
Journal of Biological Dynamics, 2013
Vol. 7, Suppl. 1, 68–87, http://dx.doi.org/10.1080/17513758.2012.755572

A non-local evolution equation model of cell–cell adhesion in
higher dimensional space

Janet Dysona, Stephen A. Gourleyb* and Glenn F. Webbc

aMansfield College, University of Oxford, Oxford OX1 3TF, UK; bDepartment of Mathematics, University
of Surrey, Guildford, Surrey GU2 7XH, UK; cDepartment of Mathematics, Vanderbilt University,

Nashville, TN 37240, USA

(Received 4 May 2012; final version received 28 November 2012)

A model for cell–cell adhesion, based on an equation originally proposed by Armstrong et al. [A continuum
approach to modelling cell–cell adhesion, J. Theor. Biol. 243 (2006), pp. 98–113], is considered. The model
consists of a nonlinear partial differential equation for the cell density in an N-dimensional infinite domain.
It has a non-local flux term which models the component of cell motion attributable to cells having formed
bonds with other nearby cells. Using the theory of fractional powers of analytic semigroup generators
and working in spaces with bounded uniformly continuous derivatives, the local existence of classical
solutions is proved. Positivity and boundedness of solutions is then established, leading to global existence
of solutions. Finally, the asymptotic behaviour of solutions about the spatially uniform state is considered.
The model is illustrated by simulations that can be applied to in vitro wound closure experiments.
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1. Introduction

Cell invasion is important in many biological processes, particularly in the invasive stage of
cancer and in embryonic development [23,32]. There has recently been some interest in how to
mathematically model cell–cell and cell–extracellular matrix adhesions in the context of cancer
invasion, since the latter is believed to be characterized by a number of processes that include
loss of cell–cell adhesion and enhanced cell–matrix adhesion in addition to active migration, cell
proliferation and the secretion of matrix degrading enzymes [15]. Accurate modelling of cell
adhesion is, therefore, important, but it is challenging to do so using continuous mathematical
models because in such an approach one uses continuous variables for cell densities. Individual
cells are not recognized as such and, therefore, there is no representation of cell boundaries.

A modelling approach that aims to address these difficulties was proposed by Armstrong
et al. [2]. The ideas have been taken further and applied to various contexts by, for example,
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[3,12,15,23,31]. For a cell density p(x, t) the basic model in one spatial dimension is

∂p(x, t)

∂t
= δ

∂2p(x, t)

∂x2
− ∂

∂x

(
p(x, t)

∫ ρ

−ρ

g(p(x + ξ , t))h(ξ) dξ

)
+ f (p(x, t)) (1)

for x ∈ (−∞, ∞), t > 0 with initial condition p(x, 0) = φ0(x). Equation (1) incorporates a direct
representation of cell–cell contact via a non-local flux term, the integral term in Equation (1).
Spatially structured models of tumour invasion that incorporate other aspects such as haptotaxis
and age structure were considered in [9–11]; see also [34,35].

The purpose of the present paper is to formulate and analyse an extension of Equation (1) to the
case of N spatial dimensions, considering only cell–cell adhesion. Again letting p(x, t) denote the
cell density at (x, t), but now with x ∈ R

N , t > 0 and Bρ denoting the N-dimensional ball centred
at 0 and of radius ρ, we propose the equation

∂p(x, t)

∂t
= δ�p(x, t)︸ ︷︷ ︸

random motility

− ∇ ·
(

p(x, t)
∫

Bρ

g(p(x + ξ , t))ξh(|ξ |) dξ

)
︸ ︷︷ ︸

cell adhesion

+ f (p(x, t))︸ ︷︷ ︸
cell loss and gain

(2)

with initial condition

p(x, 0) = φ0(x), x ∈ R
N . (3)

The function f (p)models cell loss and gain, and for biological reasons we assume that f (0) = 0 and
that there is a number P1 > 0 such that f (p) > 0 for p ∈ (0, P1), and f (p) < 0 for p > P1. These
assumptions imply that at lower densities, there is cell gain, but at large enough densities cell loss
occurs more rapidly than the generation of new cells via division, due to the effects of crowding.

Equation (2) admits the possibility of two components to cell motion. Motion of cells is assumed
to be partly due to Fickian diffusion, which gives rise to the Laplacian term. The need for a Fickian
term is debatable, and Painter et al. [23] note from simulations of their more complex cell–matrix
model that, in the absence of a Fickian term, and unusually for a continuous model, non-invasive
growth is possible for some parameter regimes while invasive growth takes place in others. The
other component to cell motion is the movement of cells due to adhesion as modelled by the
cell adhesion term in Equation (2). It is an advective flux term and models motion of cells that is
caused by mechanical forces attributable to adhesive bonds that cells have formed with their closer
neighbours. Cells are able to sense their surroundings over some radius ρ, which is believed to be
of the order of several cell diameters [23], due to their ability to deform and extend protrusions [8].
These protrusions cause adhesive bonds to form with other cells, and the resulting forces cause
cell movement. In fact, the cell adhesion term in Equation (2) is an advective flux term of the form
−∇ · (p(x, t)U(x, t)), where U(x, t) is the velocity of the cells at x ∈ R

N at time t. If we imagine
the cells as tiny spheres moving through a viscous fluid, then Stokes’ law leads us to suppose that
they are subject to a resistive force which is directly proportional to the velocity. This analogy
leads us to suppose that the velocity of a cell is proportional to the net adhesive force on it due to
the bonds formed with nearby cells. So, the velocity U(x, t) can effectively also be thought of as
the adhesive force on a cell due to bonds with these other nearby cells within the sensing radius
ρ (the range over which a cell can detect its surroundings). This force is taken to be of the form∫

Bρ

g(p(x + ξ , t))ξh(|ξ |) dξ . (4)

We think of expression (4) as a force, but it is really a velocity. Expression (4) is assumed to
contain dimensional constants such as the viscosity of the medium (perhaps embodied within the
functions g and h), to ensure that it has the units of velocity. Viewing expression (4) as a force, we



70 J. Dyson et al.

are asserting that the total force on a cell at position x is the sum, over all cells within the sensing
radius ρ, of the local forces attributable to bonds formed with the cells at the nearby points x + ξ ,
ξ ∈ Bρ . The function h : R → R describes how the magnitude of the force depends on |ξ |, and
is a positive function since adhesive forces are always directed towards cell centres. The vector
ξ in front of h(|ξ |), which is not present in Equation (1), gives direction to the force on cells at
x due to bonds with cells at x + ξ . Another formulation would be to make this direction vector a
unit vector and write (ξ/|ξ |)h̃(|ξ |) rather than ξh(|ξ |), as some other authors have done, see for
example Painter et al. [23]. There is no real distinction; we are simply taking h(|ξ |) = h̃(|ξ |)/|ξ |.

The magnitude of the adhesive forces from cells at the nearby location x + ξ will depend on
the number of adhesive attachments made by cells at x + ξ to a cell at x, and hence on the cell
density at x + ξ . This explains the term g(p(x + ξ , t)) in the integrand of expression (4), and the
function g(p) describes how the forces depend on the local cell density. We anticipate that g(p)

should increase linearly with p if cell density is not too great, because in this situation a doubling
of the number of cells at x + ξ should roughly double the number of adhesive attachments made
to cells at x. However, at higher densities, particularly as close cell packing is approached, the
tendency to form attachments drops off and so g(p) in fact decreases once p has risen above a
certain threshold, and is zero for all p above a critical cell density P2 > 0 corresponding to close
cell packing. The shift in balance between cell division and cell loss should occur at an achievable
cell density. Thus, for biological realism, P1 < P2.

There is unquestionably a need for analytic study of equations of the form (2) in spatial domains
of dimension N ≥ 2. Recent interest in this kind of equation has been largely in the areas of cancer
cell invasion and wound healing. Gerisch and Chaplain [15] and Painter et al. [23] both consider
systems containing a term of the same form as the non-local term in Equation (2), and with the
same interpretation – cell velocity due to adhesive bonds with other cells – with an emphasis on
two dimensions so that Bρ becomes a disk of radius ρ. These studies have been largely numerical,
which is time-consuming in the 2D case. In addition to their numerical simulations, Gerisch
and Chaplain [15] examine the possibility of expanding the non-local term, using Taylor series
in the case when ρ is small. This analytical approach does yield some useful insight, although
the approximated equations can allow unrealistic phenomena such as blow up. Two- and three-
dimensional studies are extremely important in the cancer modelling context because of the
manner in which cancer cells invade tissue and the possibility of phenomena such as fingering
at the invasive front (see Figure 5 in [23]). The shape of a tumour-host boundary is an important
diagnostic indicator ([23], and the references therein). Straight and/or sharp boundaries tend to
imply non-invasive tumours, whereas if a tumour has a diffuse and/or wavy boundary it is likely
to be invasive.

Another important reason for considering equations of the form (2) in higher space dimensions
is that the inclusion of another space dimension can be an important test of the stability and
robustness of a one-dimensional pattern, and therefore of the plausibility of a type of mathematical
model in a situation where many details are unknown. This was an important issue in Armstrong
et al. [3] who considered a system with the same type of adhesive flux term as in Equation (2)
as a model for somite formation. Segmentation in a number of organisms proceeds through the
formation of somites, which will eventually become repeated structures such as the vertebrae.
Somitogenesis is, therefore, seen as a one-dimensional process (along the anterior-posterior axis
of the presomitic mesoderm) and an important step in the model validation process can be to
include a second spatial dimension and investigate whether the model is still capable of forming
somites, as was done in [3].

Using fractional powers of the diffusion operator, we establish results about the existence and
uniqueness of solutions and their positivity and boundedness in spaces of uniformly continuous
functions. We also look at solutions in Lp spaces and show that under suitable conditions the
non-zero uniform state is asymptotically stable in L2 and that under more stringent conditions all
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solutions converge to this uniform state. Finally, we look at simulations which apply to wound
closure experiments.

2. Preliminaries

Initially, we will work in the spaces

Xk = BUC(k)(RN )

= {u : R
N → R : u has uniformly continuous derivatives up to the kth order}

Xk
0 = BUC(k)

0 (RN ) = {u ∈ Xk : u → 0 as |x| → ∞}.
In either case, take the norm ‖u‖k = ∑

|λ|≤k ‖Dλu‖∞, where for i = 1, . . . , N , Di : D(Di)

⊂ X → X,

Diu = ∂u

∂xi
, with D(Di) = X1, (5)

so Di is a closed linear operator. Set D = (D1, . . . , DN ), with domain D(D) = D(D1) × · · · ×
D(DN ). If λ = (λ1, . . . , λN ), Dλ = Dλ1

1 · · · DλN
N . We define |λ| = λ1 + · · · + λN and say λ ≤ μ

for N-tuples λ and μ if the inequality holds component-wise. Note that from [22] page 33,
u ∈ BUC(k)

0 (RN ) implies that, for |λ| ≤ k, Dλu → 0 as |x| → ∞.
We write X̂k when results apply to either Xk or Xk

0 and set X = X0.
We define Ã : D(Ã) ⊂ X → X , by

Ãu = −δ�u, D(Ã) =
⎧⎨
⎩u ∈ BUC(RN )

⋂
1≤q<∞

W2,q
loc (RN ) : Ãu ∈ BUC(RN )

⎫⎬
⎭ .

For ω > 0 set A = Ã + ωI , D(A) = D(Ã) so that the spectrum of A is contained in the open right
half plane.

We rewrite the problem (2)–(3) abstractly as

d

dt
p(t) = −Ãp(t) − D · (p(t)K(p(t))) + f (p(t)), p(0) = φ0, (6)

where p(t) : [0, ∞) → X , t ≥ 0, f : R → R, g : R → R, and

K(φ)(x) =
∫

Bρ

g(φ(x + ξ))ξh(|ξ |) dξ , φ ∈ X, x ∈ R
N , (7)

with ith component Ki(φ)(x).
Let T(t) be the analytic semigroup in X generated by −Ã, so

T(t)φ(x) = 1

(4π tδ)N/2

∫
RN

e−|y|2/4tδφ(x − y) dy, (8)

‖T(t)φ‖∞ ≤ ‖φ‖∞, (9)

and T(t) : X0 → X0. Let Tk(t) be the analytic semigroup which is T(t) restricted to the space X̂k

(k an integer); the corresponding generators −Ãk are given by the operator −Ã but restricted to
different domains [22].
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It is easy to see that for φ ∈ Xk , k > 0, |λ| ≤ k

Dλ(T(t)φ)(x) = 1

(4π tδ)N/2

∫
RN

e−|y|2/4tδDλφ(x − y) dy = (T(t)Dλφ)(x), (10)

so we also have T(t) : Xk → Xk ,

‖Tk(t)φ‖k ≤ ‖φ‖k , (11)

and

D(Ãk) = {φ ∈ Xk; φ ∈ D(Ã), Ãφ ∈ Xk}.
Set Ak = Ãk + ω. We will use the fractional powers Aα

k of Ak , and exploit the result that, for
suitable α, the operator DiA

−α
k : Xk → Xk is bounded, see [24]. We will write Dα,k = D(Aα

k ) in
Xk , Dα,k

0 = D(Aα
k ) in the space Xk

0 and D̂α,k = D(Aα
k ) in the space X̂k . We give these spaces the

graph norm.
Thus the mild form of (2)–(3) in Xk is

p(t) = Tk(t)φ −
∫ t

0
Tk(t − s)(D · (p(s)K(p(s))) − f (p(s))) ds (12)

= Tk(t)φ −
∫ t

0
Tk(t − s)G(Aα

k p(s)) ds (13)

where

G(φ) = D · (A−αφK(A−αφ)) − f (A−αφ).

Observe that for φ ∈ D(D), g ∈ C1(R), h ∈ L1(0, ρ), we have K(φ) ∈ D(D),

D · K(φ)(x) =
∑

i

∫
Bρ

g′(φ(x + ξ))Diφ(x + ξ)ξih(|ξ |) dξ , for x ∈ R
N , (14)

and

G(φ) =
∑

(DiA
−αφ)(Ki(A

−αφ)) + (A−αφ)
(∑

DiKi(A
−αφ)

)
− f (A−αφ). (15)

Note that in our proofs of existence, we will take f , g : R → R but we will then prove that if
φ0 ≥ 0 then p(t) ≥ 0. Thus, provided there is enough smoothness at 0 it is only the properties of
f and g on [0, ∞) that are relevant as we can then define f and g appropriately for p < 0.

We also have [17,18,22,24]

(i) if α > 0, then for every t > 0 the operator Aα
k Tk(t) is a bounded linear operator in X̂k and

for any ω̂ > 0 there exists C1 > 0 such that

‖Aα
k Tk(t)‖ ≤ C1t−α eω̂t ; (16)

(ii) if 0 ≤ α ≤ 1, then A−α
k : X̂k → X̂k is a bounded linear operator so there exists a constant

C2 ≥ 1 such that for all u ∈ Xk ,

‖A−α
k u‖k ≤ C2‖u‖k; (17)

(iii) if 1
2 < α < 1, then DiA

−α
k : X̂k → X̂k is a bounded linear operator so there exists a constant

C3 ≥ 1 such that for all u ∈ Xk ,

‖DiA
−α
k u‖k ≤ C3‖u‖k . (18)
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The following lemma is proved in very much the same way as Lemma 1 in [12]

Lemma 1 Suppose that for some k ≥ 0, f ∈ Ck+1(R), g ∈ Ck+2(R) and h ∈ L1(0, ρ), 1
2 < α < 1

and f (0) = 0. Then G : X̂k → X̂k and

(a) if ‖A−α
k φ‖k ≤ R1 there exists a constant K1(R1) such that

‖G(φ)‖k ≤ K1(R1)‖φ‖k; (19)

(b) if ‖φi‖k ≤ R2, i = 1, 2, then there exists a constant K2(R2) such that

‖G(φ1) − G(φ2)‖k ≤ K2(R2)‖φ1 − φ2‖k; (20)

(c) if k ≥ 2, and ‖φ‖k−2 ≤ R3,

‖G(φ)‖k ≤ K3(R3)‖φ‖k . (21)

3. Existence, positivity and boundedness

We can now prove local existence, and regularity, as inTheorem 1 [12].The continuous dependence
on the initial data follows immediately from [17] Theorem 3.4.1.

Theorem 1 Suppose that for some k ≥ 0, f ∈ Ck+1(R), g ∈ Ck+2(R), f (0) = 0, that h ∈
L1(0, ρ), and that φ0 − Q ∈ Dα,k

0 , where 1
2 < α < 1, and either Q = 0 or there exists P1 > 0

such that f (P1) = 0 and Q = P1. Then the problem (2) and (3) has a unique mild solution p(t)
such that p(t) − Q ∈ C([0, T0]; Dα,k

0 ), for T0 > 0 small enough.
In addition p(t) is the classical solution on [0, T0] of the problem (2) and (3) in the sense that

p(t) − Q ∈ C([0, T0]; Xk
0 ) ∩ C1((0, T0); Xk

0 ), p(0) = φ0, (22)

and for 0 < t ≤ T0, p(t) ∈ D(Ak), and

d

dt
p(t) = δ�p(x, t) − ∇ ·

(
p(x, t)

∫
Bρ

g(p(x + ξ , t))ξh(|ξ |) dξ

)
+ f (p(x, t)). (23)

Also, under the above conditions, if k ≥ 2m,

p(t) − Q ∈ Cm([0, T0]; Xk−2m
0 ) ∩ Cm+1((0, T0); Xk−2m

0 ). (24)

In particular if k = 2, p(t) − Q ∈ C1([0, T0]; X0) and Equation (23) also holds at t = 0.
Furthermore, there is continuous dependence on the initial data. Let [0, T̂0) be the maximal

interval of existence of the solution p(t). Now let pn(t) be the solution of Equation (2) with initial
data pn(x, 0) = φn(x) where φn − Q ∈ Dα,k

0 . Suppose that ‖Aα
k (φn − φ0)‖k → 0 as n → ∞. Then,

given any t1 ∈ [0, T̂0), pn(t) is defined on [0, t1] for large enough n and ‖Aα
k (pn(t) − p(t))‖k → 0

as n → ∞, uniformly on [0, t1].
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Remark To deal with the case Q = P1 we set p(x, t) = w(x, t) + P1 in Equations (2) and (3)
to get

∂w(x, t)

∂t
= δ�w(x, t) − ∇ ·

(
(w(x, t) + P1)

∫
Bρ

ḡ(w(x + ξ , t))ξh(|ξ |) dξ

)
+ f̄ (w(x, t)), (25)

where f̄ (w) = f (w + P1), and ḡ(w) = g(w + P1). If we set

K̄(φ)(x) =
∫

Bρ

ḡ(φ(x + ξ))ξh(|ξ |) dξ , φ ∈ X, x ∈ R
N , (26)

the abstract form of Equation (25) is

d

dt
w(t) = −Ãw(t) − D · ((w(t) + P1)K̄(w(t))) + f̄ (w(t)). (27)

If Ḡ(φ) = D · ((A−αφ + P1)K̄(A−αφ)) − f̄ (A−αφ), then it is easy to see that Ḡ satisfies Lemma 1
and we can apply the same methods to the resulting equation in w.

We can now obtain positivity and boundedness.

Proposition 1 Suppose that h ∈ C1[0, ρ], f ∈ C3(R), g ∈ C4(R), f (0) = 0, and that φ0 − Q ∈
Dα,2

0 where 1
2 < α < 1 and Q = 0 or Q = P1 > 0 where f (P1) = 0. Let φ0(x) ≥ 0 for all x ∈ R

N .
If p(t) is the unique classical solution of Equations (2) and (3) on [0, T0], then p(x, t) ≥ 0 for all
0 ≤ t ≤ T0, x ∈ R

N .

Proof Take M1 > 0 and M2 ≥ 0 such that

|g(p(x, t))| ≤ M1 for all (x, t) ∈ R
N × [0, T0], (28)

and, using the mean value theorem,

|f (p(x, t))| ≤ M2|p(x, t)| for all (x, t) ∈ R
N × [0, T0]. (29)

Choose C sufficiently large that

C > M1

(
|h(ρ)|ωNρN +

∑ ∫
Bρ

∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ

)
+ M2, (30)

where ωN is the surface area of ∂B1, and define u(x, t) = p(x, t) e−Ct , so

∂u

∂t
= δ

∑ ∂2u

∂x2
i

− u(x, t)
∑ ∫

Bρ

∂

∂xi
[g(p(x + ξ , t))]ξih(|ξ |) dξ

−
∑ ∂u

∂xi

∫
Bρ

g(p(x + ξ , t))ξih(|ξ |) dξ + e−Ctf (p(x, t)) − Cu(x, t). (31)

We now prove that p(x, t) ≥ 0 on R
N × [0, T0]. Suppose not, then u(x, t) will be strictly negative

somewhere in this set and hence attains a global minimum at some (x0, t0) ∈ R
N × (0, T0]. Thus
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for all i

u(x0, t0) < 0,
∂u(x0, t0)

∂xi
= 0,

∂2u(x0, t0)

∂x2
i

≥ 0,
∂u(x0, t0)

∂t
≤ 0. (32)

In the ith integral in the second term in the right-hand side of Equation (31), we may replace ∂/∂xi

by ∂/∂ξi and therefore an integration by parts shows that the sum at the point (x0, t0) equals

∑
h(ρ)

∫
∂Bρ

g(p(x0 + ξ , t0))
ξ 2

i

ρ
dS −

∫
Bρ

g(p(x0 + ξ , t0))
∂

∂ξi
(ξih(|ξ |)) dξ .

The above quantity is bounded in absolute value by

M1

(
|h(ρ)|ωNρN +

∫
Bρ

∑ ∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ

)
.

Evaluating Equation (31) at (x0, t0), and making use of (32) and the above bound, we obtain

∂u(x0, t0)

∂t
≥ M1

(
|h(ρ)|ωNρN +

∑ ∫
Bρ

∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ

)
u(x0, t0)

+ M2u(x0, t0) − C u(x0, t0) > 0 (33)

using inequality (29), the fact that u(x0, t0) < 0 and that C satisfies inequality (30). This is a
contradiction, hence p(t) ≥ 0. �

The following two results are proved using similar arguments to that used above. (See [12] for
the proof when N = 1.)

Proposition 2 Suppose that h ∈ C1[0, ρ], h ≥ 0, f ∈ C3(R), g ∈ C4(R), f (0) = 0 and that φ0 −
Q ∈ Dα,2

0 where 1
2 < α < 1, and Q = 0 or Q = P1 > 0 where f (P1) = 0. Suppose there exists

P2 > P1 such that g(P) ≥ 0 for P ∈ [0, P2], f (P2) < 0 and that

P2 max
P∈[0,P2]

g(P)
∑ ∫

Bρ

∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ < −f (P2). (34)

Let 0 ≤ φ0(x) ≤ P2 for all x ∈ R
N . If p(t) is the unique classical solution of Equations (2) and (3)

on [0, T0], then 0 ≤ p(x, t) ≤ P2 for all x ∈ R
N , 0 ≤ t ≤ T0.

Proposition 3 Suppose that h ∈ C1[0, ρ], h ≥ 0, g bounded, f ∈ C3(R), g ∈ C4(R), f (0) = 0,
and that φ0 − Q ∈ Dα,2

0 where 1
2 < α < 1, and Q = 0 or Q = P1 > 0 where f (P1) = 0. Suppose

there exists P3 > P1 such that for P > P3, f (P) < 0 and

sup
P∈[0,∞)

g(P)

{
h(ρ)ωNρN +

∑ ∫
Bρ

∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ

}
< − f (P)

P
. (35)

Let 0 ≤ φ0(x) ≤ P3 for all x ∈ R
N . If p(t) is the unique classical solution of Equations (2) and (3)

on [0, T0], then 0 ≤ p(x, t) ≤ P3 for all x ∈ R
N , 0 ≤ t ≤ T0.

The following global existence result is proved similarly to Theorem 2 in [12]. The basic idea
runs as follows. There will be global existence if ‖Aα

2 p(t)‖2 is bounded on bounded intervals of
time. The method uses Proposition 2 or 3 to show first that p(t) is bounded on bounded intervals
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of time. Thus by Lemma 1(a) ‖G(Aαp(t))‖∞ is bounded linearly, so we can use the Gronwall-type
inequality in [17] 1.2.1 to show that ‖Aαp(t)‖∞ is suitably bounded. Then we can use Lemma 1(c)
to get a linear bound on ‖G(Aα

2 p(t))‖2, so, using the Gronwall-type inequality again, ‖Aα
2 p(t)‖2

is also bounded as required

Theorem 2 Suppose that h ∈ C1[0, ρ], h ≥ 0, f ∈ C3(R), g ∈ C4(R). Let φ0 − Q ∈ Dα,2
0 where

1
2 < α < 1, and Q = 0 or Q = P1 > 0 where f (P1) = 0 and φ0(x) ≥ 0 for all x ∈ R

N . Suppose
that either

(a) There exists P2 > P1 such that φ0(x) ≤ P2 for all x ∈ R
N , g(P) ≥ 0 for P ∈ [0, P2], f (P2) < 0

and inequality (34) holds. Or
(b) g is bounded and there exists P3 > P1 such that φ0(x) ≤ P3 for all x ∈ R

N , and for P > P3,
f (P) < 0 and inequality (35) holds.

Then the solution p(t) in Theorem 1 is global.

4. Initial data in Lp(RN)

We can also set the problem in Lp(RN ). For any 1 < p < ∞ define the operator, ÃLp : D(ÃLp) ⊂
Lp(RN ) → Lp(RN ) by

ÃLp u = −δ�u, u ∈ D(ÃLp) with D(ÃLp) = W2,p(RN ). (36)

Similarly, we can also define ÃL1 : D(ÃL1) ⊂ L1(RN ) → L1(RN ), for a suitable domain D(ÃL1)

[16]. For 1 ≤ p < ∞, ω > 0, set ALp = ÃLp + ωI , D(ALp) = D(ÃLp). It is well known [19] that
−ÃLp generates a positive analytic semigroup {TLp(t)}t≥0, with ‖TLp(t)‖ ≤ 1. Thus inequali-
ties (16) and (17) hold also in Lp(RN ). Further, in the case 1 < p < ∞, from [20] Propositions 4.1.7
and 1.1.4 and Example 1.3.9, if 1

2 < β < α < 1,

D(Aα
Lp) ↪→ (Lp(RN ), D(ALp))α,∞ = (Lp(RN ), W2,p(RN ))α,∞ ↪→ W2β,p(RN ) ↪→ W1,p(RN ).

(37)

Thus, if we define Di : D(Di) ⊂ Lp(RN ) → Lp(RN ),

Diu = ∂u

∂xi
, with D(Di) = W1,p(RN ), (38)

then inequality (18) holds in Lp(R). To show that inequality (18) also holds in L1(RN ), it is
sufficient to show that D(Aα

L1) ↪→ W1,1(RN ). To do this note first that it follows from [20]
Example 1.3.9, Example 1.3.11 and Remark 1.3.7 that if 1 < s < 2 and 0 < β < α < 1, then

(L1(RN ), Ws,1(RN ))β,1 = (L1(RN ), (L1(RN ), W2,1(RN ))s/2,1)β,1

= (L1(RN ), W2,1(RN ))sβ/2,1 = Wsβ,1(RN ).

Now, by [20] Proposition 4.1.7, [16] Theorem 1.7 and Prop 4.8, and [20] Prop 1.1.4, for 1 < s < 2

D(Aα
L1) ↪→ (L1(RN ), D(AL1))α,∞ ↪→ (L1(RN ), B2

1,∞(RN ))α,∞

↪→ (L1(RN ), Bs
1,1(R

N ))α,∞ ↪→ (L1(RN ), Ws,1(RN ))β,1, 0 < β < α < 1,

↪→ Wsβ,1(RN ) ↪→ W1,1(RN ), if 0 <
1

s
< β < α < 1.

(The definition and properties of the Besov spaces Bs
p,q, and their relationship to the Sobolev–

Slobodeckii spaces Ws,p, can be found in [1,16,20].)
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As before, from [19], TLp(t) satisfies Equation (8), hence ifφ ∈ Xk ∩ Lp(RN ), TLp(t)φ = Tk(t)φ.
Equally φ ∈ D(Ak) ∩ D(ALp) implies ALpφ = Akφ.

We now have the following local existence theorem in L2(RN ):

Theorem 3 Suppose that f ∈ C1(R), g ∈ C2(R), that h ∈ L1(0, ρ), f (0) = 0 and that φ0 − Q ∈
D(Aα

L2), where 3
4 < α < 1, and either Q = 0 or there exists P1 > 0 such that f (P1) = 0 and

Q = P1. Then, for N ≤ 3, the problem (2) and (3) has a unique mild solution p(t) such that
p(t) − Q ∈ C([0, T0]; D(Aα

L2)), for T0 > 0 small enough.
In addition p(t) is the classical solution on [0, T0] of the problem (2) and (3) in the sense that

p(t) − Q ∈ C([0, T0]; L2(RN )) ∩ C1((0, T0); L2(RN )), p(0) = φ0, (39)

and for 0 < t ≤ T0, p(t) ∈ D(AL2), and

d

dt
p(t) = δ�p(x, t) − ∇ ·

(
p(x, t)

∫
Bρ

g(p(x + ξ , t))ξh(|ξ |) dξ

)
+ f (p(x, t)).

Also there is continuous dependence on the initial data. Let [0, T̂0) be the maximal interval
of existence of the solution p(t). Now let pn(t) be the solution of Equation (2) with initial data
pn(x, 0) = φn(x) where φn − Q ∈ D(Aα

L2). Suppose that ‖Aα
L2(φn − φ0)‖L2 → 0 as n → ∞. Then,

given any t1 ∈ [0, T̂0), pn(t) is defined on [0, t1] for large enough n and ‖Aα
L2(pn(t) − p(t))‖L2 → 0

as n → ∞, uniformly on [0, t1].
Finally, if in addition φ0 − Q ∈ D(Aα

L1), then also p(t) − Q ∈ C([0, T0]; D(Aα
L1)).

Proof The proof of the first part follows from Theorems 3.3.3 and 3.4.1 in [17] provided we can
show that G : L2(RN ) → L2(RN ) and Ḡ : L2(RN ) → L2(RN ) are locally Lipschitz.

If we consider G then it consists of a sum of products. Each product has just one term of the
form DiA

−α
L2 φ. The rest are functions of A−α

L2 φ ∈ D(Aα
L2). But, for 3

4 < α < β < 1, and N ≤ 3

D(Aα
L2) ↪→ W2β,2(RN ) ↪→ L∞(RN ),

(see [1] 7.34) and the local Lipschitzness follows. Similarly for Ḡ.
Note further that, also using inequality (18) in L1(RN ), G, Ḡ : L1(RN ) ∩ L2(RN ) → L1(RN ) ∩

L2(RN ) and are locally Lipschitz continuous in L1(RN ). For φ0 ∈ D(Aα
L1) ∩ D(Aα

L2), we set up
the iteration: v0 = Aα

L1φ0,

vn(t) = TL1(t)v0 −
∫ t

0
Aα

L1 TL1(t − s)G(vn−1)(s) ds,

then the iteration converges in L1(RN ) and L2(RN ) and by considering the restrictions to bounded
subsets of R

N , it can be seen that the limits are equal almost everywhere. Similarly for Ḡ, and the
required invariance follows. �

5. Stability of the uniform state

We now consider the local asymptotic stability of the uniform state p = P1. For simplicity, we
will consider the case where f and g are logistic. Each of f and g in Equation (2) can be of the
form rp(1 − p/K) with different r and K . After suitable non-dimensionalization, without loss of
generality, they can be taken as f (p) = p(1 − p) and g(p) = p(λ − p), with λ > 1. The uniform
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steady state is then p = 1. To examine its stability, set p = w + 1, φ0 = w0 + 1 to obtain the
following equation for w:

∂w(x, t)

∂t
= δ�w(x, t)

−
∑ ∂

∂xi

(
(1 + w(x, t))

∫
Bρ

((λ − 2)w(x + ξ , t) − w2(x + ξ , t))ξih(|ξ |) dξ

)

− w(x, t) − w2(x, t),

w(x, 0) = w0. (40)

Theorem 4 Take N ≤ 3. Suppose that h ∈ L2(0, ρ), and that φ0 − 1 ∈ D(Aα
L2), where 3

4 < α <

1. For η ∈ R
N define

k(η) = −δ|η|2 − 1 + (λ − 2)

∫
Bρ

h(|x|)(η · x) sin(η · x) dx. (41)

Then if k(η) < 0 for all η ∈ R
N the zero solution of Equation (40) is uniformly asymptotically

stable in D(Aα
L2). Precisely, if γ > 0 is such that k(η) < −γ for all η ∈ R

N , then there exist
ζ > 0, M ≥ 1 such that if ‖Aα

L2 w0‖L2 ≤ ζ , then

‖Aα
L2 w(t)‖L2 ≤ M e−γ t‖Aα

L2 w0‖L2 .

Moreover, k(η) < 0 for all η ∈ R
N holds if

δ >
|λ − 2|2

4

(∫
Bρ

h(|x|)|x| dx

)2

(42)

or

δ > |λ − 2|
∫

Bρ

|x|2h(|x|) dx. (43)

Conversely if there exists η0 such that k(η0) > 0, then the stationary solution is unstable.

Proof We apply the results of [17] Section 5.1. The linearization of Equation (40) is

∂u(x, t)

∂t
= δ�u(x, t) − u(x, t) − (λ − 2)

∑ ∫
Bρ

Dju(x + ξ , t)ξjh(|ξ |) dξ ,

u(x, 0) = u0. (44)

Define the bounded linear operator B : D(Aα
L2) → L2(RN ), such that

Bφ = (λ − 2)
∑ ∫

Bρ

Djφ(x + ξ , t)ξjh(|ξ |) dξ + φ

and the operator H : L2(RN ) → L2(RN ) such that H(φ) = Ḡ(φ) − BA−α
L2 φ.

Using the same reasoning as in Theorem 3 it can be seen that if ‖φ‖L2 ≤ R, then there exist
constants K̄(R) and K(R) such that

‖H(φ)‖L2 ≤ K̄(R)‖A−α
L2 φ‖∞‖φ‖L2 ≤ K(R)‖φ‖2

L2 . (45)

In the case of stability, we note that this implies that H(φ) = o(‖φ‖L2) as ‖φ‖L2 → 0. We have
already seen that Ḡ : L2(RN ) → L2(RN ) is locally Lipschitz continuous. Thus Theorem 5.1.1
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of [17] holds so that if the solutions of the linearized problem are uniformly asymptotically stable
then so too are those of the nonlinear problem.

The right-hand side of Equation (44) is linear and generates an analytic semigroup R(t), say.
So, for all u0 ∈ L2(RN ), Equation (44) has a global classical solution u(t) = R(t)u0. First take
u0 ∈ L1(RN ) ∩ L2(RN ), so that, as in Theorem 3, u(t) ∈ L1(RN ) ∩ L2(RN ), and we may take
Fourier transforms. If we denote the Fourier transform of u by

û(η) = 1

(2π)N/2

∫
RN

exp(−iη · x)u(x) dx,

then
dû

dt
= k(η)û,

so

û(η, t) = û0(η) exp(k(η)t) and ‖û(η, t)‖L2 ≤ ‖û0(η)‖L2 exp(−γ t). (46)

Thus, using the Plancherel identity,

‖u(x, t)‖L2 ≤ ‖u0(x)‖L2 exp(−γ t),

as required. Thus by density ‖R(t)u0‖L2 ≤ ‖u0‖L2 exp(−γ t) for all u0 ∈ L2(RN ), and the result
follows. The inequality (42) follows from completing the square in k(η), while inequality (43)
follows from the fact that | sin(η · x)| ≤ |η · x| ≤ |η‖x|.

For instability, we apply Corollary 5.1.6 of [17]. From inequality (45) H(φ) = O(‖φ‖2
L2) as

‖φ‖L2 → 0, so now we require that there exists λ in the spectrum of the generator of R(t) such
that Re λ > 0. Suppose not, so that there exists M such that, for all φ ∈ L2(RN ),

‖R(t)φ‖L2 ≤ M e(k(η0)/4)t‖φ‖L2 . (47)

But, using the expression for û(η, t) in (46), there exists ε > 0 such that

‖û(η, t)‖L2 = ‖û0(η) exp(k(η)t)‖L2

≥ exp

(
k(η0)

2
t

) (∫
Bε

|û0(ξ + η0)|2 dξ

)1/2

.

If we now choose u0 such that
∫

Bε
|û0(ξ + η0)|2 dξ > 0, then using the Plancherel identity gives

a contradiction to inequality (47). �

6. Convergence to the uniform state

The next result follows in a similar fashion to Theorem 3 and [12] Theorem 3.

Theorem 5 Suppose that f ∈ C3(R), g ∈ C4(R), h ∈ C1[0, ρ]. Let φ0 − Q ∈ Dα,2
0 , where 1

2 <

α < 1, and either Q = 0 or Q = P1 > 0 with f (P1) = 0. Suppose also that the hypotheses of
Proposition 1 and of either Proposition 2 or Proposition 3 on f , g, h, and φ0 hold. Take also
φ0 − Q ∈ D(Aα

L2). Let p(t) with p(t) − Q ∈ C([0, ∞); Dα,2
0 ) be the unique classical solution of

Equations (2) and (3). Then, for each t ≥ 0, p(t) − Q ∈ D(AL2) = W2,2(RN ). Furthermore p(t) −
Q ∈ C1((0, ∞); L2(RN )).

This is enough to justify calculations in the proof of the following theorem.



80 J. Dyson et al.

Theorem 6 Let h ∈ C1[0, ρ] be such that h ≥ 0, and let f (p) = p(1 − p) and g(p) = p(λ − p)

with λ > 1. Let φ0 − 1 ∈ Dα,2
0 ∩ D(Aα

L2(RN )
), where 1

2 < α < 1, and let p(x, t) be the solution of
the problem (2) and (3).

(a) If 0 ≤ φ0(x) ≤ λ for all x ∈ R
N , where λ satisfies

1 + λ2

4

∑ ∫
Bρ

∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ < λ, (48)

then 0 ≤ p(x, t) ≤ λ for all x ∈ R
N , t ≥ 0.

(b) If η ≤ φ0(x) ≤ λ for all x ∈ R
N , where 0 < η < λ, λ satisfies inequality (48), and

λ2

4

{∫
Bρ

∑ ∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ + h(ρ)ωNρN

}
< 1 − η, (49)

then η ≤ p(x, t) ≤ λ for all x ∈ R
N , t ≥ 0.

(c) If η ≤ φ0(x) ≤ λ for all x ∈ R
N , where η > 0, λ satisfies inequalities (48), (49), and

ε = η − λ2

4δ

(
max(1, λ − 1)

∫
Bρ

|ξ |h(|ξ |) dξ

)2

> 0, (50)

then p(x, t) → 1 exponentially as t → ∞ in the sense that for all t > 0

‖p(t) − 1‖L2 ≤ e−εt‖φ0 − 1‖L2 . (51)

Proof First, to prove (a), note that inequality (48) implies inequality (34) with P2 = λ, f (P) =
P(1 − P), g(P) = P(λ − P), and thus, solutions remain in the closed interval [0, λ] for all positive
times.

Next, to prove (b), suppose that there exists t∗ > 0 and a corresponding x∗ with p(x∗, t∗) = η,
∂p(x∗, t∗)/∂xi = 0, ∂2p(x∗, t∗)/∂x2

i ≥ 0, then

∂p(x∗, t∗)
∂t

≥ −η

(
h(ρ)

∫
∂Bρ

g(p(x∗ + ξ , t∗))ρ dS +
∫

Bρ

g(p(x∗ + ξ , t∗))
∑ ∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ

)

+ η(1 − η).

Note that 0 ≤ g(p) ≤ λ2/4 when p ∈ [0, λ]. Therefore

∂p(x∗, t∗)
∂t

≥ −η

{
λ2

4

(
h(ρ)ωNρN +

∑ ∫
Bρ

∣∣∣∣ ∂

∂ξi
(ξih(|ξ |))

∣∣∣∣ dξ

)
− 1 + η

}
> 0

by inequality (49). Hence p(x, t) ≥ η for t > 0 and (b) is proved.
Last, to prove (c), define w(x, t) by p(x, t) = 1 + w(x, t), so that w(x, t) satisfies Equation (40)

and η − 1 ≤ w ≤ λ − 1. Multiplying Equation (40) by w(x, t) and integrating with respect to x
over R

N , and then integrating by parts on the Laplacian term and the ∂/∂xi term (this is justified
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by Theorem 5),

1

2

d

dt

∫
RN

w2(x, t) dx = −δ

∫
RN

∑
w2

xi
(x, t) dx +

∫
RN

∇w(x, t)︸ ︷︷ ︸
A

· (1 + w(x, t))
∫

Bρ

((λ − 2)w(x + ξ , t) − w2(x + ξ , t))ξh(|ξ |) dξ︸ ︷︷ ︸
B

dx

−
∫

RN

w2(x, t) dx −
∫

RN

w3(x, t) dx. (52)

The integrand of the middle term in the right-hand side will now be estimated by using the
inequality A · B ≤ δ|A|2 + |B|2/4δ with A and B identified by the underbraces. This bounds the
integral by a sum of two integrals, one of which cancels with the first term on the right-hand side
to give

1

2

d

dt

∫
RN

w2(x, t) dx

≤ 1

4δ

∫
RN

(1 + w(x, t))2

(∫
Bρ

((λ − 2)w(x + ξ , t) − w2(x + ξ , t))|ξ |h(|ξ |) dξ

)2

dx

−
∫

RN

w2(x, t) dx −
∫

RN

w3(x, t) dx. (53)

Since λ > 1, it is easy to show that

|(λ − 2)w − w2| ≤ max(1, λ − 1) |w| for w ∈ [−1, λ − 1]. (54)

Recalling that 0 ≤ 1 + w(x, t) ≤ λ, so using inequality (54) and Theorem IV.15 from [4],

∫
RN

(1 + w(x, t))2

(∫
Bρ

((λ − 2)w(x + ξ , t) − w2(x + ξ , t))|ξ |h(|ξ |) dξ

)2

dx

≤
∫

RN

λ2

(∫
Bρ

((λ − 2)w(x + ξ , t) − w2(x + ξ , t))|ξ |h(|ξ |) dξ

)2

dx

≤ (λ max(1, λ − 1))2
∫

RN

(∫
Bρ

|w(x + ξ , t)‖ξ |h(|ξ |) dξ

)2

dx

≤ (λ max(1, λ − 1))2

(∫
Bρ

|ξ |h(|ξ |) dξ

)2 (∫
RN

w2(x, t) dx

)
. (55)

Therefore inequality (53) becomes

1

2

d

dt

∫
RN

w2(x, t) dx ≤ λ2

4δ

(∫
RN

w2(x, t) dx

) (
max(1, λ − 1)

∫
Bρ

|ξ |h(|ξ |) dξ

)2

−
∫

RN

w2(x, t) dx −
∫

RN

w3(x, t) dx. (56)
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Note that −w3(x, t) ≤ (1 − η)w2(x, t), so that inequality (56) becomes

1

2

d

dt

∫
RN

w2(x, t) dx ≤ −
∫

RN

w2(x, t) dx

⎧⎨
⎩η − λ2

4δ

(
max(1, λ − 1)

∫
Bρ

|ξ |h(|ξ |) dξ

)2
⎫⎬
⎭

= −ε

∫
RN

w2(x, t) dx

and (c) follows from inequality (50). �

7. Simulations

We illustrate in Figures 1–4 the results of the previous two sections with simulations that can be
applied to in vitro wound closure experiments. In these experiments, cell cultures are scored in a

–20 –10 10 20
x

0.0

0.2

0.4

0.6

0.8

p(x,0.0)

p(x,1.0) p(x,2.0)

–20 –10 10 20
x

0.0

0.2

0.4

0.6

0.8

1.2

–20 –10 10 20
x

0.0
0.5

1.5
2.0
2.5
3.0

–20 –10 10 20
x

0

2

3

4

p(x,0.5)

Figure 1. Simulation with ρ = 1.0, λ = 19.0, δ = 0.1, η = 0.2, f (p) = p(1.0 − p), g(p) = p(λ − p), h(x) = arctan
(100.0 x)/(10.0 x arctan 100.0) and initial data φ0(x) = 1.0 − 0.8 exp(−(0.1x)10). The red plane and lines correspond to
η = 0.2 and the green plane and lines correspond to 0.0. (a) Graph of p(x, t), 0 ≤ t ≤ 2.0. The wound does not close, and
instead the solution exhibits an evolving pattern of peaks and valleys which do not converge to 1.0. (b) Graphs of p(x, .0),
p(x, .5), p(x, 1.0), p(x, 2.0). The solution stays above 0.0, but not above η = 0.2.
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Figure 2. Simulation with ρ = 1.0, λ = 1.5 (a), λ = 17.0 (b), λ = 18.0 (c), λ = 19.0 (d), δ = 1.0,
η = 0.2, f (p) = p(1.0 − p), g(p) = p(λ − p), h(x) = arctan(100.0 x)/(9.0 x arctan 100.0), and initial data
φ0(x) = 1.0 − 0.8 exp(−(0.1x)10). For the higher values of λ, complex patterns of oscillations develop across
the wound.

thin line that closes as the cell population proliferates. A review of mathematical models of wound
healing is given in [30] and other references are found in [5–7,13,14,21,25–29,33,36]. In previous
work [12], we modelled in vitro wound healing experiments for the model (2) with N = 1, and
examined the dependence of solutions on the diffusion parameter δ and the sensing radius ρ. In
[12] numerical simulations demonstrated that for larger values of the diffusion parameter δ and
smaller values of the sensing radius ρ the wound closed completely across the wound opening, but
for smaller values of δ and larger values of ρ complex patterns arose across the wound opening with
incomplete closing. Either of the alternative conditions (42) or (43) is sufficient for the stability
of the uniform steady state p = 1, and note that both of these conditions are largeness conditions
on δ and smallness conditions on both h(·) and on the sensing radius ρ. Similarly conditions (48),
(49) and (50) are sufficient for convergence to the uniform steady state and conditions (48) and
(49) are smallness conditions on h(·) and ρ while (50) is in addition a largeness condition on δ. In
our simulations here, we examine the dependence of the wound healing model with respect to the
parameter λ, which is the non-dimensionalized cell density corresponding to close cell packing,
in Equation (2) with g(p) = p(λ − p).

In Figure 1, N = 1, f (p) = p(1.0 − p), g(p) = p(λ − p), δ = 0.1, η = 0.2, ρ = 1.0, h(x) =
arctan(100.0 x)/(10.0 x arctan 100.0), and φ0(x) = 1.0 − 0.8 exp(−(0.1x)10). In this case,
Theorem 6 (48) is satisfied if λ < 18.94, (49) is satisfied if λ < 1.457, and (50) is satisfied if
λ < 2.823. We take λ = 19.0, so that none of the conditions (48), (49), (50) of Theorem 6 are
satisfied. The simulation in Figure 1 shows that for this value of λ, the solution does not remain
bounded below by η and does not converge to the equilibrium 1.0. On the other hand, if condition



84 J. Dyson et al.

Figure 3. The wound healing simulation wave patterns as in Figure 2 with adhesion strength parameters (a) λ = 17.0,
(b) λ = 18.0, and (c) λ = 19.0. For λ = 17.0, the solution is shown at times t = 100.0 (blue), t = 95.0 (red) and t = 90.0
(green). The amplitude envelope of the oscillation packet decreases to a minute value for the times shown. For λ = 18.0
the solution is shown at times t = 200.0 (blue), t = 150.0 (red) and t = 100.0 (green). The envelope increases minutely
for the times shown. For λ = 19.0, the solution is shown at times t = 150.0 (blue), t = 125.0 (red), t = 100.0 (green),
t = 75.0 (yellow) and t = 50.0 (cyan). The envelope widens uniformly for the times shown. The simulations indicate
convergence to the uniform equilibrium ≡ 1.0 in (a) λ < 17.62, but not in (b) and (c), λ > 17.62.

(48) were satisfied, then the solution p would be bounded (0 ≤ p ≤ λ), and Theorem 2 would
give global existence of the solution. Indeed, if we take λ = 18, then condition (48) holds, and
we find that the solution behaves qualitatively the same as in Figure 1. This provides an example
where the theory gives global existence of the solution, but the solution does not converge to the
equilibrium but instead forms a series of peaks.

In Figures 2 and 3, N = 1, f (p) = p(1.0 − p), g(p) = p(λ − p), δ = 1.0, η = 0.2, h(x) =
arctan(100.0 x)/(9.0 x arctan 100.0), and φ0(x) = 1.0 − 0.8 exp(−(0.1x)10). We consider differ-
ent values of λ to illustrate the sensitivity of this parameter for the convergence of the solutions
to the equilibrium ≡ 1.0. The hypotheses of Theorem 6 require that λ < 16.94 (48), λ < 2.683
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Figure 4. Wound healing simulations with parameters λ = 2.0, δ = 1.0, ρ = 3.0, f (p) = p(1.0 − p),
g(p) = p(λ − p), h(x) = 9.0 arctan(100.0 x)/(4.0 x arctan 100.0), and initial data φ0(x) = 1.0 − 0.4 exp(−(0.1x)10)

(top left), φ0(x) = 1.0 − 0.95 exp(−(3x)12) (top right), φ0(x) = 1.0 − 0.5 exp(−(0.2x)12) (bottom left) and
φ0(x) = 1.0 − 0.95 exp(−(0.1x)10) (bottom right). The wounds top left and top right both close but the wound bottom
right which has the same width as the first and the same depth as the second fails to close. The widest wound, bottom
left, also closes.

(49), and λ < 2.597 (50). For λ < 2.597 all three conditions are satisfied, and Theorem 6 implies
the solution remains in the interval [0.2, λ] and converges to 1.0 for all initial data such that
0.2 ≤ φ0(x) ≤ λ. On the other hand if one looks at the stability condition from Theorem 4, then
the equilibrium ≡ 1.0 is asymptotically stable for λ < 17.62 with instability if λ > 17.62. In
Figure 2 (a) λ = 1.5 and there is convergence to 1.0 (the solution appears to converge mono-
tonically to 1.0 from below, never rising above 1.0). In Figure 2(b)–(d) λ = 17.0, 18.0, 19.0,
respectively, and the solutions develop a series of peaks, symmetric to the right and left of 0.0,
and rising above and falling below 1.0. Further examination of this wave behaviour is given in
Figure 3 for the cases λ = 17.0 (a), λ = 18.0 (b), and λ = 19.0 (c). For λ = 17, the amplitude of
the waves decreases as t increases and the solution appears to converge slowly to 1.0. For λ = 18
and λ = 19, the wave propagates with amplitude dependent on λ (the greater the value of λ, the
greater the amplitude). In general, for the roles of the model parameters, we postulate that cells
concentrate in interior and exterior regions of the wound in a regular pattern depending on the
strength of adhesion λ, the sensing radius ρ, and the diffusion coefficient δ.

In Figure 4, we show that the convergence to the equilibrium ≡ 1.0 correspond-
ing to the healed wound depends on the initial conditions. In these simulations, the
parameters are λ = 2.0, δ = 1.0, ρ = 3.0, f (p) = p(1.0 − p), g(p) = p(λ − p), and h(x) =
9.0 arctan(100.0 x)/(4.0 x arctan 100.0). In this figure, the only change in the simulations is the
initial data – the parameters are the same for all. For initial conditions corresponding to a shallow,
wide wound, and to a narrow, deep wound, closure occurs, but for an initial condition correspond-
ing to a wound with the same width as the first and the same depth as the second, closure does
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not occur. A wider, shallow wound also closes. In general, the behaviour of the solutions is highly
sensitive to initial conditions. We note that the function k(η) defined in Equation (41) is negative
for all η ∈ R, which by Theorem 4 implies that the equilibrium ≡ 1.0 is stable in this example.

We have chosen to illustrate the behaviour of solutions for the model using the simple case of an
equilibrium corresponding to wound healing experiments, in which wound closure corresponds
to convergence to a constant function in the x-direction, perpendicular to the direction of the
scoring. Numerical simulations corresponding to higher dimensional cases will be conducted in
future work.
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