourhood 
 of width 2ε of the river the diffusivity is
gradually decreased, as indicated in Figure 1, right. Denoting by ν̂k (k = s, e, i), the quantities
evaluated in the normal/tangent frame of reference, respectively, we have in 


ν̂s =
⎡
⎢⎣

νH 0

0 νH − (νH − νL) exp

(
1 − ε2

ε2 − ŷ2

)
⎤
⎥⎦ , (4)

where ŷ is the distance from the river along the local normal direction, νH and νL are the high and
low diffusivity values, the former being the ‘regular’ value and the latter being the diffusivity at
the river. The function decreases the value of the diffusion coefficient ν from νH to νL.

The tensor (4) is then transformed to the Cartesian global frame of reference, by means of the
rotation matrix R, which aligns the local frame of reference to the global one. By standard vector
calculus manipulations, we have that

νs = Rν̂sR
T .

Similar arguments are used for the diffusivity tensors νe and νi.
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Figure 1. Left: normal/tangent reference frame along the river. Right: diffusion coefficient in the normal direction to
the river, with νH = 100, νL = 1, and ε = 0.2.

In particular, we have applied this to the Hudson and Mohawk rivers in our New York state, for
example.

Note that in such framework, the diffusivity tensor is a function of the space coordinates only
in the neighbourhood of the river, while it is (piecewise) constant in the rest of the domain. As a
consequence, the divergence term in the model introduces a convection in the raccoons dynamics
induced by the waterways.

3.2. Strongly heterogeneous subregions

In some subregions, we can postulate that the population dynamics are significantly different, due
to geographical heterogeneities or other specific reasons that require modifications to Equation (1).
For instance, if we assume that wild animals are subject to a strong hunting activity in a specific
part of the geographical domain, we should locally correct the equations to include the effect
of the predators. In the presence of large bodies of water, we can eliminate the region from the
domain of interest under the assumption that no significant dynamics are occurring there. In our
case, we have introduced an internal boundary to the domain of interest corresponding to lakes,
with Neumann boundary conditions describing no flux of animals across the basin.

In general, when different dynamics are coupled, from the numerical standpoint, it is convenient
to split the domain into subdomains where each problem is solved separately, in a globally iterative
framework [33]. A more specific testing of domain decomposition techniques in the context of
population dynamics was investigated in [12].

In the numerical tests of this article, we have considered only the presence of the two major
Finger Lakes (Seneca and Cayuga), by excluding them from the computational domain.

4. Numerical approximation

A numerical solution of Equation (3) is obtained after a proper discretization of space and time
derivatives. The finite element method (FEM) is particularly suitable for complex geometries such
as the ones represented by the geographical regions we are interested in. Space discretization is
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therefore performed with FEM while a classical finite difference discretization is carried out for
the time discretization [9].

Let us consider a regular triangulation of the domain � and assume that the numerical solution
denoted by uh is piecewise linear on each element of the grid. The mesh has N nodes and h denotes
a representative dimension of each element. The solution can be written as

sh =
N∑

j=1

Sj(t)ϕj(x, y), eh =
N∑

j=1

Ej(t)ϕj(x, y), ih =
N∑

j=1

Ij(t)ϕj(x, y),

and uh = [sh, eh, ih]T, where ϕj(x, y) are the piecewise linear functions equal to 1 on the jth node
of the mesh and equal to 0 in all the other nodes. The finite element formulation is obtained
by plugging this representation of the solution into Equation (3) and selecting alternatively
v = [ϕi, 0, 0]T, v = [0, ϕi, 0]T, v = [0, 0, ϕi]T for i = 1, . . . , N . We obtain a 3N × 3N nonlinear
ordinary differential system in the form

MdU
dt

+ AU = F(U), (5)

where U = [[Si]i=1,...,N , [Ei]i=1,...,N , [Ii]i=1,...,N ] and

M =
⎡
⎣ M 0 0

0 M 0
0 0 M

⎤
⎦ , A =

⎡
⎣ As 0 0

0 Ae 0
0 0 Ai

⎤
⎦

with

Mij =
∫

�

ϕjϕi dx dy, (6)

and

[Aτ ]ij =
∫

�

(ντ (x)∇ϕj)∇ϕi dx dy, τ = s, e, i. (7)

Finally, F(U) = ∫
�
(A − B(uh))uh · vdω when v is selected as stated above.

Let us introduce now a time step �t and the instants tn = n�t, where we collocate the semi-
discrete problem (5). In particular, the incremental ratio

Un+1 − Un

�t

is an approximation of the time derivative either in tn+1 or tn, with an associated numerical error
proportional to �t. If we collocate it at tn+1, we have the implicit Euler method, and we have to
solve the nonlinear algebraic system

MUn+1 + �tAUn+1 − �tF(Un+1) = MUn.

This can be done with iterative methods, which, however, rapidly increase the computational
costs, since iterations are nested in the time loop. If we collocate the derivative at tn (explicit
Euler), the system to be solved is simply (Un is known by the previous time step or the initial
condition)

MUn+1 = −�tAUn + �tF(Un) + MUn.

The drawback of this method is that �t is subject to restrictions from numerical stability. In this
case, this restriction is proportional to h2, so it can be significantly limiting for fine reticulations.
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This is related to the explicit treatment of the (so called) stiffness term AUn. To circumvent the
drawbacks of the two approaches, we resort to a mixed implicit/explicit (IMEX) approach, where
the stiffness is treated implicitly and the nonlinear term is treated explicitly. At each time step, we
solve then

(M + �tA)Un+1 = �tF(Un) + MUn. (8)

This is a linear system and the stability constraints induced by the explicit treatment of the
nonlinear term are less restrictive than the ones induced by the stiffness. In our simulations, we
have been in practice free to select the time step in a reasonable range of values for the application
at hand. For a more extensive discussion and application of the IMEX method, see [11].

5. Numerical results

To prove the effectiveness of our proposed methodology, we apply it to the diffusion of rabies
among raccoons in New York state. The simulations throughout this session are done with a self-
developed code1 running in Matlab

� 7.11.0. Due to the temporal scale of epidemic dynamics,
we consider the month as the time unit measure, and in the simulations, we use a time step
�t = 0.1, roughly corresponding to 3 days. Table 1 summarizes the values of the epidemiological
parameters of the model, that have either been drawn from published values and US Department
of Agriculture sources (http://www.usda.org), or estimated indirectly. In particular, the birth rate
α, the contact rate β, the latency period 1/σ , and the infectious period 1/φ are taken from the
literature [2–4,6,16], while the rate of density-dependent mortality, μ0, is estimated indirectly to
produce a disease-free equilibrium within the range of reported densities for raccoon populations
for the eastern US (5–17 animals/km2; see Section 5.3.1 below for a more detailed discussion on
this aspect) [32,34].

5.1. The computational domain: main waterways, lakes, and mountains

We derived the computational domain from a satellite image of the state of New York with the
ImageJ [15] software. The coordinates of the computational domain will be expressed throughout
this section in Longitude and Latitude. The movement across the finger lakes in west-central
New York has been completely eliminated. We include the Hudson and Mohawk rivers as main
waterways by forcing mesh nodes along them. Figure 2 (left) illustrates the computational domain
with the included main waterways. The computational domain is then discretized by a regular
triangulation with Netgen [24], consisting of 64,759 nodes and 127,360 triangles, plotted in
Figure 2 (right).

The diffusion tensors are taken as isotropic diagonal tensors far from the Hudson and the
Mohawk rivers and the mountains, with the same value along x and y given by νH = 0.01.
The mountain region is identified as the interior of the circle centred at (−74.5, 44) with radius
0.7, where we assume the diffusivity νM = 5 × 10−3 × νH . These values have been tuned with a

Table 1. Coefficients of the SEI model (1).

α Birth rate 2.67 k/f/y

β Contact rate 1e−4 (ad)−1

1/σ Latency period 50 Days
1/φ Infectious period 14 Days

http://www.usda.org
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Figure 2. The computational domain including finger lakes and main waterways and its finite elements triangulation.

Figure 3. Left to right: diffusion in the x-direction, cross-diffusion, and diffusion in the y-direction (νH = 0.01,
νL = 5 × 10−3 × νH ).

trial-and-error approach (with respect to real available data). Around the major rivers, we compute
the tensors as described in Section 3.1. We plot in Figure 3 the resulting diffusion coefficients.

As expected, the off-diagonal terms vanish everywhere except in a narrow neighbourhood of
the river, following the turns of the river itself.

The computational domain we consider obviously does not take into account all of the hetero-
geneities of the New York landscape. Woods and mountains in the southern region, as well as
interstates and major highways could also be included. However, the treatment of such hetero-
geneities would not differ too much from what we proposed so far. In particular, interstates and
highways can be treated in the same manner as rivers, although expecting a far less significant
reduction in the normal diffusion coefficient (raccoons are not good swimmers and actually are
more likely able to cross interstates).



40 J.P. Keller et al.

Figure 4. Infectious wave spread. Shielding effect of river, lakes and mountains on the propagation front of Ibase at
different times (νH = 105 × νL). Left to right: 12, and 24 months after infection.

5.2. Simulation of a fictitious epidemics

To evaluate the effectiveness of our modelling of the landscape, we first simulate a fictitious
epidemic starting in the centre of the state. We assume that, at the beginning of the epidemic, the
raccoon population is at equilibrium at the carrying capacity. From available data in the literature,
we assume that the raccoon density is 11 animals/km2 [32]. We consider homogeneous Neumann
boundary conditions and we introduce an initial density of infectious and exposed individuals,
i0 = 0.5 and e0 = 1.5 animals per km2, respectively, localized in a circle of radius 0.1 with
centre (−75, 42.5), which is near Oneonta in Otsego County. We consider an isotropic diffusion
coefficient across the whole domain �, except along the rivers, with the following baseline values:

νH = 10−2 km−2 year−1, νL = 10−5 × νH , ε = 0.08. (9)

In the northern mountain region, identified as the interior of the circle centred in (−74.5,44) with
radius 0.7, we consider the diffusion coefficient νM = 5 × 10−3 × νH , and we reduce the carrying
capacity to 8 animals/km2.

We denote by Ubase = [Sbase, Ebase, Ibase]T the solution associated with the above baseline values.
We plot in Figure 4 the spread of the infectious wave: the shielding effect of the river and the
influence of the presence of lakes are clearly visible.

To study the sensitivity of the numerical approximation to the modelling parameters of the
major rivers, we consider the following solutions:

(1) UnoRiver = [SnoRiver, EnoRiver, InoRiver]T, computed with a constant diffusion coefficient

νH = νL = 10−2 km−2 year−1.

(2) Uτ = [Sτ , Eτ , Iτ ]T, obtained by modifying the diffusion coefficient across the river, but
keeping the baseline value of the distance ε unchanged:

νH = 10−2 km−2 year−1, νL = 10−τ × νH , ε = 0.08.

(3) Uε = [Sε , Eε , Iε]T, obtained by modifying the value of the distance ε, while keeping the
baseline value of the diffusion across the river unchanged:

νH = 10−2 km−2 year−1, νL = 10−5 × νH , ε = 0.16.

We plot in Figure 5 the difference between the spread of an infection with uniform diffusion
coefficients and the one with the landscape heterogeneities included, namely the infectious den-
sities difference InoRiver − Ibase at different times after insurgence (12, 24, and 36 months). The
significant difference in the propagation speed follows from the shielding action of the river and
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Figure 5. Effect on the propagation front of including landscape heterogeneities at (left to right) 12, 24, and 36 months.
Top row: InoRiver − Ibase. Bottom row: relative difference (InoRiver − Ibase)/InoRiver .

Figure 6. Effect of diffusion reduction normal to the river on the propagation front at (left to right) 12, 24, and 36
months: Ibase − I7.

Figure 7. Effect of the distance ε on the propagation front at (left to right) 12, 24, and 36 months: Ibase − Iε .

can be appreciated by the bottom row in Figure 5, where we plot the relative difference between
Ibase and InoRiver.

In Figure 6, we highlight the sensitivity of the shielding effect of the river to the reduction
factor between the normal and the tangential diffusion along the river. We plot the differences
between the infectious density in the baseline solution and the infectious density in Uτ for τ = 7.
The expected monotonicity of the shielding effect with respect to the ratio νH/νL is confirmed by
the numerical simulation.

Finally, in Figure 7, we show the effect of the threshold parameter in the definition of the
diffusion tensor across the river, by plotting the difference between the infectious density of the
baseline solution, and the solution computed with a doubled threshold parameter (Ibase − Iε).
Again, as expected, the larger the threshold, the larger the shielding effect in the propagation of
the infection.

These results highlight the relevance of the presence of rivers on an epidemic. The relative
difference in infectious population density in the presence and absence of rivers is 10%. The
numerical values of the parameters have an impact of at most 3% on the results, in the presence
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of variations in the threshold. A far less significant impact is associated with changes in the ratio
νH/νL.

5.3. Simulation of the New York state epidemic outbreak (1990–1994)

In order to test our method with a more realistic problem, we simulate an epidemic spread that is
inspired by the raccoon rabies epizootic that spread in the state of NewYork from the early 1990s.
Since World War II, three major regional epidemics of rabies in animals have appeared and are
still ongoing. Two of them (one in Europe, one in Canada) are primarily associated with red fox
(Vulpes vulpes), while the third one is occurring in the USA, and appears to have multiple hosts.
The east coast of the USA has experienced an epidemic of rabies among raccoons (Procyon lotor)
since the early 1970s. The epidemic began at the boundary between Virginia and West Virginia
and spread northeast through Pennsylvania and Connecticut and southeast to North Carolina.

On 4 May 1990, the first case of a rabid raccoon was recorded in the state of New York, in
the township of Addison, Steuben County, on the New York/Pennsylvania border. By the end of
1994, the epidemic had propagated across a great part of the state.

5.3.1. Initial and boundary conditions

We assume the population to be at the carrying capacity at the beginning of the epidemic. One
of the major difficulties in studying epidemics in wildlife is the scarcity of available information
about the actual size of the at-risk population under investigation, and the raccoon population in
New York is no exception to this.

The best estimates in the literature report raccoon density in eastern USA to be in the range
of 5–17 animals per km2 [32,34]. However, according to the New York State Department of
Environmental Conservation [25], raccoons are more keen to live in areas where the human
presence is larger. To study the impact of the population distribution on the epidemic spread, we
consider two possible initial conditions, one assuming uniform density of animals across the state,
and the other one considering heterogeneous density. In the former case, we assume everywhere
the reported average raccoon density of 11 animals per km2. In the latter one, we assume the
homogeneous case as baseline and we add a correction to this distribution that takes into account
the human population density. As a consequence, we obtain an initial population density between
8 and 14 animals per km2, where the highest values are associated with the most populated areas,
such as NewYork City and its surroundings, Albany, Ithaca, and Syracuse, while the lowest values
are associated with the less populated ones, such as Clinton, Franklin, and Hamilton Counties,
for instance. We plot in Figure 8 (left) the heterogeneous initial condition across the whole state.

Figure 8. Initial conditions for the total raccoon population, and epidemic outbreak locations.
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We also prescribe homogeneous Neumann boundary conditions on the border of the state. Note
that if the assumption of an isolated environment makes perfect sense for the portion of boundary
lying along water (Erie and Ontario lakes, Saint Lawrence and Hudson river, the Atlantic ocean
around Long Island), it may be questionable when applied to the portion of boundary that borders
Pennsylvania, Connecticut, and Vermont. However, since we do not have information about the
actual movement of raccoons across those borders, we chose to consider New York state as an
isolated environment. We describe the epidemic wave propagating north from Pennsylvania and
west from Vermont by including source terms in the areas where the first cases have been reported.

5.3.2. Qualitative comparison with real data

To best reproduce the real-world data, the source terms for the epidemic were placed at the three
locations highlighted in Figure 8 (right). These locations correspond to the first confirmed case of
rabies in three areas of the state. Each source term was added at the month corresponding to the
first confirmed case in that region. The central-western source term, centred at (−77.24,41.80),
is at the location of the first confirmed case in the state, in Steuben county, thus it is introduced at
t = 0. Also at t = 0, the south-central source in Sullivan county is introduced, centred at (−75.01,
41.67). Both of these first two source terms have a circular radius of 0.2. The next source terms
are the western source, centred at (−77.80,41.80) with radius 0.2 and introduced at t = 4, as well
as the south-eastern source, centred at (−73.61, 41.33) with radius 0.1 and introduced at t = 11.
These times (4 and 11 months) correspond to the moment when the epidemic reached Cattaraugus
and Westchester counties, respectively.

We use the model values from Table 1 and the coefficients of the baseline simulation of the
previous section (9). To take into account the separation of Long Island from the mainland, we
also reduce the diffusion across the East River, by considering a normal diffusion coefficient
νER = 10−8 × νH , still combined with a threshold parameter ε = 0.08.

The model we simulate does not take into account the oral vaccination policies implemented
in reality in Clinton, Essex, and Franklin counties beginning in the fall 1995. Thus, we limit
our comparison with real data to the early stage of the epidemic outbreak (1990–1994). We run
simulations both assuming a uniform raccoon population density and assuming the population
distribution plotted in Figure 8. We plot in Figure 9 the spread of the infectious wave, together
with the corresponding available data [25]. The epidemic waves match qualitatively, suggesting
that even a moderate mesh like the one used here (the average area of each element is 1.10 km2)
is enough for the problem at hand.

A more quantitative comparison is not readily feasible, as the available data are counts of
reported rabies cases, while our model provides the density of rabid raccoons in a given area.
Moreover, the high uncertainty surrounding the actual total raccoon population would spoil such
comparison of all meaning. On the qualitative side, the propagation of the infection wave is quite
well captured, in the uniform initial population case, in the north-northeast direction, but it seems
too fast in the westbound direction. In the case of heterogeneous initial population, on the other
hand, the westbound spread appears too fast towards the Buffalo area and the Ontario Lake, and at
the same time too slow in the area close to the state southern border. This latter behaviour is likely
a consequence of the homogeneous Neumann boundary conditions along the southwest border.
The epidemic wavefront is actually part of a larger epizootic moving north from Pennsylvania,
and the appearance of infectious cases along the border should be taken into further account.

Both simulations feature an infection spread in the Long Island area, where no rabid cases
were reported in the period under consideration. Soon after the wavefront reaches the area, the
high raccoon population density triggers an outbreak even in the presence of a small density
of infectious. This is particularly evident in the heterogeneous population case: the higher the
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Figure 9. Propagation of a realistic rabies epidemics in New York state at different times (left to right: 1, 2, and 3 years
after infection). Top: uniform initial population. Middle: reported data [25]. Bottom: heterogeneous initial population.

Figure 10. Propagation of a realistic rabies epidemics in New York state at different times (left to right: May 1991,
November 1992, and June 1994). Top: uniform initial population. Middle: total reported data aggregated per county [25].
Bottom: heterogeneous initial population.
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raccoon density, the larger the error. Since the wavefront reaches Long Island in a time consistent
with the data, the problem can be addressed in a twofold manner. On the one hand, one could
further reduce the normal diffusion across the East River. On the other hand, the high human
population density in the area results in high levels of surveillance [13], and so infectious animals
are more easily identified and removed. Thus, another possibility could be to reduce the infection
rate in the area as a consequence of the high level of surveillance.

The comparison in Figure 9 does not really take into account the dynamics of the epidemic
itself, as it focuses more on the propagation speed of the infection wave. To have a more accurate
comparison, we considered not only the location of the reported cases, but also their quantity.
We thus compared the results obtained with both the uniform and the heterogeneous population
with the cumulative reported cases aggregated by county and in time, that we report in Figure 10.
From this last comparison, it appears that the heterogeneous initial population, despite suffering
from the problems highlighted above, performs better in identifying spatial clusters of infectious
individuals that clearly emerge from reported data.

5.3.3. Computational cost

The discrete problem is reasonably well conditioned and its numerical solution does not present
any significant difficulty. The mass and stiffness matrices are pre-assembled and the resulting
linear system is associated with a (194, 277 × 194, 277) matrix. The simulation of 10 years of
epizootic took about 3h45’ on a desktop computer with 3.2 GHz Intel Core i3 dual processor and
4 GB 1333 MHz DDR3.

6. Conclusions

We present here a numerical model to simulate the spread of a lethal, infectious disease across
a heterogeneous and continuous landscape. We introduced heterogeneities by including lakes,
mountains, and main waterways in a finite element settings that allow the use of unstructured grids,
which are better suited to represent a complex geographical domain. We provided a numerical
simulation showing the effectiveness of such modelling. In addition, the method proves to be
viable in reproducing the outbreak of a real epidemic of rabies among raccoons in the state of
New York from 1990 to 1994. This aspect has a major potential, as it renders such modelling a
solid tool, both in terms of accuracy in prediction and landscape description, and, most of all,
CPU time. Moreover, such modelling requires the tuning of a small number of parameters in
comparison to SEIR models based on geopolitical units [8,26], where also a full mixing matrix
has to be estimated.

However, further work still needs to be done. In this work, for instance, the diffusion coefficients
have been tuned empirically. Data assimilation procedures [5], that is, the parameter tuning based
on a rigorous minimization of the misfit between results and available measures, is anticipated to
improve the knowledge of such a crucial parameter. In a forthcoming article, we will introduce a
parameter estimation procedure of Bayesian type, based on the available observed data, which is
currently under investigation.
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