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Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore,
regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious
diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired
adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for
effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particu-
larly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize
conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its
ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understand-
ing of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combi-
nation with other TLR ligands as an adjuvant in chicken vaccines.

Asignificant sector of world agriculture is formed by the poul-
try industry. The major problem faced by the industry is a loss

of productivity due to infectious diseases. Therefore, proper mon-
itoring and active health management of the birds are required
(1–3). Currently, active immunization using live virus vaccines is
a routine practice. An effective vaccine not only needs a good
antigen but also requires an appropriate adjuvant to enhance the
immunogenicity of the antigen. Newer-generation vaccines, in-
cluding recombinant vaccines, mostly fail to produce a strong
immune response (4). Such vaccines need adjuvants which can
augment the antigenicity of the antigen so that an enhanced im-
mune response can be achieved.

Traditionally used adjuvants are inorganic compounds, bacte-
rial products, and complex mixtures of surface-active com-
pounds, mineral oil, and synthetic polymers (5, 6). Adjuvants
based on alum and mineral oil are the most commonly used ad-
juvants. Freund’s complete adjuvant is an effective mineral oil-
based adjuvant, but it shows high levels of adverse local painful
reaction and tissue damage at the injection site and may cause
systemic disorders in chicken (7, 8). Alum suffers from weak ad-
juvant activity as well as being associated with the induction of IgE
antibody response and may cause allergic reactions (9). Recent
developments in innate immunity mark a new era of TLR-based
adjuvants which can substantially enhance the immune response
to vaccines (10). The innate immune system recognizes unique
conserved molecular patterns of pathogens (pathogen-associated
molecular patterns [PAMPs]) through pattern recognition recep-
tors (PRRs) (11). Recognition through PRRs alerts the immune
system to mount a quick response to limit the spread of infection
(12). TLRs are among the types of PRRs. In mammals, 13 TLRs
have been reported, with each recognizing and responding to dif-
ferent pathogen molecules (13). Different ligands of TLRs include
pathogen molecules such as lipopolysaccharide (LPS) (TLR4), fla-
gellar protein and peptidoglycans (TLR1, TLR2, TLR5, and TLR6)
(14, 15), viral double-stranded RNA (dsRNA) (TLR3) (16), bac-
terial and viral unmethylated cytosine-guanosine-containing oli-
gonucleotides (CpG-ODN) (TLR9), and single-stranded RNA
(ssRNA) (TLR7 and TLR8) (17–19). Recently, TLR11 and TLR12

have been shown to recognize profilin in Toxoplasma gondii infec-
tion whereas TLR13 senses the rRNA sequence CGGAAAGACC
(20–22).

To date, 10 TLRs have been identified in chicken and include
TLR1A and TLR1B, TLR2A and TLR2B, TLR3, TLR4, TLR5,
TLR7, TLR15, and TLR21 (23–25). Further, TLR21, which is a
functional orthologue of mammalian TLR9, recognizes CpG-
ODN whereas LPS and flagellin are recognized by TLR4 and
TLR5, respectively (26–30). Mammalian counterparts of TLR8
and TLR9 seem to be defective in chicken, although chicken TLR3
appears to recognize dsRNA in a manner similar to that seen in
mammals (31, 32). TLR15 has been shown to detect yeast pro-
teases (33).

To combat infectious bacterial and viral diseases, depending
upon the causative agent, humoral as well as cell-mediated im-
mune responses may be required. Clearance of bacterial diseases
may require robust humoral immunity (34, 35). Viral diseases,
apart from humoral immunity, require cell-mediated immunity.
For example, cellular immunity is crucial in Newcastle disease
virus (NDV) infection because the viral pathogenesis includes an
intracellular phase (36). This necessitates the use of an agent that
can elicit both types of immune response.

CpG-ODN, a TLR21 ligand, has been reported to be an effec-
tive adjuvant, but its use has been limited due to its adsorption by
nonrelevant tissues and transient biological activity due to a short
half-life in vivo (6). Though modification increases its half-life, it
does not render it completely resistant to nuclease activity and it
still undergoes slow degradation (37). Poor cellular uptake,
nonspecificity, toxicity, and severe side effects upon long-term
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use are some other disadvantages associated with the modifi-
cation (38–41).

Another microbial component, TLR5 ligand flagellin, a major
structural protein of Gram-negative flagella, is a potent inducer of
cytokine and chemokine production and has shown tremendous
potential as an adjuvant in various investigations (42–44).

TLR5 SIGNALING

TLRs have recently emerged as key components of the innate im-
mune system that sense microbial infections and elicit antimicro-
bial host defense responses. Binding of a ligand to its specific TLR
initiates a cascade of reactions leading to production of various
inflammatory cytokines and type 1 interferons (IFN) (45, 46).
TLR signaling consists of two distinct pathways: a MyD88-depen-
dent pathway and a MyD88-independent pathway. The MyD88-
dependent pathway is used by all the TLRs except TLR3, while
TLR4 uses both the pathways (16, 47). Flagellin binding to TLR5
activates the MyD88-dependent pathway (Fig. 1). Analysis of
MyD88-deficient mice revealed the important role of MyD88 in
TLR signaling (48). When macrophages from such MyD88-defi-
cient mice were exposed to bacterial components, they failed to
produce inflammatory cytokines such as tumor necrosis factor

alpha (TNF-�), interleukin-6 (IL-6), IL-1�, and IL-12 (49, 50).
Upon stimulation, MyD88 binds to the cytoplasmic portion of a
TLR and recruits IRAK-4 (interleukin-1 receptor-associated ki-
nase), IRAK-1, and TRAF6 (TNF receptor-associated factor) to
the receptor. IRAK-4 then phosphorylates IRAK-1. TRAF6 with
phosphorylated IRAK1 releases from the receptor and activates
TAK1 (51). TAK1 (TGF-�-activated kinase 1) then phosphory-
lates the I�B kinase (IKK) complex and mitogen-activated protein
(MAP) kinases. Activation of the IKK complex results in degrada-
tion of IkB and activation of NF-�B. Both NF-�B and MAP ki-
nases then cause induction of genes involved in inflammatory
responses. These genes, after activation, produce different types of
inflammatory cytokines and chemokines which in turn direct and
shape the acquired immune response (Fig. 2) (52).

TLR SIGNALING AFFECTS MANY IMMUNOLOGICAL
PROCESSES TO ENHANCE THE IMMUNE RESPONSE

TLR ligands seem to affect an array of processes to augment the
immune response (Fig. 3). In this regard, production of cytokines
upregulates the expression of major histocompatibility complex
(MHC) as well as various costimulatory molecules in the antigen-
presenting cells (APCs), and upregulation of CD70 and CD40
molecules results in the activation of T and B cells (53, 54). TLR
signaling and phagocytosis are distinctive features of macro-
phage-mediated innate immune responses to bacterial infection.
Many studies have reported an enhanced rate of phagocytosis due
to TLR signaling. Engagement of TLRs induces MyD88-depen-
dent signaling through the activation of IRAK-4 and p38, causing
upregulation of expression of a number of genes associated with
phagocytosis (55–57).

Detection of microbial components by TLR enhances effi-
ciency of vaccination by upregulating the cross-presentation and
cross-priming ability of APCs (58). TLRs have also been reported
to be present on CD4� T cells, suggesting that microbial compo-
nents may directly induce activated CD4� T cell survival without
any help from the APCs (40). This effect is mediated directly
though the activation of the NF-�B pathway following TLR liga-
tion (59, 60). These studies indicated a function of TLRs in the
activation of adaptive immune cells and the involvement of effec-
tor memory T cells in innate immunity.

FLAGELLIN: A TLR5 AGONIST
Structure. Flagellin is a globular protein that arranges itself in a
hollow cylinder to form the filament in bacterial flagellum and is
present in large amounts in nearly all flagellated bacteria (61, 62).
Flagellar protein consists of the four domains D0, D1, D2, and D3.
The D0 and D1 domains are mostly helical in structure and have a
highly conserved sequence of amino acids at the N and C termini
of the primary sequence of protein across the species. The D2 and
D3 domains form the hypervariable region (Fig. 4). Systemic de-
letion studies of flagellin protein have revealed that the TLR5-
activating region of flagellin is located within the conserved do-
mains of the protein (29). Deletion of the first 99 amino acids from
the N terminus of the Salmonella enterica serovar Typhimurium
flagellin monomer prevented TLR5 recognition, while deletions
that removed amino acids 416 to 444 within the C terminus of
flagellin were also sufficient to abolish the recognition of protein
by TLR5 (29). The variable D3 domain is present at the surface of
the flagellar filament, and it has been reported to have immunos-

FIG 1 TLR5 signaling. Flagellin binding to TLR recruits adaptor protein
MyD88, leading to the activation of IRAK-1/4 and TRAF-6 and resulting in the
activation of NF-�B, which induces the expression of proinflammatory
cytokines.
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timulatory activity. This makes this domain important for innate
immune recognition (63, 64).

Individuals become susceptible to Legionnaires’ disease when
a stop codon mutation occurs in TLR5 (65). Occurrence of a stop
codon mutation makes such individuals unable to recognize flag-
ellated bacteria and, hence, unable to mount a proinflammatory
response mediated through TLR5-flagellin signaling. This ac-
counts for the greater susceptibility of such individuals to Legio-
nella infection (65). Absence of TLR5 in mice makes them more
susceptible to Escherichia coli urinary tract infection, suggesting
that TLR5 regulates the innate immune response in the urinary

tract (66). Furthermore, TLR5-deleted mice have been reported to
develop spontaneous colitis whereas another study suggested that
the flagellin-induced pulmonary inflammatory response is TLR5
dependent (67, 68). Taken together, these studies strongly suggest
that the functional status of the TLR5-mediated flagellin response
in the host determines the host susceptibility to the infectious
diseases.

In chicken, TLR5 has been reported to be expressed in lungs,
kidney, colon, spleen, testes, and heart (23). TL5 expression has
also been detected in the immune cells of chicken such as hetero-
phils, monocytes, Langerhans cells, NK cells, and T and B cells of
the adaptive immune system (69–71).

Flagellin as an adjuvant in chicken. In chicken, many of the
previous studies (Table 1) performed with flagellated bacteria
such as S. enterica serovar Typhimurium have also revealed the
potential of flagellar protein flagellin in activating the immune
system of the host. In this context, infection of chicken TLR5-
expressing HeLa cells with S. enterica serovar Enteritidis activated
high levels of NF-�B in a dose- and flagellin-dependent manner
(72). In another study, aflagellar S. enterica serovar Typhimurium
fliM induced less IL-1� and IL-6 production than was seen with
wild-type flagellated bacteria in chicken and the aflagellar bacteria
had a greater ability for systemic infection (23). S. enterica serovar
Gallinarum, a nonflagellated bacterium, shows reduced invasive-
ness and elicits reduced levels of cytokines and chemokines. de
Freitas Neto et al. (73) produced flagellated strains of this bacte-
rium and infected chicken kidney cells (CKC) with these strains

FIG 2 Mechanism of induction of the type of immune responses following TLR activation.

FIG 3 TLR ligands affect many immunological processes to elicit an elevated
immune response.
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along with the parent strain. The flagellated strain (S. enterica
serovar Gallinarum Fla�) induced higher levels of CXCLi2, induc-
ible nitric oxide (NO) synthase (iNOS), and IL-6 mRNA expres-
sion in CKC than were seen in the nonflagellated parent strain. In
other TLR5-flagellin interactions, chicken peripheral blood
mononuclear cells (PBMCs) produced more IL-1�, IL-6, CXCLi2,
and CCLi2 in response to S. enterica serovar Enteritidis infection
(74). Pan et al. (75) also investigated the effect of flagellin-defi-
cient mutant S. enterica serovar Typhimurium on the immune
system of the chicken in vivo. Mutant (flagellin-deficient) strains
showed a greater ability to establish systemic infection and elicited
reduced levels of IL-1� and CXCLi2 compared to the wild-type
bacteria. An absence of TLR5-flagellin-mediated production of
various proinflammatory cytokines and chemokines may account
for the enhanced ability of the flagellin-deficient mutant to cause
systemic infections (23, 75). Taken together, all these studies in-

dicated that the Salmonella flagellin protein is involved in trigger-
ing the innate immune responses.

A number of studies have demonstrated the effectiveness of
flagellin as an adjuvant in chicken immune cells in vitro (Table 2).
Heterophils showed an increased oxidative burst and a significant
upregulation of various proinflammatory cytokines (IL-1�, IL-6,
and IL-8) and chemokines (CXCLi2) in response to flagellin (76,
77). Isolated chicken monocytes stimulated with flagellin showed
upregulated nitric oxide production, which indicates enhanced
macrophage function (78). Furthermore, chicken macrophage-
like cells (HD11), chicken kidney epithelial cells (CKC), and
chicken embryo fibroblasts (CEF) have been shown to upregulate
production of IL-1� when stimulated with flagellin (23). Keestra
et al. (72) reported that the increased proinflammatory response
was due to TLR5-flagellin-mediated enhanced production of
NF-�B in HeLa cells expressing chicken TLR5.

Recent studies aimed at exploring the potential of flagellin as
an adjuvant have reported a mixed induction of Th1 and Th2
immune responses in chicken cells (79, 80). We have found that
when chicken PBMCs were stimulated with recombinant flagellin,
both Th1 and Th2 cytokines (Th1–IL-12 and Th2–IL-4) were de-
tected along with proinflammatory cytokine IL-6 (79). The same
pattern of cytokine production (Th1–IL-12, gamma interferon
[IFN-�], and Th2–IL-4 and –IL-13) was observed in chicken
splenocytes (80).

Many in vivo investigations were undertaken looking at the
promising results of various in vitro studies with purified or re-
combinant flagellin in chicken immune cells (Table 3). In this
regard, flagellin administered in vivo enhanced the infiltration of
heterophils into the site of injection, which suggests that flagellin
is a potent stimulator of a heterophil-mediated innate immune
response in vivo and can protect against Salmonella infections in
chickens (81). Although the exact mechanism behind this phe-
nomenon was not clearly documented, it was reasoned to be me-
diated by the TLR5-flagellin-induced production chemotactic
factor IL-8 (76).

Use of flagellin in recombinant vaccine can elicit a greater im-
mune response (82). Chaung et al. (82) investigated the adjuvant
effects of the monomeric and polymeric forms of Salmonella
flagellin in specific-pathogen-free (SPF) chickens immunized in-
tramuscularly or intranasally with inactivated avian influenza vi-
rus H5N2 vaccines. Results showed that flagellin cooperating with

FIG 4 Structure of flagellin with four major domains indicated (NCBI; Gen-
Bank accession no. KF589316).

TABLE 1 Summary of TLR5-mediated adjuvant action of flagellated Salmonella strains

Study model Result(s) Reference

Chicken kidney cells (CKC) Flagellated strains S. Enteritidis and S. Gallinarum (Fla�) induced higher levels of CXCLi2,
iNOS, and IL-6; less mortality with flagellated strains

73

Chicken (in vivo) Flagellin-deficient mutants exhibited enhanced ability for systemic infections; lower levels of
IL-1� and CXCLi2 than wild type

75

Chicken PBMCs TLR5-flagellin-mediated upregulation of IL-1�, IL-6, CXCLi2, and CCLi2 expression in S.
Enteritidis-infected cells

74

CKC and HD11 Flagellated S. Enteritidis and S. Typhimurium induced more IL-6, CXCLi1, CXCLi2, and
iNOS than nonflagellated S. Pullorum and S. Gallinarum

105

HeLa cells expressing chicken TLR5 Induced more NF-�B in response to S. Enteritidis infection in a dose- and
flagellin-dependent manner

72

Chicken (in vivo) Reduced levels of IL-1� and IL-6 and enhanced ability to establish systemic infection after
challenge with aflagellar S. Typhimurium

23

Intestinal epithelial cells Flagellin-deficient S. Typhimurium mutant (fliC, fljB, and flhD) failed to elicit IL-8 expression 52
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the 64CpG adjuvant significantly induced influenza virus-specific
antibody titers of plasma IgA in the vaccinated animals. The nasal
IgA levels in the flagellin-coadministered avian influenza virus-
vaccinated chickens were significantly elevated compared to levels
observed with the H5N2 vaccine alone. Okamura et al. (34) used
recombinant flagellin protein from S. enterica serovar Enteritidis
and tested its potential in a vaccine candidate against homologous
challenge in chickens. After immunization with recombinant
flagellin or administration of phosphate-buffered saline, the
chickens were challenged with S. enterica serovar Enteritidis. The
vaccinated birds showed significantly decreased bacterial counts
in the liver and cecal contents compared to those administered
phosphate-buffered saline (PBS).

Recombinant vectors based on S. enterica serovar Typhimu-
rium have also been used. Pan et al. (75) developed a recombinant
S. enterica vector expressing the fusion protein (F) gene of NDV;
experimental data revealed that recombinant vector induced
higher levels of interleukin-1� (IL-1�), CXCLi2, and TLR5 mR-
NAs in the cecum, the spleen, and the heterophils. Huang et al.
(35) used flagellin as an adjuvant against Campylobacter jejuni and
reported an increased Ig and decreased bacterial load in the birds.
Further, flagellin has also been used as an adjuvant against Eimeria
tenella. A recent study demonstrated the potential of flagellin as an
adjuvant against parasitic infections (83). A fusion protein con-
sisting of flagellin and immune-mapped protein-1 (IMP-1), an
antigenic protein of Eimeria tenella, elicited a stronger immune
response than recombinant IMP-1 with Freund’s complete adju-
vant, showing that flagellin can also be used to enhance the im-
munogenicity of parasite antigens. Flagellin-antigen fusion pro-
teins hold great potential and can be effectively used once the
antigenic region of a pathogen is identified.

Flagellin as an adjuvant in combination with other TLR li-
gands. Recent studies have shown that when two or more TLRs
are activated simultaneously, their pathways interact with each
other and this cross talk results in either synergistic or antagonistic
immune response (84, 85). TLR combinations can produce a
stronger and selective immune response, and a number of studies

have been undertaken in mice as well as in human immune cells
(86–91). In chicken, many combinations have also been tried to
establish the pattern of cytokine production and induction of the
type of immune response (Table 4). In this context, costimulation
with TLR3 and TLR21 ligands synergistically upregulated IFN-�
and IL-10 expression in chicken monocytes (92). A combination
of CpG-ODN and poly(I·C) synergistically stimulated a proin-
flammatory immune response in chicken monocytes that in-
cluded nitric oxide (NO) production and expression of iNOS and
of proinflammatory cytokines and chemokines (93, 94). Flagellin
has also been used in combination with other agonists. In a pre-
vious study, cross talk between TLR5 and TLR9 on human PBMCs
resulted in a more robust production of IL-10 and IFN-� but
antagonized IL-12 production (86). In another study, we have
reported that a combination of recombinant flagellin and LPS
synergistically upregulated nitric oxide production and IL-12 and
IL-6 expression but antagonistically downregulated IL-4 expres-
sion in comparison to recombinant flagellin alone. The results
indicate that these agonists synergistically interact and enhance
macrophage function and promote Th1 immune response in
chicken PBMCs (79). Our study (79) also favored the use of com-
binations of these (LPS and recombinant flagellin) agonists, where
Th1 type immunity is required, in small doses to alleviate the
toxicity-related concerns associated with these agonists. These
studies indicated that a single TLR ligand may not be effective
enough to combat deadly infectious diseases and that instances
occur in which a well-directed immune response is required;
hence, in such cases, a novel combination of TLR ligands can be
tried to achieve a more effective and selective immune (Th1 or
Th2) response in chickens.

Advantages of flagellin as an adjuvant in chicken vaccine.
Flagellin has emerged as a potential adjuvant candidate for vac-
cines due to a number of advantages associated with it. It has been
shown to be effective at very low doses (81, 82), and previous
immunity does not alter its adjuvant activity, as it has high affinity
for TLR5 (95, 96). Being protein in nature, it can be manipulated
and epitopes can be fused with its N or C terminus as well as in the

TABLE 2 Flagellin as an adjuvant in chicken: applications in vitro

Cell category Response(s) Reference

Chicken PBMCs Upregulation of both IL-12 and IL-4 as well as IL-6 79
Chicken splenocytes Induction of a mixed Th1- and Th2-like response 80
Chicken heterophils Upregulation of IL-6 and CXCLi2 100
HeLa cells with chicken TLR5 Upregulation of TLR5-flagellin-mediated NF-�B expression 72
Chicken monocytes Induction of nitric oxide production 78
Chicken heterophils Increased oxidative burst; significant production of proinflammatory cytokines and chemokines 77
CEF, CKC HD11 cells Significant upregulation of IL-1� 23
Chicken heterophils Significant upregulation of IL-1�, IL-6, and IL-8 and increased oxidative burst 76

TABLE 3 Flagellin as an adjuvant in chicken: applications in vivo

Antigen Result(s) Reference

Immune-mapped protein-1 (IMP-1) of Eimeria
tenella (EtIMP1)

Flagellin-fused EtIMP1 elicited a stronger protective immune response;
reduced mortality

83

Avian influenza virus Increased IgY and IgA 82
Salmonella enterica serovar Enteritidis Increased IgA and decreased bacterial counts 34
Campylobacter jejuni Increased Ig and decreased bacterial load 35
Salmonella enterica serovar Enteritidis Reduced mortality 81
Campylobacter jejuni Increased Ig and decreased bacterial load 101
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hypervariable region without affecting its binding ability with
TLR5 (97, 98). Further, it can easily be made in a large quantity
using recombinant DNA technology. Flagellin can also be used in
DNA vaccination, where the gene encoding flagellin can be placed
next to an antigenic epitope. An expression vector containing the
fliC gene was made and was given to mice against a lethal challenge
of influenza A virus. Results of the experiment indicated that ex-
pression of DNA-encoded TLR agonists by mammalian cells
greatly enhanced and broadened immune responses to influenza
A virus (99). Flagellin can also be used in a recombinant viral
vector carrying an antigenic gene. In this regard, flagellin has suc-
cessfully been used as an adjuvant in a recombinant vector ex-
pressing a viral protein (75).

CONCLUSION

Flagellin exhibits a range of immunological effects on a number of
cell types in the host. It has been seen that the TLR5 ligand flagellin
induced the chicken immune system and elicited a mixed Th1 and
Th2 response, though with an inclination toward a Th2 response
(79, 80). However, we observed (79) that flagellin used in combi-
nation with LPS induced a Th1 response in chicken PBMCs. Also,
many of the other TLR agonists induce a predominantly Th1 re-
sponse, thereby making flagellin an attractive option under both
sets of conditions; for example, when an elevated antibody-medi-
ated immune response is desired, flagellin alone might be used,
and in cases where cell-mediated immunity is required, combina-
tion with LPS might be tried (79). However, the particular type of
response may further be influenced by several factors, including
the dose of flagellin or antigen, the cell subtypes, and the route of
immunization, as well as its combination with other agonists (79).
Though many of the in vivo studies undertaken suggest flagellin to
be a potent adjuvant in chickens (76, 77, 79), toxicity-related con-
cerns over the use of flagellin in birds cannot be ignored. This
necessitates the detailed in vivo investigation of the use of flagellin
in chickens. A good option to avoid toxicity concerns might be the
use of a combination of flagellin with another TLR ligand; such
combinations will help in reducing the quantity of the agonists
used and, hence, toxicity-related concerns in chickens. Thus,
flagellin is an effective adjuvant, but detailed in vivo investigations
to measure long-term safety as well as the determination of factors
such as the route of administration and dose will provide a foun-
dation for the use of flagellin and its combinations with other TLR
ligands as an adjuvant in future development of vaccines against
infectious diseases of chicken.
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