1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

> % NIH Public Access
@@‘ Author Manuscript

2 HEpst

NATIG,

O

Published in final edited form as:
Hum Mutat. 2011 October ; 32(10): 1183-1190. doi:10.1002/humu.21559.

Prediction of functional regulatory SNPs in monogenic and
complex disease

Yigiang Zhaol:2, Wyatt T. Clark3, Matthew Mort?, David N. Cooper?, Predrag Radivojac3,
and Sean D. Mooneyl:2

1Buck Institute for Research on Aging, Novato, California, USA

?Department of Medical and Molecular Genetics, Indiana University School of Medicine,
Indianapolis, Indiana, USA

3School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA

4Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK

Abstract

Next-Generation Sequencing (NGS) technologies are yielding ever-higher volumes of human
genome sequence data. Given this large amount of data, it has become both a possibility and a
priority to determine how disease-causing single nucleotide polymorphisms (SNPs) detected
within gene regulatory regions (rSNPs) exert their effects on gene expression. Recently, several
studies have explored whether disease-causing polymorphisms have attributes that can distinguish
them from those that are neutral, attaining moderate success at discriminating between functional
and putatively neutral regulatory SNPs. Here, we have extended this work by assessing the utility
of both SNP-based features (those associated only with the polymorphism site and the surrounding
DNA) and Gene-based features (those derived from the associated gene in whose regulatory
region the SNP lies) in the identification of functional regulatory polymorphisms involved in
either monogenic or complex disease. Gene-based features were found to be capable of both
augmenting and enhancing the utility of SNP-based features in the prediction of known regulatory
mutations. Adopting this approach, we achieved an AUC of 0.903 for predicting regulatory SNPs.
Finally, our tool predicted 225 new regulatory SNPs with a high degree of confidence, with 105 of
the 225 falling into linkage disequilibrium blocks of reported disease-associated GWAS SNPs.
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Introduction

Single nucleotide polymorphisms (SNPs) occur approximately every 300 base-pairs along
human chromosomes and represent the most common form of sequence variation
[International HapMap Consortium, 2003]. Although it is likely that most SNPs lack
functional significance, they are widely used as genetic markers throughout the genome
[Kruglyak 1997; Sachidanandam et al., 2001]. However, some SNPs, depending upon their
location, can influence gene transcription, transcript processing or protein synthesis, and a
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proportion of these may in turn be associated with human genetic disease [Buckland et al.,
2004; Campino et al., 2008; Pastinen and Hudson, 2004; Prokunina and Alarcon-Riquelme,
2004; Savinkova et al., 2009]. Considerable efforts have been made to identify and
characterize functional SNPs in human genes [Buckland, 2006; Chorley et al., 2008; Khan et
al., 2006; Mottagui-Tabar et al., 2005; Pampin and Rodriguez-Rey, 2007]. However, given
the large number of SNPs that exist in the human genome, it is currently impractical to
investigate each of them individually in vitro. Computational approaches to the prediction of
functional SNPs therefore provide an alternative means to address this problem [Mooney,
2005].

SNPs located within promoter regions can exert a functional effect by altering the regulation
of gene transcription. For this reason, a number of promoter SNP prediction studies have
focused exclusively on transcription factor binding sites (TFBS) [Andersen et al., 2008;
Lapidot et al., 2008; Ponomarenko et al., 2002]. However, such studies are limited by our
current rather incomplete knowledge of all existing TFBS. With the aim of improving our
ability to predict functional SNPs, Montgomery et al. [2007] evaluated a number of allele-
and sequence-based features for the prediction of functional regulatory polymorphisms. The
most important features were found to be the distance from the transcriptional start site
(TSS), the presence of a CpG island and local sequence repetitiveness. Torkamani and
Schork [2008] have reported that the integration of Encyclopedia of DNA Elements
(ENCODE) annotations improved the prediction of functional polymorphisms. Although it
is a challenging task, and despite the need to address several outstanding methodological
considerations pertaining to the analytical approach (e.g. biased features, imbalanced
training sets and the means of evaluation), these initial results suggested that, with an
appropriate feature set and machine learning method, functional regulatory polymorphisms
ought to be inherently predictable.

Here, we have attempted to distinguish functional SNPs from likely neutral SNPs within
putative transcription regulatory regions (defined here as 2500bp upstream of the TSS and
500 bp downstream of the TSS) of human genes. To this end, we employed a supervised
machine learning method using a set of 445 known functional regulatory SNPs from the
Human Gene Mutation Database (HGMD) together with a set of putatively neutral SNPs.
By incorporating a series of novel features from each associated gene, we were able to
demonstrate that functional regulatory SNPs are indeed predictable (our method achieved an
area under the ROC curve (AUC) value of 0.903). Interestingly, features from the associated
gene (as opposed to features pertaining solely to the SNP) were found to be highly
predictive in this study. These findings promise to guide the development of better training
data, a prerequisite not only for the improvement of our ability to predict disease-related
polymorphisms but also, more fundamentally, for the prediction of those genes likely to play
arole in genetic disease.

Materials and Methods

Data preparation

RefSeq sequences [Pruitt et al., 2007] which mapped ambiguously to multiple genomic
positions were excluded from the analysis. This yielded a set of 20,826 non-redundant gene
transcripts. Similarly, a set of 16,872,794 unambiguously mapped SNPs, derived from
dbSNP version 130 [http://www.ncbi.nlm.nih.gov/SNP/index.html; Sherry et al., 2001],
were employed in this analysis.

In order to evaluate features (attributes) that had the potential to be useful in identifying
polymorphic sites responsible for altered gene expression, two datasets were collected. First,
bona fide annotated functional SNPs were retrieved from the Human Gene Mutation

Hum Mutat. Author manuscript; available in PMC 2014 March 18.


http://www.ncbi.nlm.nih.gov/SNP/index.html

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zhao et al.

Features

Page 3

Database (HGMD) [http://www.hgmd.org; Stenson et al., 2009] as a *positive set’. Second,
a dataset of 241,465 SNPs (not present in the positive set of functional SNPs) was obtained
from dbSNP as a ‘negative control dataset’. While a large proportion of this negative control
SNP dataset is likely to be neutral, some of the SNPs could nevertheless exert a functional
effect (hence we refer hereafter to this dataset as being ‘putatively neutral”). Both datasets
were filtered to ensure that they mapped uniquely to the UCSC Human Genome Database
Hg18 [Karolchik et al., 2008]. RefSeq transcripts in the UCSC database were used to define
the locations of the SNPs. All SNPs in both the positive and negative sets were filtered so as
to include only those promoter polymorphisms with the potential to directly impact upon the
expression of their associated transcripts; hence, we confined our analysis to the putative
transcriptional regulatory region of each gene (defined for the purposes of this study as the
region spanning 2500bp upstream and 500bp downstream of the corresponding major
transcriptional start site). A 3000bp region was selected in order to allow direct comparison
with previously published methods [Andersen et al., 2008; Kim et al., 2008; Montgomery et
al., 2007].

For each HGMD functional SNP, £30bp flanking sequences were obtained. The flanking
sequences were aligned against the RefSNP sequences using BLAST. Where the flanking
+15bp sequences (deemed sufficient for the human genome) around the SNP positions were
identical between the HGMD functional SNP and RefSNP, they were matched with the
appropriate RefSNP id. By comparing the recorded genomic positions between dbSNP and
the RefSeq sequences, a total of 445 functional SNPs and 241,465 background SNPs were
obtained from putative transcriptional regulatory regions.

Disease-associated SNPs from published genome-wide association studies (GWAS) were
downloaded from http://genome.gov/gwastudies/. CEU genotype data for non-redundant
SNP assays from phases 1, 2 and 3 of the HapMap project were downloaded from HapMap
website (http://hapmap.nchi.nim.nih.gov/). In order to determine linkage disequilibrium
(LD) blocks, genotype information from relatives (i.e., children) was excluded from the
original data. Haploview software was used to calculate the LD blocks with default settings.

Features used in this study were split into two distinct sets: those directly relating to the SNP
under consideration (SNP-based) and those pertaining to the gene in whose transcription
regulatory region the SNP lies (Gene-based). SNP-based features included SNP distance to
TSS, flanking nucleotide GC-content, flanking nucleotide conservation, SNP diversity,
derived SNP frequency and SNP occurrence within known functional elements. Gene-based
features were the same for each SNP lying within the regulatory region of a given gene.
Gene-based features were further split into two sets: those pertaining to the function of the
associated gene (Function-based) and those relating to the mRNA expression of the
associated gene (Expression-based). For Function-based features, a set of prediction scores
for GO biological process (1,788) and molecular function (344) terms were generated using
the FANN-GO predictor of protein GO term annotations [Clark et al., 2011]. The use of
predicted functions instead of experimentally determined functional annotations allowed us
to obtain values for all data points and a set of features that is less likely to be biased
towards genes frequently studied by biomedical researchers (which could result in an
overestimation of performance accuracy). We also included interaction complexity (node
degree in a protein-protein interaction network) which is derived from high-throughput
experiments in this subset of function features. Expression-based features were generated
using microarray platforms GPL1074 and GPL96 [Su et al., 2004]. A set of 158 features
were generated that represent the normalized expression levels of each gene across 79
tissues. Features pertaining to the mean, standard deviation, coefficient of variation,
maximum and minimum expression level of each gene across tissues were also generated.
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Finally, we generated 2 Codon usage features that were not classified as being either
Expression-based or Function-based [see Table 1 for the complete list of SNP-based features
and how these features were constructed].

Classification method and identification of optimum predictive features

Results

We evaluated several different machine learning methods including Support Vector
Machines (SVMs), Bayesian networks and decision trees. Decision trees were selected on
the basis of their interpretability, ease of use, and comparable performance with other
methods. Evaluation of our model was performed using 10-fold cross-validation. The dataset
was initially randomly split into 10 non-overlapping partitions, each containing 10%
positive and 10% negative data points. In each step i€ {1, 2, ..., 10} of the 10 cross-
validation steps, the it" fold was used as the test set whereas the remaining data were used to
train classification models.

Predictors for each fold comprised an ensemble of 1000 trees. For each tree, training data
were balanced by randomly sampling negative data points in order to have a balanced
number of positive and negative data points in the training set. Missing values were replaced
with the mean values from the respective feature with the null hypothesis (i.e. assuming no
difference between the functional SNPs and the putatively neutral SNPs). Each testing data
point's final prediction score was an average of all scores' output by the ensemble of 1000
decision trees. After completing the cross-validation steps, each data point contained exactly
one predicted and one class value and the performance accuracy was estimated.

Classification performance was measured by calculating the Area Under Receiver Operator
Characteristics curves (AUC). AUC provides a measure of the true positive rate (sensitivity)
as a function of the false positive rate (1-specificity) over the entire [0, 1] interval. Given a
set of data points and a decision threshold, sensitivity was defined as the fraction of positive
data points correctly predicted (a data point was counted as a positive prediction if its
predicted class value was greater than the decision threshold). Similarly, specificity was
defined as the fraction of negative data points correctly predicted [Hastie et al., 2001].

We evaluated the performance of each individual feature by employing both the Wilcoxon
test and by calculating the AUC (AUC only for individual tissue expression feature set and
FANN-GO feature set) on prediction scores derived using the individual features as the sole
feature when building an ensemble of trees. For the Wilcoxon test, statistical repeatability
(defined as the frequency of statistical significance detected for all 1000 trees) was reported.
The best performing features were reported, assuming that both threshold criteria were met
(i.e. higher AUC value and higher statistical repeatability, as defined in the Tables). Training
dataset and functional SNPs used in this study can be found at: http://
www.mooneygroup.org/yigiang/rSNP_data/. Prediction scores for each SNP investigated
are also available in the Supporting Information (see Supp. Table S1).

Model performance

With respect to the task of discriminating between functional SNPs and putatively neutral
SNPs, we achieved an AUC of 0.903, sensitivity of 0.818 and specificity of 0.837 (decision
threshold that maximizes the sum of sensitivity and specificity was used, and hereafter),
using all features. Since some studies have suggested that selecting only informative features
to train the classifier (feature selection) can improve prediction performance [Guyon, 2003;
Saeys et al., 2007], we applied correlation-based feature selection (CFS) to ascertain a
subset of features that would be the most informative for classification. Using a subset of the
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most relevant features decreased performance by 2-6% (data not shown), indicating that the
ensemble method (1000 decision trees) was robust with respect to the noise introduced by
less important features. We also evaluated the final classification model by constructing a
random classifier for which the positive set was randomly selected from the putatively
neutral SNPs. Consistent with our expectation, the random classifier achieved an AUC of
0.529.

Because the types of diseases associated with SNPs used in this study differ very
considerably, the HGMD regulatory variants were subdivided into three categories:
functional SNPs reported to cause monogenic disease (MS, n = 48), functional SNPs
associated with complex disease (CS, n = 214) and SNPs with demonstrated functional
significance but without any currently reported disease association (FS, n = 183). The
analysis was then performed separately for these three categories of regulatory variants (MS,
CS and FS). Prediction performance on the MS dataset was found to be the most accurate
and yielded an overall performance AUC of 0.958, sensitivity of 0.896 and specificity of
0.941. We obtained comparable prediction performances for CS (AUC: 0.889, sensitivity:
0.799 and specificity: 0.821) and FS (AUC: 0.905, sensitivity: 0.809 and specificity: 0.870).
AUC values were calculated on these subsets of SNPs by excluding prediction values for all
other subclasses during evaluation. It should be noted that these values do not reflect how
well a predictor would perform when built to identify specifically these SNPs; instead they
indicate how well these subclasses of SNPs are identified by a general predictor.

Gene-based features are important for prediction

Interestingly, by ranking features using the AUC of the ROC, we found that many of the
informative features corresponded to those that were derived from the associated gene (i.e.
Gene-based features) (Table 2). To validate this finding, we retrained the model so as to
exclude all the Gene-based features; the overall performance decreased by approximately 13
percentage points (from an AUC of 0.903 to an AUC of 0.785). All three categories of
regulatory variant displayed a deterioration of classification performance after removing
Gene-based features (data not shown). In order to assess how likely the increased
performance of our predictor when using Gene-based features was due to potential bias in
the sample of genes associated with discovered bona fide annotated functional SNPs, we
created a paired dataset, with no Gene-based features included. In this paired dataset, we
selected only negative data points whose SNPs lie within the regulatory region of a
transcript that also has a bona fide annotated functional SNP in its regulator region. The
performance of the paired sets was found to be comparable to that of the original sets
without Gene-based features (AUC of 0.785 versus AUC of 0.774 respectively). The
difference in performance should therefore be attributed solely to the incorporation of Gene-
based features in the original set.

Both Function-based and Expression-based features contributed greatly to prediction
accuracy with the Function-based features performing slightly better than Expression-based
features (Supp. Table S2). For the monogenic disease-related functional SNPs (MS), the
importance of features used for classification (functional versus neutral) was found to share
some similarities, but also some differences, when identifying functional complex disease-
associated variants (CS). We found that 4 features pertaining to gene expression, codon
usage and sequence conservation performed well only for MS prediction, whereas the
protein-protein interaction complexity feature performed well only for CS prediction (Tables
3and 4).
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Prediction of functional SNPs in GWAS studies

Case study

On the basis that functional SNPs are likely to be comparatively rare (as compared with
neutral SNPs), a prediction tool to identify functional SNPs requires high specificity (i.e. the
proportion of correctly identified neutral SNPs) to be useful in a research context. Applying
a very conservative decision threshold to our method, we obtained a specificity of 99.9%.
We then applied our method (with this conservative decision threshold) to all SNPs (n =
241,465) in the candidate regulatory region, thereby prospectively identifying 225 SNPs (not
present in our positive training dataset) that represent good candidates for SNPs with
functional significance (Supp. Table S3). By applying the 99.9% specificity threshold, the
prediction precision (i.e. the proportion of true functional SNPs) reached 20.6%. Since
regulatory SNPs are likely to be individually very rare (in the present case, 445 functional
SNPs and 241,465 background SNPs, 0.18%), our method promises to greatly simplify the
task of identifying a regulatory SNP in the genome (see Figure 1 for the overall recall-
precision plot). With one exception (see Case Study below), no experimental evidence for
the functional significance of these 225 SNPs has so far been reported in the literature.
However, the recent increase in reported GWAS data provides us with an opportunity to
establish post hoc the potential functional/clinical significance of these SNPs. Although not
all disease-associated SNPs reported in GWAS studies are directly causative of the observed
disease association, some will indeed be of functional significance and hence will also be
likely to be causative of the reported disease association. Analysis of GWAS data and the
225 SNPs predicted to be functional, revealed that 105 of these 225 predicted functional
SNPs (47%), distributed between 66 different genes, occurred within the same LD block as
a reported disease-associated GWAS SNP. Although these 225 candidate functional
regulatory SNPs still await in vitro validation by reporter gene assay, their frequent spatial
coincidence within the same LD blocks as reported disease-associated GWAS SNPs
suggests that a substantial proportion may eventually turn out to be bona fide functional
regulatory SNPs. On the other hand, we believe that many of the remaining 120 SNPs could
still be important in functional terms since having a regulatory role does not necessarily
imply that it is also going to be of pathological significance.

We retrospectively searched the literature for any experimental evidence of a functional
effect for the 225 candidate regulatory SNPs identified in this study. Functional evidence
was obtained for one candidate SNP (rs2280789,T/C) in the Chemokine (C-C motif) ligand
5 (CCL5) gene. This SNP occurs within an up-regulating intron 1 element; employing a
luciferase reporter gene assay, it was shown that the *C’ allele of rs2280789 was associated
with a highly significant 3-fold reduction in gene expression as compared to the ‘T’ allele (P
< 0.001) [An et al., 2002]. The ‘C’ allele was also reported to be associated with rapid
disease progression to AIDS for individuals with an HIV infection.

Discussion

Assessment of performance

In this study, we employed what is, to our knowledge, the most comprehensive functional
regulatory SNP dataset available. Compared to previous studies that have used relatively
small numbers of functional regulatory SNPs (about 100 regulatory SNPs) and an
imbalanced training approach without special treatment [Montgomery et al., 2007;
Torkamani and Schork, 2008], we have performed a robust analysis of the prediction of
functional SNPs within promoter regions. We achieved this by incorporating biologically
relevant features of the downstream genes and using a forest-like tree method that greatly
improved prediction performance (AUC of 0.903, sensitivity of 0.818 and specificity of
0.837). Owing to the likely low prevalence (as compared to neutral SNPs) of functional
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regulatory SNPs in the human genome, the accurate prediction of functional regulatory
SNPs is inherently very difficult. Our method nevertheless provides a high-throughput
means to identify potentially functional regulatory SNPs. Employing this method, we report
here 225 high-confidence candidates that we consider worthy of laboratory testing.

This study does however indicate that much work still remains to be done in order to
improve the prediction of polymorphic sites of functional significance. Indeed, several major
challenges lie ahead. First, available bona fide (i.e. experimentally supported) functional
polymorphism data are still limited. Since millions of SNPs remain uncharacterized, we are
currently working with only a very small proportion of the complete dataset of functional
SNPs within regulatory regions. Second, although the definition of functional features is
proceeding apace, it is hard to escape the conclusion that functional SNPs have been
disproportionately derived from those genes which have been functionally well
characterized [including, of course, disease genes; Osada et al., 2009]. With the features
(both Gene-based and SNP-based) employed in this study, we were able to successfully
identify functional SNPs with a high degree of confidence. However, in this study we can
only predict rSNP by genome location. Our method would not be able to distinguish the
direction of the nucleotide changes which would result in a functional effect. (i.e. Ato T vs
A to C). As more biological knowledge becomes available, improvements (e.g. discovery of
new TFBS) to existing SNP-based features will increase classification performance, thereby
reducing the dependency of classification methods on those Gene-based features that tend to
be biased or suffer from sparseness.

In order to improve the prediction of disease-related SNPs, additional novel features still
need to be identified. Previous studies have suggested that disease genes may possess
specific properties that can serve to distinguish them from non-disease genes such as longer
sequence length and a lower nucleotide substitution rate [Cooper and Mort, 2010;
Khaitovich et al., 2004; Lopez-Bigas and Ouzounis, 2004]. These features were not included
in the current analysis but the addition of evolutionary attributes and other disease gene-
specific properties could easily be incorporated so as to improve the predictive performance
in the context of the monogenic disease-causing SNPs. Similarly, the topological parameters
of a gene within a network or pathway represent promising features for the prediction of CS
[Hahn and Kern, 2005; Zhu et al., 2007].

A survey of disease-related SNPs and disease genes

The functional SNPs investigated in this study will only be predicted to give rise to changes
in gene expression rather than to protein structure or function. However, the consequences
of an expression change may include either a deleterious gene dosage alteration [Anneren
and Edman, 1993; Stayner et al., 2006; Toivonen et al., 2003] or a change in the functional
role of the associated gene product in the context of a given biological pathway or protein
interaction network [Cunningham et al., 2005; Tepper et al., 2005]. Our studies are
suggestive of both these possibilities. The prediction of monogenic disease-related
functional SNPs (MS) was most accurate, with the Expression-based features contributing
highly to the performance (Table 3 and Figure 2; for complete statistical summary for each
features, see Supp. Table S4). Thus, the gene expression level appears likely to exert an
important (and direct) influence on the genotype-phenotype relationship in monogenic
disease. The fact that the Codon usage feature works well only for MS prediction, taken
together with the observation that MS were generally located within core promoter regions
and hence were significantly closer to the transcriptional start sites than was the case for CS
and putatively neutral SNPs (Wilcoxon tests, p<0.001, Bonferroni-corrected), also point in
the same direction. However, compared to MS, the effect of Expression-based features is
less pronounced for complex disease (CS) yet (although still good) protein-protein
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interaction complexity works well (Table 4 and Figure 2). This suggests that there may be
underlying differences in the mechanism(s) by which a given SNP exerts its functional
effect between monogenic and complex diseases. The disruption of protein-protein
interactions and biological pathways induced by a change in gene expression may underlie a
high proportion of complex disease regulatory SNPs.

The evolutionary conservation of sequences flanking SNPs was shown to be an effective
predictive feature for the MS set. Although not statistically significant owing to the small
sample size, the SNP diversity (Table 1) of MS (median: 0.082) was lower by comparison to
the putatively neutral SNPs (median: 0.367) and CS (median: 0.341). Taken together, this is
indicative of MS being under strong negative selection. Although we could not rule out the
possibility that CS are under balancing selection (either heterozygote advantage or
environmental heterogeneity), based on the observation of a lower derived allele frequency
and higher SNP diversity as compared to MS, CS appear more likely to have evolved
neutrally because the CS flanking sequences were not evolutionarily conserved, consistent
with previous analyses of gene promoter regions [Keightley et al., 2005; Khaitovich et al.,
2004]. Detailed disease gene categorization is required to determine whether the paucity of
evidence for selection was due to genetic drift, slightly deleterious conditions or to diseases
with late onset.

Owing to the lower level of sequence conservation and greater distance to the core promoter
exhibited by CS (in comparison to MS), SNP-based features are not as discriminating for CS
as with MS. There are some good Gene-based features for CS prediction (e.g. protein-
protein interaction complexity) but, we could only speculate that genes with certain
attributes were more likely to harbor functional SNPs. Generally speaking, CSs appear much
more difficult to predict. It is the tacit assumption of most promoter studies that the location
of known transcription factor binding sites (TFBS) or other functional annotations would be
useful in the identification of regulatory mutations and polymorphisms [Andersen et al.,
2008; Conde et al., 2004; Lapidot et al., 2008; Mottagui-Tabar et al., 2005]. In this study,
functional annotations such as TFBS actually display very limited predictive power
(AUC=0.504) in terms of discriminating functional regulatory SNPs from putatively neutral
SNPs. Passible reasons for this might be: (i) our knowledge of the structure and function of
regulatory elements in our genome is still very inadequate (the information employed in this
study might not be representative) due to data sparseness (small percentage of data points
actually has been annotated), and/or (ii) more detailed positional information is required in
relation to SNPs located within the regulatory elements since such elements can be
redundant, and not every base within a given regulatory element is critical to its function.
Consistent with previous studies [Buckland et al., 2005; Guo and Jamison, 2005;
Montgomery et al., 2007], the distance to the transcriptional start site was one of the best
performing features. Although the promoter was generally considered to be very important
for gene regulation, the influence of a particular SNP may be quite complex because
multiple regulatory elements can overlap and the effect of different promoter variants can be
additive. To test if the distance to the transcriptional start site is a dominant feature in
making rSNP predictions, we evaluated our model with the full feature set but excluding just
this feature. The result showed that performance dropped only slightly from an AUC of
0.903 to an AUC of 0.895, suggesting that other features used in our model appear able to
compensate for the information provided by this important feature.

Finally, we observed that the MS-associated genes had (i) a higher level of gene expression
and (ii) greater variance of gene expression than the putatively neutral SNPs. Initially, this
seemed to be contradictory since these two attributes are generally negatively correlated.
Genes exhibiting a high expression level are usually expressed less variably [Subramanian
and Kumar, 2004] and are could be less likely to be involved in disease because of their
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essential nature (on the basis that mutations in such genes would have tended not to come to
clinical attention [Cooper et al. 2010]). One explanation for their co-occurrence might be
differences in the clinical severity of different monogenic diseases. Some monogenic
diseases are very severe clinically (either because the gene is critically important to health or
because the mutation might have a strong impact on gene function), while others may not
be. However, a lower mean expression level and a higher expression variance were found
for complex disease, consistent with the view that complex disease is generally less severe
and has a tendency to be associated with tissue-specific expression [Winter et al., 2004].

In conclusion, we have developed a method for predicting disease-associated functional
SNPs within gene regulatory regions. We found Gene-based features were useful in making
such predictions, possibly because such features represent a proxy for the disease
mechanism. Finally, we identify a number of putative regulatory SNPs that we believe are
likely to be of potential functional/clinical significance and which therefore represent good
candidates for in vitro analysis as well as inclusion in future GWAS studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The recall-precision plot for the prediction model.
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Figure 2.

Features that exhibit differences between different data sets. MS: SNPs associated with, or
causing, monogenic disease; CS: SNPs associated with complex disease; FS: SNPs with
demonstrated functional significance but without any reported disease association; Negative:
Neutral SNPs.
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Table 2
Optimal features for the prediction of all functional SNPs (MS, CS & FS)

Feature Auca Statistical repeatability  pjrectionP
FANN-GO feature set 0.869 NAC NA
Individual tissue expression feature set 0.775 NA NA
Maximum expression level of assoc. gene 0.767 1 +
Coefficient of variation for gene expression level  0.763 0.994 +
Standard deviation for gene expression level 0.740 0.986 +
Protein-protein interaction complexity 0.705 0.998 +
Distance to transcription start site in gene 0.705 1 -

aUsing the maximum AUC value from random classifier (0.591) and statistical repeatability >0.6 as a threshold.
b(+) indicates that the functional SNPs (MS, CS & FS) have higher median values than neutral SNPs; (=) indicates that the functional SNPs (MS,
CS & FS) have lower median values than the neutral SNPs.

C, . . - . .
Wilcoxon tests is not done, because this is a feature set instead of a single feature.
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Table 3
Optimal features for the prediction of monogenic disease-causing SNPs (MS)
Feature Auca Statistical repeatability  pjrectionP

FANN-GO feature set

Maximum expression level of assoc. gene
Individual tissue expression feature set
Coefficient of variation for gene expression level
Standard deviation for gene expression level
Mean gene expression level

Effective number of codons in assoc. gene
Distance to transcription start site of gene

Sequence conservation of +10bp flanking SNP

0.931

0.918
0.884
0.918
0.904
0.878
0.860
0.825
0.648

NAC
1
NA
0.978

0.932
0.988
1
0.986

NA

+

NA

+

aUsing the maximum AUC value from random classifier (0.591) and statistical repeatability >0.6 as a threshold.
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(+) indicates that the MS have higher median values than neutral SNPs; (-) indicates that the MS have lower median values than the neutral

SNPs.

C., . . . .
Wilcoxon tests is not done, because this is a feature set instead of a single feature.
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Table 4
Optimal features for prediction of SNPs associated with complex disease (CS)

Feature Auca Statistical repeatability  pjrectionP
FANN-GO feature set 0.841 NAC NA
Individual tissue expression feature set 0.757 NA NA
Protein-protein interaction complexity 0.749 0.986 +
Coefficient of variation for gene expression level ~ 0.740 0.616 +
Mean gene expression level 0.721 0.622 -
Distance to transcription start site of gene 0.677 1 -

aUsing the maximum AUC value from random classifier (0.591) and statistical repeatability >0.6 as threshold.
(+) indicates that the CS have higher median values than neutral SNPs; (=) indicates that the CS have lower median values than the neutral SNPs.

C, . . - . .
Wilcoxon tests is not done, because this is a feature set instead of a single feature.
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