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SUMMARY

 

Flask-shaped vesicles have been described as caveolae in mesothelial cells in a
number of animal species based on morphological criteria only. Using an antibody against
caveolin-1, said to be a biochemical marker of caveolae, immunoelectron microscopy sug-
gests that many but not all such vesicles in mesothelial cells are caveolae. Mesothelial cells
from different anatomical sites showed obvious variations in both the population density
and distribution of these flask-shaped vesicles and in their density of immunostaining.
Lung and pericardial sac had the highest staining density. In some sites (e.g., lung, bladder,
colon) caveolae were equally distributed between apical and basolateral surfaces, whereas
in others (e.g., spleen, liver), they were predominantly apical. Additional immunopositive
sites in the peritoneal membrane were identified, including the epineurium of peripheral
nerves and the endothelium of lymphatic vessels. We further suggest that variations in the
number of mesothelial cell caveolae and the density of their immunolabeling may have im-
plications for our understanding of certain diseases such as malignant mesothelioma, espe-
cially in view of the recent hypothesis that it may be caused by SV40, a virus that appears to
enter cells via caveolae.

 

(J Histochem Cytochem 52:1415–1425, 2004)

 

F

 

ine parietal and visceral membranes,

 

 respectively,
cover the body’s cavities and the organs that lie within
them. These membranes comprise a sheet of squa-
mous mesothelial cells overlying a layer of loose con-
nective tissue containing blood vessels, lymphatics,
nerves, fibroblasts, and occasional mast cells. In the
thorax, the pleural membrane lines the cavity and en-
velops the lungs, and the pericardial membrane lines
the pericardial sac and surrounds the heart. In the ab-
domen, the membrane is termed the peritoneum. These
membranes provide a lubricating surface for the viscera
and may be involved in host defense (Holmes 1994).

In the past two decades there has been increasing
interest in mesothelial tissues, principally as a result of
reports of the transformation of mesothelial cells from
thoracic membranes by exposure to asbestos fibers

(Craighead and Mossman 1982; Ke et al. 1989) and
viruses (Cicala et al. 1993; Carbone et al. 1994; Boc-
chetta et al. 2000); such transformation can lead to
malignant mesothelioma. In addition, the properties
of the peritoneal membrane are of fundamental im-
portance because it represents the dialyzing surface in
patients receiving continuous ambulatory peritoneal
dialysis (CAPD).

Caveolae, as defined by Yamada (1955), are 80–
100-nm flask-shaped invaginations of the plasma mem-
brane. They are observed morphologically in a wide
variety of cell types, including, most prominently, mi-
crovascular endothelium (Simionescu and Simionescu
1983), fibroblasts (Bretscher and Whytock 1977), adi-
pocytes, and smooth-muscle cells (Forbes et al. 1979),
and have been described as noncoated vesicles due to
their lack of the electron-dense cytoplasmic coat that
is characteristic of plasmalemmal clathrin-coated pits.

Caveolae appear to perform a number of cellular
functions, including serving as a localizing domain
within the plasma membrane for a range of signal
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transduction molecules (Anderson 1999; Schlegel and
Lisanti 2001), concentration and internalization of
small molecules or ions by the process of potocytosis
(Anderson et al. 1992), and involvement in intracellu-
lar trafficking (Fielding and Fielding 1996) and in en-
docytotic and transcytotic functions (Schnitzer et al.
1994), including serving as a portal for the entry of a
range of microorganisms and toxins (Shin and Abra-
ham 2001). Many of these functions are reliant to a
lesser or greater extent on the caveolae marker protein
and on the key structural and functional protein cave-
olin-1. The identification of caveolin-1 (a 22-kD inte-
gral membrane protein) as a major component of ca-
veolar membranes (Glenney and Soppet 1992; Rothberg
et al. 1992) has allowed these caveolar vesicles to be
identified immunocytochemically in a variety of cells,
such as fibroblasts (Rothberg et al. 1992; Smart et al.
1995), endothelial cells (Rajamannan et al. 2002), and
type 1 pneumocytes (Newman et al. 1999).

Membrane vesicles morphologically characteristic of
caveolae have long been described in mesothelial cells
in a variety of species, including frog (Hama 1960),
mouse (Ettarh and Carr 1996), and human (Slater et al.
1989). Intriguingly, changes in the number and size of
such vesicles in peritoneal mesothelial cells have been
documented in patients receiving CAPD (Dobbie and
Zaki 1986; Dobbie 1989).

Given the multifunctional roles ascribed to caveo-
lae and the different types of noncoated membrane
vesicles present within cells, we sought in this study to
use immunoelectron microscopy to localize caveolin-l
to the non-coated vesicles in mesothelial tissue. Bio-
chemical evidence that these structures are caveolae
has broad implications for the functional assignment
and further study of these structures in relation to me-
sothelial cell biology.

 

Materials and Methods

 

Rat Tissue

 

The paucity of normal human tissue necessitated the use of
material from animal sources for preliminary optimization
studies. Tissue was immersion fixed to maintain comparabil-
ity with processing of human tissue samples. Separate ani-
mal tissue was fixed by perfusion to provide ideally pre-
served tissue.

Male pathogen-free Wistar rats (180–220 g) were used
throughout. The rats were bred and maintained under con-
trolled temperature and lighting with access to food and wa-
ter ad libitum. Experiments were conducted in accordance
with the Animal (Scientific Procedures) Act of 1986.

 

Immersion Fixation

 

For immersion fixation, animals were terminally anesthe-
tized with halothane and sacrificed under schedule 1. The
pleural, pericardial, and peritoneal cavities were opened and
flooded with 100 mM sodium phosphate buffer, pH 7.4,

plus 2% (w/v) sucrose (sample buffer) containing 4% form-
aldehyde plus 0.2% glutaraldehyde (sample fixative). After
15 min, tissue specimens were collected from body cavity
walls and organs and immersion fixed for a further 24 hr in
sample fixative. The fixed samples were washed with several
changes of sample buffer to remove excess fixative and were
stored at 4C before further processing.

 

Perfusion Fixation

 

After terminal anesthesia with halothane, a canula was im-
mediately inserted into the aorta at a site distal to the pul-
monary artery, and a bolus (100 

 

�

 

l) of 0.1% (w/v) NaNO

 

2

 

was administered. The vasculature was perfused with bal-
anced saline solution followed by 15-min perfusion with 1%
(v/v) glutaraldehyde in 100 mM sodium phosphate buffer,
pH 7.3 (Yoshimura et al. 1986). Tissue samples were col-
lected and immersion fixed for a further 45 min by immer-
sion in the same fixative. Samples were washed with several
changes of sample buffer to remove excess fixative and were
stored at 4C before further processing.

 

Human Tissue

 

Human parietal peritoneum was excised from consenting pa-
tients undergoing donor nephrectomy using a trauma-free,
knotted suture method (von Ruhland et al. 2003). Briefly, a
suture was inserted into the external surface of the perito-
neum and the membrane raised above the viscera. A sample
of tissue (1.5 cm about the suture) was excised and briefly
placed in sample buffer before being pinned onto a silicone
elastomer surface (Sylgard 184; VWR International, Lutter-
worth, UK) (submerged in sample buffer) with the mesothe-
lial surface uppermost. The sample buffer was poured away,
and the tissue was then flooded with sample fixative for 15
min at room temperature. The tissue was carefully removed
from the silicone elastomer and fixed for 24 hr in sample fix-
ative at room temperature. After several washes in sample
buffer, the tissue was stored at 4C before further processing.

 

Tissue Processing

 

Strips of tissue 5 mm 

 

�

 

 1 mm were postfixed for 2 hr in 2%
(w/v) aqueous uranyl acetate, partially dehydrated in etha-
nol [30 min in 50% (v/v), twice for 30 min in 70% (v/v)], in-
filtrated with LR White acrylic resin (London Resin Com-
pany; Reading, UK) (45 min in 2:1 LR White/70% ethanol,
four times for 1 hr in neat resin, all at 4C), and polymerized
by the cold chemical catalytic technique (Newman and Ho-
bot 2001). For electron microscopy, thin (80–100-nm) resin
sections were mounted unsupported on the shiny side of eth-
anol-washed 300-mesh nickel grids and allowed to air dry.

For light microscopy, semithin (0.35 

 

�

 

m) resin sections
were floated onto droplets of ddH

 

2

 

O on Vectabond (Vector
Laboratories; Peterborough, UK)-treated slides and dried for
2 hr in an oven at 50C. Rodent membranes were not studied
at the light microscopic level because they are exceptionally
thin, comprising only mesothelial cells and underlying col-
lagen containing occasional fibroblasts.

 

Immunocytochemistry

 

Thin Resin Sections.

 

Grids were equilibrated twice for 10
min in 50-

 

�

 

l drops comprising 0.6% bovine serum albumin
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in 20 mM Tris-buffered saline, pH 7.4 (TBS/BSA). Grids
were then incubated for 1 hr in 50-

 

�

 

l drops of rabbit anti-
caveolin-1 polyclonal antibody (BD Biosciences; Cowley,
UK) at dilutions of 1:500, 1:1000, 1:2000, or 1:4000 in
TBS/BSA. After incubation, grids were washed three times
for 1 min in 50-

 

�

 

l drops of TBS/BSA and then incubated for
1 hr in 50-

 

�

 

l drops of goat anti-rabbit IgG–10-nm colloidal
gold conjugate (manufactured in-house) in TBS/BSA. Grids
were then rinsed in 50-

 

�

 

l drops of TBS/BSA for 1 min and in
ddH

 

2

 

O twice for 1 min before counterstaining with 2% ura-
nyl acetate and Reynolds lead citrate.

For double immunolabeling of human tissue, grids were
immunostained as above, except that the droplets of pri-
mary antibody contained both rabbit anti-caveolin-1 poly-
clonal antibodies, and mouse anti-vimentin (DakoCytoma-
tion; Ely, UK) monoclonal antibodies, and the drops of
secondary antibody-colloidal gold conjugate contained both

goat anti-rabbit IgG–10-nm colloidal gold conjugate and
goat anti-mouse-20-nm colloidal gold conjugate.

Sections were examined in a Philips CM12 transmission
electron microscope at 80 kV. Photographic plates were dig-
itally imaged with a UMAX Powerlook III scanner (UMAX
Data Systems; Taipei, Taiwan, ROC) and processed with
Adobe Photoshop (Adobe Systems; San Jose, CA).

 

Semithin Resin Sections.

 

Sections of human parietal peri-
toneum were equilibrated twice for 10 min with TBS/BSA,
after which they were incubated for 1 hr at room tempera-
ture in serial dilutions (1:500, 1:1000, 1:2000, and 1:4000)
of rabbit anti-caveolin-1 polyclonal antibody in TBS/BSA.
Sections were then washed three times for 1 min with TBS/
BSA and incubated for 1 hr with 100-

 

�

 

l droplets of goat
anti-rabbit Ig-10-nm colloidal gold conjugate in TBS/BSA.
Sections were washed in TBS/BSA for 1 min and in ddH

 

2

 

O

Figure 1 Transmission electron micro-
graphs of rat pleural mesothelium im-
munostained for caveolin-1. Lung meso-
thelium showing apical and basolateral
vesicular staining (A) and dense foci of
immunopositive vesicles (B). Diaphragm
(C) and intercostal muscle (D). Bars �
500 nm.

Figure 2 Transmission electron micro-
graphs of rat pericardial mesothelium
immunostained for caveolin-1. Heart (A)
and pericardial sac (B). Bars � 500 nm.
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twice for 1 min. Sections were dried on a hotplate at 60C be-
fore silver amplification with a powerful light-insensitive
physical developer (Newman and Jasani 1998). Sections
were counterstained with 0.1% aqueous safranin O and
mounted in Gurr’s neutral mountant.

Sections were examined on an Olympus BX51 light mi-
croscope (Olympus Optical; London, UK). Digital photomi-
crographs were acquired with a Zeiss Axiocam and Axiovi-
sion software (Carl Zeiss Vision; Hallbergmoos, Germany).
Image processing was performed with Adobe Photoshop.

 

Results

 

Rat Mesothelium

 

Pleura.

 

Mesothelial cells of the visceral pleura of the
lung contained large numbers of vesicles that were

equally distributed between the apical and basolateral
surfaces. The majority of these stained strongly for ca-
veolin-1 (Figure 1A). In some areas, very strong im-
munoreactivity was seen associated with dense foci of
vesicles (Figure 1B).

Mesothelial cells overlying the diaphragm had a dis-
tribution of vesicles similar to that in the lung, although
the numerical density was slightly less. The majority of
vesicles stained strongly for caveolin-1 (Figure 1C). In
contrast, mesothelium overlying the intercostal muscles
had only moderate numbers of vesicles. These were pre-
dominantly apical in distribution, and only a small pro-
portion of these were immunopositive (Figure 1D).

 

Pericardium.

 

Mesothelial cells on the surface of the
heart (visceral pericardium) contained very few vesi-

Figure 3 Transmission electron mi-
crographs of rat peritoneal mesothe-
lium immunostained for caveolin-1.
Bladder (A), colon (B), kidney (C),
duodenum (D), spleen (E), liver (F), me-
sentery (G), pancreas (H), stomach (I),
and abdominal wall (J). Bars � 500 nm.
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cles. Moderate numbers of these, however, stained
positively for caveolin-1 (Figure 2A). In contrast, the
parietal pericardial mesothelium contained very large
numbers of vesicles, the majority of which stained
strongly for caveolin-1 (Figure 2B).

 

Peritoneum.

 

The subcellular distribution of vesicles
fell into two broad categories, i.e., an equal distribution
between the apical and basolateral surfaces and a pre-
dominantly apical distribution. A staining pattern of
the former category was observed in mesothelial cells
overlying the bladder, colon, kidney, and duodenum.
Large numbers of vesicles were observed in both blad-
der (Figure 3A) and colon (Figure 3B) mesothelium,
and vesicular immunostaining intensity was high in
both. In contrast, both renal (Figure 3C) and duodenal
(Figure 3D) mesothelium contained small numbers of
vesicles, and few of these stained positively.

Mesothelial cells containing a predominantly apical
distribution of vesicles occurred on the visceral perito-
neum overlying the spleen, liver, mesentery, pancreas,
and stomach. Mesothelial cells of the spleen (Figure
3E) and liver (Figure 3F) contained moderate numbers
of vesicles. Only small numbers of splenic mesothe-
lial vesicles stained positively for caveolin-1, whereas
those of the liver were more numerously stained. Mes-
enteric (Figure 3G), pancreatic (Figure 3H), and gas-
tric (Figure 3I) mesothelium contained low numbers

of vesicles. Many vesicles of mesenteric mesothelium
were positive for caveolin-1, whereas only moderate
or low numbers were positive in pancreatic and gastric
mesothelium, respectively.

Parietal peritoneal mesothelial cells of the abdomi-
nal wall contained moderate numbers of vesicles that
were distributed equally between the apical and ba-
solateral surfaces (Figure 3J). Moderate numbers of
these were immunopositive for caveolin-1.

A summary of vesicular population density and in-
tensity of immunostaining in the various mesothelial
tissues is presented in Table 1. Differences in these pa-
rameters among the various sites were so obvious that
only semiquantitative scoring was used.

 

Human Parietal Peritoneum

 

Light Microscopy.

 

Semithin LR White resin sections
afforded the highest optical resolution for light mi-
croscopy, because the entire thickness of the section
was within the focal depth of the objective lens.

Caveolin-1 immuostaining localized to both the
apical and basolateral surfaces of mesothelial cells, as
well as intercellular junctions. Positive immunoreac-
tivity was also observed in fibroblasts (Figure 4A).
Venular and arteriolar vascular endothelium, and the
smooth-muscle cells of arterioles, stained for caveo-
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lin-1, as did cells of the epineurium (Figure 4B) and
lymphatic endothelium (Figure 4C). No caveolin-1 im-
munoreactivity was seen in mast cells or nerve fibers.

 

Electron Microscopy.

 

Mesothelial cell caveolin-1 im-
munolocalization was predominantly basolateral and
was associated with some but not all vesicles (Figure
5A). Intercellular junctions had clusters of caveolin-1–
positive vesicles (Figure 5B). Non-vesicular linear
staining along the basolateral plasma membrane was
also occasionally observed (Figure 5C). Within the
submesothelial collagenous zone, strong caveolin-1–
positive staining occurred in dense foci of vesicles in
lymphatic endothelium (Figure 6A). Strong vesicular
staining also occurred in vascular endothelium and
smooth-muscle cells (Figure 6B). Epineural fibroblasts
contained moderate numbers of caveolin-1–positive
vesicles (Figure 6C).

Double immunolabeling with polyclonal anti-cave-
olin-1 and monoclonal anti-vimentin confirmed the

specificity of caveolin-1 labeling. In endothelial cells,
caveolin-1 (10-nm colloidal gold) localized to cyto-
plasmic and plasma membrane vesicles, whereas vi-
mentin (20-nm colloidal gold) localized to cytoplasmic
sites only (Figure 7A). In some areas of endothelium,
foci of immunopositive vesicles were observed. These
regions were completely devoid of vimentin staining
(Figure 7B).

 

Discussion

 

Large numbers of vesicular structures within mesothe-
lial cells have been observed and commented upon in
a variety of animal species, including teleost fish (Lek-
nes 1989), frogs (Hama 1960), mice (Casley-Smith
1969; Ettarh and Carr 1996), rats (Odor 1954; Wang
1974; Dobbie et al. 1981; Michailova and Vassilev
1985; Michailova, 1995,2001; Michailova et al. 1999),
guinea pigs (Michailova and Vassilev 1988), rabbits
(Baradi and Hope 1964; Obata 1978; Gotloib et al.
1983), cats (Michailova 1996), pigs (Pfeiffer et al. 1987),
and humans (Dobbie et al. 1981; Di Paulo et al. 1986;
Slater et al. 1989; Li et al. 1996; Michailova 1997).
Such observations, made across several phyla, suggest
that these vesicles are of fundamental importance to
the biology of these cells.

A confusing number of terms have been used to de-
scribe these structures, such as pinocytotic vesicles
(Baradi and Hope 1964; Obata 1978; Di Paulo et al.
1986; Pfeiffer et al. 1987; Leknes 1989), micropinocy-
totic vesicles (Dobbie et al. 1981; Dobbie 1989), pi-
nocytic vesicles (Wang 1974), plasmalemmal vesicles
(Shumko et al. 1993), microvesicles (Michailova 1995,
1997), and caveolae (Hama 1960; Slater et al. 1989;
Ettarh and Carr 1996). Unlike clathrin-coated pits,
which are easily identified by virtue of their character-
istic electron-dense outer coating, it is much harder to
discriminate between caveolae and similarly struc-
tured vesicles by morphological criteria alone. In this

Figure 4 Light micrographs of human parietal peritoneum immunostained for caveolin-1. (A) Mesothelium and fibroblasts (F). Bar � 10
�m. (B) Immunostaining of venules (V), arterioles (A) and nerves (N). Bar � 50 �m. (C) Immunostaining of lymphatic endothelium (L) and
venule (V). Bar � 10 �m.

 

Table 1

 

Summary of vesicular density and labeling density at 
the different anatomic sites

 

a

 

Tissue Vesicular density Immunolabeling density

Lung

 

�

 

 

 

�

 

 

 

�

 

 

 

�

 

 

 

� �

 

 

 

�

 

 

 

�

 

 

 

�

 

 

 

�

 

Diaphragm

 

�

 

 

 

�

 

 

 

�

 

 

 

� �

 

 

 

�

 

 

 

�

 

 

 

�

 

Intercostal muscle

 

�

 

 

 

�

 

 

 

� �

 

Heart

 

� �

 

 

 

�

 

 

 

�

 

Sac

 

�

 

 

 

�

 

 

 

�

 

 

 

�

 

 

 

� �

 

 

 

�

 

 

 

�

 

 

 

�

 

Bladder

 

�

 

 

 

�

 

 

 

�

 

 

 

� �

 

 

 

�

 

 

 

�

 

 

 

�

 

Colon

 

�

 

 

 

�

 

 

 

�

 

 

 

� �

 

 

 

�

 

 

 

�

 

 

 

�

 

Kidney

 

� �

 

 

 

�

 

Duodenum

 

� �

 

 

 

�

 

Spleen

 

�

 

 

 

�

 

 

 

� �

 

Liver

 

�

 

 

 

�

 

 

 

� �

 

 

 

�

 

 

 

�

 

Mesentery

 

�

 

 

 

� �

 

 � � �
Pancreas � � � �
Stomach � � � �
Abdominal wall � � � � � �

a �, very low; � �, low; � � �, moderate; � � � �, high; � � � � �, very high.
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article, we have sought to address this problem and to
clarify the confusing nomenclature using an immuno-
cytochemical approach.

The ICC localization of caveolin-1 to many of the
flask-shaped 80–100-nm vesicular structures in me-
sothelial cells could be said to confirm that they are
caveolae. However, some similarly structured vesicles
did not immunolabel for caveolin-1. There are a num-

ber of possibilities to explain this. The failure of these
vesicles to stain positively may be due to variations in
caveolin-1 levels within caveolae, coupled with anti-
gen threshold requirements. Similar observations have
been made in type 1 pneumocytes (Newman et al.
1999). Alternatively, caveolae may contain caveolin-1
only at certain stages of their existence. It is also con-
ceivable that caveolin-1 in some caveolae, although

Figures 5–7

Figure 5 Transmission electron micrographs of human peritoneal mesothelium immunostained for caveolin-1. Immunopositive (thick ar-
rows) and immunonegative (thin arrows) vesicles (A), clustering of immunopositive vesicles around an intercellular junction (B), and linear
plasmalemmal staining (arrow) (C). Bars � 500 nm.

Figure 6 Transmission electron micrographs of human peritoneum immunostained for caveolin-1. Lymphatic endothelium (A), vascular en-
dothelium (VE) and smooth-muscle cell (SMC) (B), and epineural fibroblasts (C). Bars � 500 nm.

Figure 7 Transmission electron micrographs of human peritoneal vascular endothelium immunostained for caveolin-1 and vimentin. Vesic-
ular localization of caveolin-1 (10 nm immunogold) (arrows) and cytoplasmic localization of vimentin (20 nm immunogold) (A). Focus of ca-
veolin-1–immunopositive vesicles (B). Bars � 500 nm.
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being biochemically unaltered, undergoes conforma-
tional changes that render it immunocytochemically
different. Finally, it may reflect genuine biochemical
heterogeneity in morphologically similar structures.

Mesothelial cell caveolin-1 staining was highest in
visceral pleura (lung) and parietal pericardium (peri-
cardial sac). Variations in mesothelial cell vesicular
density have been noted at a variety of sites in many
animal species. For example, visceral pleural mesothe-
lial cells have been consistently observed to contain
larger numbers of vesicles than parietal cells, irrespec-
tive of species (Wang 1974; Obata 1978; Michailova
and Vassilev 1985; Michailova, 1996,1997,2001). Sim-
ilarly, within the peritoneal cavity, mesothelial cells
overlying the spleen, bladder, rectum (Michailova 1995,
1996), and uterus (Odor 1954; Michailova 1995,1996)
have been reported to have high numbers of vesicles,
whereas those cells overlying the liver (Michailova
1995,1996) and omentum (Michailova, 1995,1996)
have lower numbers. At other sites, some disagree-
ment exists as to vesicular density. For example, ab-
dominal wall mesothelial cells have been reported by
some to have large numbers of vesicles (Baradi and
Hope 1964; Obata 1978; Dobbie et al. 1981; Gotloib
et al. 1983; Dobbie 1989), whereas others report low
numbers (Slater et al. 1989; Michailova 1995,1996).

The variation in mesothelial caveolae density among
different anatomic sites may have implications for un-
derstanding the development of certain diseases. For
example, malignant mesothelioma is a rare but fre-
quently fatal tumor that predominantly affects the
pleura. Primary peritoneal lesions are less common,
accounting for �30% of cases (Moertel 1972), and
primary pericardial tumors are extremely rare, with
an incidence of less than 1% (Thomason et al. 1994).
In 80% of all cases, the disease can be directly attrib-
uted to asbestos exposure (Attanoos and Gibbs 1997),
which explains the preponderance of pleural tumors
in these cases, because the pathway of asbestos fiber
entry is invariably respiratory. In 20% of cases, how-
ever, no history of previous exposure to asbestos has
been found.

In 1993, SV40 was reported to induce malignant
mesothelioma in hamsters (Cicala et al. 1993). Inter-
estingly, intrapleural administration induced malig-
nant mesothelioma in 100% of animals, whereas IP
injection resulted in only a 50% incidence. These ob-
servations mirror the incidence of primary pleural ver-
sus peritoneal malignant mesothelioma in humans.
Subsequent investigations revealed that �60% of hu-
man malignant mesothelioma specimens contained
SV40 DNA sequences.

Between 1955 and 1963, poliovirus vaccine con-
taminated with SV40 was administered to over 90
million people in the United States. At the same time,
60% of the European population received similarly

contaminated vaccine (Jasani et al. 2001). Not all Eu-
ropean countries, however, initiated vaccination pro-
grams at this time. In those countries that began polio-
virus vaccination after the contamination had been
detected and eliminated, such as Turkey and Finland,
no SV40 has been detected in malignant mesothelioma
specimens (Hirvonen et al. 1999; De Rienzo et al.
2002).

Mesothelial cells are particularly susceptible to
transformation by both asbestos and SV40. This sus-
ceptibility has been attributed to the higher levels of
the tumor suppressor protein p53 in mesothelial cells
than in, for example, fibroblasts, where SV40 infec-
tion leads to viral replication and cell lysis (Bocchetta
et al. 2000).

Several lines of evidence indicate that the SV40 en-
ters cells via caveolae, given that cells transfected with
dominant-negative caveolin-1 (Roy et al. 1999) and
cells treated with drugs, such as nystatin and filipin,
that selectively disrupt the caveolar membrane sys-
tem (Anderson et al. 1996) are sufficient to inhibit vi-
ral infection. The caveolar internalization of SV40 is
unique, in that it utilizes novel transport intermediates
that provide a direct route to the endoplasmic reticu-
lum (ER), thereby bypassing the classic endosomal/ly-
sosomal route and the Golgi complex. Furthermore,
SV40 uptake proceeds at a much slower rate (hours as
opposed to minutes) than the uptake of other viruses
that utilize clathrin-coated pits. SV40 uptake is a mul-
tistep process that is initiated after binding of the
SV40 particle to its cognate receptor, the MHC class I
molecule, located on flattened regions of the cell mem-
brane (Anderson et al. 1996,1998; Stang et al. 1997).
At such sites, caveolin-1 is recruited to the plasma
membrane and the SV40 virus elicits an extracellularly
regulated and mitogen-activated protein kinase-inde-
pendent intracellular signal that results in the enclo-
sure and endocytosis of virons within small caveolae
vesicles (Chen and Norkin 1999). These vesicles are
targeted to larger caveolin-1–rich organelles termed
caveosomes, from which they are sorted into tubular
caveolin-1–free membrane vesicles and transported di-
rectly to the ER in a microtubule-dependent manner
(Pelkmans et al. 2001).

This body of evidence suggests that SV40 might be
one causative agent of malignant mesothelioma in
humans. This issue, however, remains controversial,
with some workers drawing attention to, for example,
a number of technical problems associated with un-
equivocal virus identification, and the unexplained ob-
servations that SV40 DNA or protein is not found in
all cells of a tumor (Garcea and Imperiale 2003).

When asbestos exposure or other factors have been
eliminated as causes of malignant mesothelioma and if
SV40 is a genuine carcinogen that has been inadvert-
ently administered by an effectively systemic route, the
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predominance of pleural versus peritoneal mesothelio-
mas may be due to a number of factors. For example,
parietal pleural and pericardial blood flows have been
measured at ten times those of parietal peritoneum
(Townsley et al. 1991). Furthermore, in the few cases
in which tumors are discovered during incidental sur-
gery and the primary sites can be identified, these of-
ten occur at locations where caveolar density is high,
such as the pericardium (Hirano et al. 2002), uterus,
and bladder (Goldblum and Hart 1995). Mesothelial
cells from different anatomic sites may vary in their
susceptibility to transformation. The extremely low
incidence of malignant mesothelioma of the pericar-
dium, in spite of its anatomical proximity to the
pleura, its similar blood flow, and its high density of
caveolae (at least in the pericardial sac) suggests that
this might be the case.

Osteosarcomas (Diamandopoulous 1972; Cicala et
al. 1993) and ependymomas (Gerber and Kirschstein
1962) have also been observed in hamsters injected with
SV40. Similar tumors in humans have been demon-
strated to contain SV40 (Carbone et al. 1996; Zhen et
al. 1999; Weggen et al. 2000; Yamamoto et al. 2000).

Recently, caveolae have been identified morpholog-
ically in osteoblasts (Solomon et al. 2000; Lofthouse
et al. 2001). In addition, several studies have noted
small numbers of vesicular structures in ependymal
cells of the choroid plexus (Peters and Swan 1979;
Madhavi and Jacob 1995), third ventricle (Ray and
Choudhury 1984), and cerebral aqueducts (Meller and
Dennis 1993) that may be caveolae.

Additional regions of high caveolar density within
the peritoneal cavity (e.g., vascular and lymphatic en-
dothelium, fibroblasts) may act as replication sites for
SV40. Fibroblasts, for example, support SV40 replica-
tion (Bocchetta et al. 2000), and Sasaguri et al. (1991)
reported that cultured aortic smooth-muscle cells were
completely permissive to SV40 infection.

It is now well established that caveolin-1 can in-
hibit a number of signaling molecules whose phos-
phorylation, and hence activation, is required for cell
growth and oncogenesis (Couet et al. 2001). There-
fore, caveolin-1 has been proposed to represent the
elusive tumor suppressor protein that is thought to re-
side at the 7q31.1 chromosomal locus and that is fre-
quently deleted in a wide spectrum of human cancers
(Engelman et al. 1998). The signaling intermediates
known to be inhibited by direct interactions with ca-
veolin-1 include the epidermal growth factor and
platelet-derived growth factor receptor kinases, Neu
tyrosine kinase, Ras, and components of the p42/p44
mitogen-activated cascade (Couet et al. 2001). Indeed,
the caveolin-1 gene is transcriptionally repressed by
activated p42/p44 (Engelman et al. 1999). It is note-
worthy that both SV40 and asbestos fibers, two major
causative agents in the development of malignant me-

sothelioma, stimulate p42/p44 within pleural mesothe-
lial cells (Mossman and Gruenert 2002). Specifically,
asbestos induces the upregulation and phosphoryla-
tion of EGF-R upstream of p42/p44 (Zanella et al.
1996), while the small T-antigen of the SV40 virus
binds to and inhibits protein phosphatase 2A, a pro-
tein involved in the dephosphorylation and inactiva-
tion of p42/p44 (Rundell and Parakati 2001). There-
fore, the loss of caveolin-1 and functional caveolae
may represent an important step in the establishment
of malignant mesothelioma. This hypothesis warrants
investigation.

Vesicles in peritoneal mesothelial cells of patients
exposed to the hyperosmotic environment of perito-
neal dialysis (PD) are swollen compared with normal
cells (Dobbie and Zaki 1986; Dobbie, 1989); this may
be a common feature of the caveolar response to hy-
pertonic environments. Acute osmotic shock causes
internalization and swelling of cardiac myocyte caveo-
lae (Kordylewski et al. 1993; Page et al. 1998) and in-
ternalization of caveolin-1 to a perinuclear location in
fibroblasts (Kang et al. 2000), suggesting that caveo-
lae may act as osmometers (Page et al. 1998).

Caveolin-1 is a non-competitive inhibitor of nitric
oxide synthase (NOS) (Ju et al. 1997). Similarly, muscle-
specific caveolin-3 has a similar effect on neuronal NOS
(nNOS) (Venema et al. 1997), which has been identified
in vascular smooth muscle (Cheah et al. 2002).

Elevated levels of both endothelial NOS and NOS ac-
tivity have been noted in the peritoneum of patients on
long-term PD (Combet et al. 2000; Devuyst et al. 2001).

It is conceivable that dissociation of caveolin-1
from caveolae in response to the hyperosmotic envi-
ronment of PD reduces the normal allosteric inhibi-
tion of NOS, leading, at least in part, to the increased
activity of NOS observed in long-term PD patients.
Manipulation of peritoneal caveolae function may
provide one approach to overcoming some of the un-
desirable side effects of long-term PD, such as loss of
ultrafiltration, which has been associated with ele-
vated NOS activity (Devuyst et al. 2001).
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