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Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Pheno-
typic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of un-
characterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to ap-
plied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation,
and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 differ-
ent antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being ana-
lyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient bio-
chemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The
collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic com-
pounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the
functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results
of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential
impact on antibiotic drug development research.

The ability to quickly identify the mechanism of action and
cellular target(s) of new antibiotic compounds is a critical de-

velopment for antibiotic drug research. It is well established that
antibiotic drug development is a time-consuming and costly pro-
cess, and much of the difficulty originates in identifying the mech-
anism of action of putative antibiotic compounds (1, 2). Identify-
ing the mechanism of action of an antibiotic is difficult due to (i)
the complexity and interdependence of the cellular system (3),
(ii) the possible occurrence of multiple cellular targets (4–6), and
(iii) the possibility of pleiotropic effects (1, 3). Determining the
mechanism of action of putative drugs relies on affinity-based
(direct) and phenotypic profiling (indirect) approaches (2, 7). Di-
rect approaches utilize affinity chromatography, expression clon-
ing, protein microarray, and mass spectrometry to bind, isolate,
and identify target protein(s). This approach is limited to com-
pounds that can maintain sufficient binding affinity following im-
mobilization, such that the target protein(s) can be isolated and
identified (7). The direct approach also suffers from nonspecific
binding (2). A more recent and increasingly popular direct ap-
proach for determining the mechanism of action includes select-
ing for resistant mutants and identifying the mutations by whole-
genome sequencing (8, 9). However, creating resistant mutants
(not associated with efflux pumps or other generic cellular stress
responses) can be challenging, and whole-genome sequencing re-
mains expensive for the time being. Indirect approaches to deter-
mining the mechanism of action of putative drug compounds are
based on the phenotypic response of a cell to a compound. With
the indirect approach, the search for the mechanism of action is
facilitated by comparing the phenotypic profile of a culture ex-
posed to a putative compound to a database of phenotypic profiles
resulting from culture exposure to well-characterized com-
pounds. This provides associative information regarding the
mechanism of action of the putative drug, including candidate
molecular targets and plausible pathways (2, 10). Phenotypes in-

duced by various compounds can be profiled using the currently
available profiling systems, including transcriptional-, pro-
teomic-, metabolomic-, and cell imaging-based profiling. De-
tailed reviews of direct and indirect approaches to target identifi-
cation are available in published literature (2, 5–7). For example,
transcriptional profiling, which is based on examining the ge-
nome-wide expression level of mRNAs in a given cell population,
was successfully used to identify acetyl coenzyme A carboxylase as
a molecular target of the natural product moiramide B (10). This
research elucidated the mechanism of action of moiramide B by
examining the transcriptional profile of moiramide B-treated Ba-
cillus subtilis against a database that included profiles resulting
from treatment with 14 well-characterized antibiotics and profiles
of mutants with downregulation of genes coding for known anti-
bacterial targets (10). Transcriptional profiling was also utilized to
identify the heat shock protein 90 as the molecular target of the
triterpenoid natural product gedunin, which exhibits antimalar-
ial, insecticidal, and anticancer activity (11). The researchers were
able to generate testable hypotheses regarding the mechanism of
action of gedunin by examining the transcriptional profile of ge-
dunin-treated cells against a database containing profiles of cells
exposed to 164 small molecules with known molecular targets
(11). Similarly, proteomic profiling provides a global view of the
protein composition of the cell. This can be used to determine the
mechanism of action of a novel antibiotic by comparing the pro-
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teomic profile of a cell treated with the novel antibiotic to that
induced by well-characterized antibiotics (12). For example, the
proteomic profile of B. subtilis treated with the novel pyrimidinone
compound Bay 50-2369 was found to be highly similar to the
profiles induced by erythromycin, chloramphenicol, tetracycline,
and fusidic acid. Because these antibiotics are known to directly or
indirectly inhibit peptidyl-transferase activity, it was concluded
that Bay 50-2369 inhibits peptidyl-transferase. In independent ex-
periments, peptidyl-transferase was confirmed as the molecular
target of TAN 1057 A/B, a natural compound structurally related
to Bay 50-2369 (13). Metabolomic profiling is based on compre-
hensive analysis of global metabolism and has been enabled by
recent technological advances in the quantification of cellular me-
tabolites (2, 7, 14). Yu et al. (14) investigated the mechanism of
action of Radix Tinosporae extract by comparing the metabolomic
profile of treated Staphylococcus aureus to profiles induced by nine
antibiotics with known mechanisms of action. Principal compo-
nent analysis (PCA) of metabolomic profiles, obtained using
high-performance liquid chromatography-mass spectrometry
(HPLC-MS) data, revealed that the mechanism of action of Radix
Tinosporae was similar to that of rifampin and norfloxacin (14).
Techniques for multiparameter imaging-based phenotypic profil-
ing rely on high-throughput fluorescence microscopy (15) or
morphological analysis (16) and have shown great promise in
drug discovery research (2, 7). For example, bright-field cell im-
aging coupled with nuclear staining was used to construct a library
of morphological profiles for cancer cells exposed to 54 anticancer
drugs with known molecular targets (16). The library was then
used with multivariate statistical analysis to identify the mecha-
nistically unknown drugs NPD6689, NPD8617, and NPD8969 as
novel tubulin inhibitors. Despite significant progress, current
phenotypic profiling methodologies (i) require substantial time
and material recourses, (ii) cannot be applied universally, and (iii)
will require significant development to allow automated high-
throughput analysis of drug targets (2). In the present research,
the use of Raman spectroscopy was investigated as an alternative
phenotypic profiling technique. The Raman spectroscopy-based
approach offers significant advantages over other phenotypic pro-
filing methodologies, because it is (i) noninvasive, (ii) label free,
(iii) prone to automation, and (iv) able to return results in real
time during an experiment.

Analyzing cell phenotypes using Raman spectroscopy. Raman
spectroscopy has been identified as a powerful tool for analyzing
bacterial phenotypes due to its (i) sensitivity, (ii) short analysis
time, and (iii) nondestructive nature (17, 18). It has also been
shown to be an effective tool for discriminating among several
bacterial phenotypes (19–22) and for in vivo metabolic analysis
(17, 23–25). Compared to the considerable volume of research
published on applying Raman spectroscopy in biotechnology re-
search, little has been reported on applying Raman spectroscopy
in antibiotic drug research. Nonetheless, the relatively few articles
published to date on the topic point to a significant potential for
Raman spectroscopy to become a powerful tool aiding antibiotic
drug research. First, it has been shown that Raman spectroscopy
can distinguish between bacterial strains resistant and sensitive to
a specific antibiotic (22, 26). For example, Maquelin et al. (22)
used Raman spectroscopy with an 830-nm excitation wavelength
to analyze Enterococcus faecalis strains sensitive and resistant to
vancomycin. Using multivariate statistical analysis, it was found
that Raman spectroscopy data could discriminate between resis-

tant and sensitive strains in vancomycin-treated samples. Walter
et al. (26) showed that Raman spectroscopy, conducted using 244-
and 532-nm excitation wavelengths, can differentiate E. coli cul-
tures according to the presence of a plasmid containing an ampi-
cillin resistance gene, even in the absence of ampicillin. The
authors found the resulting Raman spectra contained spectral fea-
tures suggesting higher lipid and RNA content and lower cyto-
chrome content in E. coli harboring the plasmid. In addition, Ra-
man spectroscopy has been used to monitor the metabolic state
under antibiotic stress (18, 27–29). For example, Neugebauer et al.
(28) used Raman spectroscopy with a 244-nm excitation wave-
length to track the ratio of protein to nucleic acids during the
growth of Bacillus pumilus treated with ciprofloxacin. The use of
the 244-nm excitation wavelength is known to enhance Raman
bands specific to nucleic acids and protein building blocks (28).
Raman spectroscopy has been used with a similar excitation
wavelength to study the effects of the protein synthesis inhibitor
amikacin on Pseudomonas aeruginosa. As the concentration of
amikacin was increased, the intensity of protein-related Raman
peaks decreased, whereas the intensity of nucleic acid bands in-
creased, consistent with the mechanism of action of amikacin
(29). Similar results were reported, as Raman spectroscopy was
used to monitor the relative protein and DNA content of individ-
ual E. coli cells treated with cefazolin (18). However, in this case,
Raman spectra were acquired using a 785-nm excitation wave-
length from individual, optically trapped, E. coli cells. This tech-
nique is often referred to as “laser tweezers” Raman spectroscopy
(30). Finally, it has been suggested that Raman spectroscopy could
provide critical insight into the mechanisms of action of different
antibiotics (27, 29, 30). For example, Moritz et al. (30) used laser
tweezers Raman spectroscopy to study the response of E. coli to
penicillin G-streptomycin and cefazolin. The researchers identi-
fied Raman bands specific to the response of E. coli to cefazolin
and/or penicillin G-streptomycin treatment and extended those
to aminoglycosides and �-lactams in general. Although significant
to the development of Raman methodologies for studying cell
phenotypes, most existing studies have involved either one or two
antibiotics. The ability of Raman spectroscopy to discriminate
between greater numbers of antibiotic treatments has not been
investigated to our knowledge. Furthermore, the experimental
setups of the previously discussed studies all differed in significant
ways, including the (i) bacterial species and strains used, (ii) meth-
ods of sample preparation, and (iii) excitation wavelength(s) used
in the Raman spectroscopy analysis. This means that the available
published studies should be considered individually, and ob-
served changes in Raman spectra cannot be compared across the
multiple studies. For a rigorous assessment of the ability of Raman
spectroscopy to discriminate among bacterial phenotypes result-
ing from antibiotic treatment (so it can be used as a phenotypic
profiling tool), multiple antibiotics must be examined with the
same bacterial strain under identical experimental conditions, in-
cluding excitation wavelength(s).

Raman spectroscopy-based phenotypic profiling. In this re-
search, profiles of E. coli phenotypes resulting from treatment with
15 well-characterized antibiotics from four antibiotic classes were
characterized using Raman spectroscopy analysis data obtained
from dried culture samples. Using discriminate analysis of pro-
cessed Raman spectral data, it was possible to distinguish among
culture phenotypic profiles according to antibiotic function. In
fact, the resulting Raman spectra contained sufficient biochemical
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information to distinguish between profiles induced by individual
antibiotics belonging to the same class. In addition, a systematic study
was conducted to evaluate the ability of Raman spectroscopy-based
phenotypic profiling with discriminant analysis to predict the func-
tional class of an unknown antibiotic compound with an uncharac-
terized mechanism of action. Results showed the ability of Raman
spectroscopy to identify the functional class of the unknown antibi-
otic compound as well as the individual antibiotics that elicit a similar
phenotypic response.

MATERIALS AND METHODS
Antibiotic treatments. The class designations for antibiotics used in this
research (Table 1) are based on the overall effects on phenotype produced
by each antibiotic according to known mechanisms of action (1). For
example, gentamicin, streptomycin, kanamycin, clindamycin, chloram-
phenicol, and tetracycline were grouped together as protein synthesis in-
hibitors (antibiotic class name “PROT” in Table 1). Gentamicin, strepto-
mycin, and kanamycin are aminoglycosides that primarily inhibit protein
synthesis by targeting the 16S rRNA component of the 30S ribosome
subunit. Clindamycin (lincosamide) and chloramphenicol (amphenicol)
also inhibit protein synthesis by targeting the 50S ribosome subunit. Tet-
racycline inhibits the 30S ribosome by blocking the access of aminoacyl
tRNAs to the ribosome (1). Ciprofloxacin and nalidixic acid are quino-
lone antibiotics known to inhibit DNA synthesis (class name “DNA”) by
targeting DNA gyrase. Trimethoprim inhibits synthesis of tetrahydrofolic
acid, which is needed by bacteria to synthesize DNA. Ampicillin, amoxi-
cillin, and cefotaxime are �-lactams that inhibit cell wall (class name
“CW”) biosynthesis by targeting to penicillin-binding proteins involved
in peptidoglycan synthesis. Rifampin, rifapentine, and rifaximin inhibit
RNA synthesis (class name “RNA”) by binding to the �-subunit of a
DNA-bound and actively transcribing RNA polymerase. The MIC of each
antibiotic used in this study required to inhibit growth of E. coli cultures
was determined experimentally, as described below. These results are also
listed in Table 1.

Determination of MICs. E. coli Mach1 cells (Invitrogen Life Technol-
ogies, Grand Island, NY) were grown and maintained at 37°C in Trypti-
case soy broth (TSB) or on Trypticase soy agar (BD Biosciences San Jose,
CA). Antibiotic stock solutions (10 mM) were prepared by dissolving
ampicillin, amoxicillin, tetracycline, chloramphenicol, clindamycin, ri-
fampin, rifaximin, rifapeutine, trimethoprim, and nalidixic acid powders
in dimethylsulfoxide (DMSO). Cefotaxime, kanamycin, gentamicin, and
streptomycin were dissolved in water. Ciprofloxacin was dissolved in 0.1
N HCl. MICs were determined in triplicate using the broth microdilution
method. The MIC is defined as the lowest concentration of antibiotic
leading to no visible bacterial growth after 16 h.

Preparation of cultures for Raman spectroscopy analysis. E. coli
Mach1 cells were grown in liquid Luria broth medium at 37°C, and cell
growth was monitored by measuring the optical density at 600 nm
(OD600). The culture was grown to an OD600 of 0.5 and then divided into
subcultures. Antibiotics were added to the subcultures to a final concen-
tration of three times the MIC (termed 3� MIC). After 30 min, cells were
harvested by centrifugation at 5,000 rpm for 1 min, discarding the super-
natant. The cells were then washed three times with cold phosphate-buff-
ered saline (PBS) to remove residual growth media. For each wash, the
pellet was resuspended in 1 ml PBS and centrifuged for 1 min at 5,000
rpm. Finally, 0.5 �l of the cell suspension was deposited on aluminum foil
and dried at room temperature for subsequent Raman spectroscopy anal-
ysis. Raman spectra were collected from areas where E. coli cells formed a
thin layer covering the aluminum foil surface.

Raman spectroscopy. Dried E. coli Mach1 cells were analyzed using a
Bruker Senterra dispersive Raman spectrometer equipped with a confocal
microscope (Bruker Optics, Billerica, MA). Measurements were carried
out using a 10-mW, 532-nm laser focused through a 100� objective. A
spectral resolution of 9 to 15 cm�1 was used. The total exposure time was
15 s, which was found to be sufficient to obtain spectra with a good signal-
to-noise ratio without causing visible sample damage. Lengthy exposure
of dried bacterial sample to high laser power may cause graphitization,
which dominates the Raman spectrum and obscures other contributions.
If not directly visible on the sample, this kind of sample damage can be
detected indirectly in the Raman spectrum by noting an unusual rise of a
wide doublet peak around 1,500 cm�1 (31). An average of 64 spectra were
collected for each treatment.

Data processing. All spectra were normalized in MATLAB (v2012a;
The MathWorks, Inc., Natick, MA) and baseline corrected using OPUS
software (Bruker Optics, Billerica, MA). Normalization of Raman spectra
is necessary to remove variation of the Raman signal caused by differences
in the focal volumes among samples (32). Initially, statistical analyses
were performed with Raman spectra normalized using vector normaliza-
tion, because this method is relatively unbiased toward any single band or
group of bands that could possibly be affected by changes in the bacterial
phenotype (32). A separate study was then performed in which multiple
procedures for spectral normalization were applied and compared. De-
tails are given in Results. All spectra were baseline corrected using the
Concave Rubberband correction method, available in OPUS software,
with 20 iterations and 64 baseline points.

Chemometric analysis. The chemometric analysis was performed us-
ing MATLAB (v2012a; The MathWorks, Inc., Natick, MA). Chemometric
analysis was primarily conducted by linear discriminant analysis with pro-
cessed Raman spectral data. Different methods of data normalization
were investigated and are discussed in Results. Discriminant analysis was
used to build a statistical model that (i) requires input of Raman spectra of
an E. coli culture exposed to an antibiotic compound and (ii) returns the
class of antibiotic that elicits the phenotypic response represented by the
input spectra. Thus, discriminant analysis was used to predict a classifica-
tion variable (X) (e.g., antibiotic class, such as protein synthesis inhibitor,
etc.) based on measured responses (Y) (e.g., band intensities in Raman
spectra of an exposed culture). Discriminant analysis determines the dis-
tance from each point of the data set to the multivariate mean of each class
and then assigns the point to the closest class (33). Essentially, discrimi-

TABLE 1 Antibiotic class designations and MICs against E. coli

Antibiotic class and name
MIC, in mg/liter
(�M)

Protein synthesis inhibition (PROT)
Gentamicin (GE) 1.91 (4)
Streptomycin (ST) 5.83 (4)
Clindamycin (CL) 118.13 (256)
Chloramphenicol (CH) 5.17 (16)
Kanamycin (KA) 9.32 (16)
Tetracycline (TT) 0.89 (2)

Cell wall synthesis inhibition (CW)
Ampicillin (AM) 2.97 (8)
Amoxicillin (AX) 2.92 (8)
Cefotaxime (CF) 0.06 (0.125)

DNA synthesis inhibition (DNA)
Trimethoprim (TR) 1.16 (4)
Nalidixic acid (NX) 1.86 (8)
Ciprofloxacin (CI) �0.005 (�0.015)

RNA synthesis inhibition (RNA)
Rifampin (RI) 13.17 (16)
Rifapentine (RP) 22.95 (32)
Rifaximin (RX) 12.57 (16)

No antibiotic treatment (control)
None None
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nant analysis is divided into two steps: (i) to build (i.e., “train”) a model
(i.e., classifier) using Raman spectra of cultures exposed to antibiotics of
known class assignments, and (ii) to classify (i.e., predict the class of) a
new Raman spectrum of an antibiotic-exposed culture based on the dis-
tance to the multivariate mean of the closest class. Two class assignment
schemes were used with discriminant analysis to achieve the following two
distinct objectives.

(i) Identify the class of an antibiotic eliciting the observed pheno-
typic response. Antibiotics were grouped into classes based on the overall
effects on phenotype according to known mechanisms of action (1). The
class designation for all antibiotics used in this research is given in Table 1.
In this case, the developed discriminant analysis model classified Raman
spectra according to antibiotic class.

(ii) Identify individual antibiotics that elicit a phenotypic response
closely related to the observed. In this case, antibiotics were not grouped
according to class, and the discriminant analysis model was trained to
classify Raman spectra according the individual antibiotic treatments.
This approach proved to be particularly useful when the tested antibiotic
exhibits multiple mechanisms of action.

RESULTS
Raman spectroscopy can detect changes in E. coli phenotypes
caused by various antibiotics. Raman spectra of E. coli cultures

consist of bands that correspond to all biomolecules present in
culture. Examples are shown in Fig. 1. These bands represent
both chemical and physical signatures of molecular structures.
The tentative band assignments are shown in Table 2. A lateral
shift in the position of a peak reflects a biochemical or biophys-
ical change in the phenotype caused by antibiotic treatment. In
addition, a change in the intensity of a particular peak (i.e.,
peak height) reflects a change in the abundance of the biomol-
ecule represented by that peak. However, variation in peak
intensity may also result from differences in the focal volumes
among samples. This variation is not related to phenotypic
changes caused by antibiotic treatments and must be removed
to ensure the analysis is independent of different sample den-
sities and geometries (32). Removing, or at least significantly
reducing, this undesired variation is achieved through normal-
ization of Raman spectra to a specific peak or set of peaks. The
effect of spectral normalization is also illustrated in Fig. 1. The
averages and standard deviations for 131 independently col-
lected spectra of the control E. coli culture (i.e., not treated with
antibiotic) are shown before and after normalization (Fig. 1a and
b). Before normalization (Fig. 1a), greater variation in spectral
intensity is indicated by the prominent standard deviation spec-
trum with relatively high intensity peaks. This variation was
largely removed upon normalization (Fig. 1b). Sample variation
can also arise from various background signals originating from
fluorescence of the sample or thermal fluctuations on the signal
detector (32). To minimize the effect of this variation, background
signal was removed through baseline correction (Fig. 1c).

E. coli cultures treated with antibiotic at 3� MIC, prior to
analysis by Raman spectroscopy, continued to grow at a lower rate
than the wild type, as was evident by OD600 measurements follow-
ing 30 min of antibiotic exposure (data not shown). This slowed-
growth response was desired, since the goal was to examine the
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FIG 1 Preprocessing Raman spectroscopy data. The average spectrum (black
line) of 131 independently obtained Raman spectra of the control E. coli cul-
ture (i.e., untreated with antibiotic) before normalization (raw data) (a), after
normalization (b), and after baseline correction (c). Intensity variation be-
tween individual spectra is indicated by the standard deviation spectra (gray
line) shown in panels a and b. TABLE 2 Reduced set of biologically relevant Raman peaks

Wavenumber (cm�1) Peak assignmenta

3,061 �(C � C-H)Aromatic

2,961 �(CH2/CH3); lipids
2,936 �(CH2/CH3); proteins
2,880 �(CH2/CH3); lipids
2,850 �(CH2/CH3); lipids
1,660 Amid I; proteins
1,621 Try, Trp, Phe
1,577 �(ring); guanine, adenine
1,481 �(ring); guanine, adenine
1,451 	(CH)
1,336 
(CH)
1,309 
(CH2)
1,242 Amid III; proteins
1,173 �(C-C)
1,127 Cytochrome
1,032 �(C-C)
1,003 Phe, Trp
857 �(C-C); COC 1,4-glycosidic link
811 �(PO3)-2; RNA
784 �(ring); Cys, uracil
749 Cytochrome
725 Adenine; DNA
670 Guanine; DNA
a �, stretching vibration; 
, twisting deformation; 	, bending deformation.
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phenotypic effects of the antibiotic without killing the cultures or
arresting growth completely. The phenotypic effects of each of the
antibiotics used in this research were evident in the Raman spectra
of treated E. coli cultures. Normalized and baseline-corrected
spectra are shown in Fig. 2. Raman spectroscopy was sensitive
enough to detect variations among and within antibiotic classes.
For example, the average spectra of the three cultures treated with
cell wall synthesis inhibitors were different from each other (Fig.
2a). At the same time, the average spectrum of all cell wall synthe-
sis inhibitors was different from the average spectrum of other
antibiotic classes (Fig. 2e). Due to the complexity of the Raman
spectra of E. coli cultures, it is difficult to analyze the effects of
antibiotics by comparing changes in individual Raman bands. In-
stead, chemometric analysis is more suitable because it provides a
method to compare changes to the Raman spectra as a whole.
Chemometric analysis was employed to leverage the sensitivity of
Raman spectroscopy in order to develop a statistical model capa-
ble of predicting the phenotypic effects of an unknown antibiotic.

Chemometric method development: can Raman spectros-
copy data be used to discriminate among multiple E. coli phe-
notypes resulting from different antibiotics? In this section, the
development of the chemometric approach to utilizing Raman
spectroscopic data for phenotypic profiling E. coli cultures accord-
ing to antibiotic treatment is discussed. The developed chemo-
metric approach is used in subsequent sections to build a predic-
tive statistical model capable of identifying the phenotypic effects
of unknown antibiotic agents. Before the predictive model was
developed and utilized, it was first necessary to establish the ability
of Raman spectroscopy with chemometrics to discriminate
among the multiple E. coli phenotypes that result from treatment
with different antibiotics. To achieve this goal, the ability to dis-
criminate E. coli phenotypes based on (i) the class of antibiotics
and (ii) individual antibiotics (even among those belonging to the
same class) was investigated.

(i) Raman spectrum discrimination based on the class of an-
tibiotic treatment. E. coli cultures exposed to different antibiotics
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FIG 2 Comparison of Raman spectra among and within antibiotic classes. Normalized and baseline-corrected Raman spectra of antibiotic-treated phenotypes
averaged by antibiotic (n � �64) and grouped by class: CW (a), PROT (b), DNA (c), and RNA (d). Raman spectra of antibiotic-treated phenotypes averaged by
antibiotic class are shown in panel e. All abbreviations are defined in Table 1.
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(Table 1) were analyzed by Raman spectroscopy. Discriminant
analysis was applied to the normalized and baseline-corrected Ra-
man spectra in an attempt to discriminate according to the class of
antibiotic applied. Initially, discriminant analysis was performed
on the Raman spectra in three ways: (i) using the band intensity
values from the full biologically relevant spectral region from 600
to 1,800 cm�1 and from 2,800 to 3,100 cm�1 (this approach is
referred to as FR-DA), (ii) using band intensity values for the
reduced number of biologically relevant Raman bands listed in
Table 2 (this approach is referred to as R-DA), and (iii) using a
specified number of principal components (PCs) calculated from
principal component analysis of the band intensity values from
the entire Raman spectrum (600 to 3,200 cm�1) (this approach is
referred to as PC-DA). Principal component analysis is a multi-
variate statistical technique that is often used to analyze spectro-
scopic data, because the number of variables of interest (i.e., peaks
or intensity at each wavenumber) can be in the thousands (32). It
reduces the dimensionality of the data (i.e., the number of vari-
ables) while preserving variance among treatment groups (34).
Each of the three approaches was used to discriminate the Raman
spectra of treated cultures according to antibiotic class. The qual-
ity of the discriminant analysis models (i.e., their ability to cor-
rectly classify spectra according to antibiotic class) was validated

using the “leave-one-out” cross-validation method. This means
that Raman spectra were removed, one spectrum at a time, from
the training data set used to build a classifier model. The model
was then used to classify the removed spectrum. Thus, leave-one-
out cross-validation provides an unbiased estimate of the ability of
the classifier model (35). The percentages of all analyzed samples
classified correctly (i.e., classified into the same antibiotic class as
that applied to the culture) are shown in Table 3. PC-DA proved
the best at discriminating cultures according to antibiotic class,
with an 83.6% correct classification rate. With five classes of anti-
biotics tested (including the control with no antibiotic treatment),
the probability of correct assignment at random is 20%. Discrim-
ination results for PC-DA are visualized in the three-dimensional
canonical plot shown in Fig. 3a. The canonical plot shows the
location of each point relative to the multivariate means of each
group. The ability of Raman spectroscopy and discriminate anal-
ysis to distinguish among E. coli cultures based on antibiotic class
is evident in this figure. As expected, increasing the number of PCs
included in the analysis increased the percentage of spectra classi-
fied correctly. However, beyond �50 PCs, no additional improve-
ment was observed (Fig. 3b).

(ii) Raman spectrum discrimination based on specific anti-
biotic treatment. In this part of the analysis, discriminant analysis
was performed without grouping Raman spectra according to an-
tibiotic class. In this approach, discriminant analysis was used to
classify Raman spectra according to individual antibiotic treat-
ments. Again, PC-DA was found to be superior to FR-DA and
R-DA for this task (Table 3). The percentage of samples classified
correctly was 71.3% for PC-DA, 47.8% for FR-DA, and 45.0% for
R-DA. With 15 antibiotics tested and the untreated control, the
probability for correct assignment at random is 6.3%. Although
PC-DA discriminated individual antibiotics with 71.3% accuracy,
it was hard to visualize the discrimination on a three-dimensional
plot due to the large number of groups (15 antibiotics) that need
to be represented on one plot. To visually demonstrate the ability
to discriminate based on individual antibiotics, PC-DA was per-
formed on each antibiotic class individually; results are shown in
Fig. 4. The percentage of correct classification for each antibiotic

TABLE 3 Correct classification rates estimated using leave-one-out
cross-validation of discriminant analysisa

Data set

% Classified correctly by:

Class Antibiotic

FR-DA 45.2 45.0
R-DA 68.8 47.8
PC-DAb 83.6 71.3
Randomc 20.0 6.3
a The analysis was performed using the (i) full biologically relevant spectral region (FR-
DA), (ii) Raman bands listed in Table 2 (R-DA), and (iii) principal components (PCs)
of the full spectrum (PC-DA).
b Performed using the first 50 PCs, which preserved 83.4% of variance in the original
data.
c The probability of correct classifications by random assignment.
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class is indicated on the corresponding figure panel. Note that the
percentage of correct classification for each antibiotic class re-
ported in Fig. 4 is much better than the overall correct classifica-
tion reported in Table 3. This is because Fig. 4 shows the results of
discriminant analyses performed separately on each antibiotic
class. Table 3 reports the results of discriminant analysis per-
formed on the 15 antibiotics all at once. Discriminant analysis
results demonstrate the ability of Raman spectroscopy to profile
antibiotic-induced E. coli phenotypes according to both the anti-
biotic class (Table 3 and Fig. 3) and the individual antibiotic treat-
ment (Table 3 and Fig. 4). This result is consistent with previous
studies; however, in this research, the number of antibiotics ex-
amined simultaneously was significantly larger. The library of Ra-
man spectra from E. coli phenotypes induced by the 15 well-char-
acterized antibiotics represents the beginning of a database of
phenotypic profiles against which the profiles of putative drugs
can be searched and compared. In the next section, the utility of
this Raman spectroscopy-based phenotypic profiling approach is

demonstrated through its use to predict the mechanism of action
of well-characterized antibiotics that were not used to build the
model.

Chemometric method validation by identifying the pheno-
typic response of E. coli to antibiotics unknown to the classifi-
cation model. The results presented thus far have demonstrated
the ability of Raman spectroscopy and discriminant analysis to
distinguish among E. coli phenotypes caused by treatment with
different classes of antibiotics and even among antibiotics belong-
ing to the same class. However, it is worth noting that the discrim-
inant analysis models were built using spectra representing all
antibiotic treatments (i.e., the model training data set included
spectra representing all antibiotic treatments except a single spec-
trum used for model validation). This methodology is consistent
with previously published studies and is the accepted methodol-
ogy for training and validating discriminate analysis results (36).
However, the question remains, can Raman spectroscopy with
discriminant analysis identify the phenotypic effects caused by a
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new antibiotic compound completely unknown to the model (i.e.,
the model training data set does not include spectra representing
the new antibiotic)? This question is addressed in the following
sections by evaluating the ability of Raman spectroscopy with dis-
criminant analysis to (i) identify the class of an unknown antibi-
otic compound and (ii) identify individual antibiotics that elicit a
phenotypic response similar to that of the unknown antibiotic
compound.

(i) Identifying the class of an unknown antibiotic. Raman
spectroscopy with discriminant analysis was used to identify the
functional antibiotic class of several unknown antibiotics (i.e.,
they were excluded completely from the model training data set).
In other words, the methodology described above was applied to
identify the phenotypic effects of a new antibiotic compound
given the Raman spectra of the treated cells. To achieve this goal,
Raman spectra of cultures treated with each of the 15 antibiotics
used in the study were individually considered unknown. System-
atically, Raman spectra of cultures treated with these antibiotics
were excluded, all spectra for one antibiotic at a time, from the
training data set used to build the discriminant analysis classifier
model. In this approach, a new discriminant analysis model was
created for every case. Thus, the data set used for model training
did not contain any spectra representing the excluded antibiotic.
The new discriminant analysis models were then used to classify
Raman spectra of E. coli cultures exposed to the unknown antibi-
otic. This approach should not be confused with the leave-one-out
cross-validation often used to evaluate discriminant analysis. In
the validation approach used here, the complete set of spectra
from the antibiotic in question was removed from the training set.
With the leave-one-out cross-validation method, only one spec-
trum was removed at a time, leaving other spectra belonging to the
same antibiotic. The percentages of correct antibiotic class iden-
tification for Raman spectra of unknown antibiotics classified us-
ing R-DA and PC-DA are listed in Table 4. Chloramphenicol is

used as an example to further explain the results given in this table.
First, all Raman spectra from the E. coli culture treated with chlor-
amphenicol were removed from the discriminant analysis model
training data set. A new discriminant analysis model was built
using the spectra from all other antibiotics (and the untreated
control) as the training set. Separate models were constructed us-
ing R-DA, PC-DA with 50 PCs, and PC-DA with 9 PCs (the choice
of 9 PCs is explained below). Second, following training, R-DA
and PC-DA models were used to classify the Raman spectra ob-
tained from the chloramphenicol-treated culture. All three mod-
els correctly classified these spectra as resulting from an antibiotic
that inhibits protein synthesis with 89.8% (for R-DA), 93.9% (for
PC-DA with 50 PCs), and 93.9% (for PC-DA with 9 PCs) accu-
racy. The 49 Raman spectra were taken from the chlorampheni-
col-treated culture and analyzed by the classification models. This
procedure was repeated for the other antibiotics (and control)
used in this research.

The results reported in Table 4 suggest that the PC-DA method
with 9 PCs is superior to RDA and PC-DA with 50 PCs in predict-
ing the class of a new antibiotic (i.e., one not represented in model
training). Initially, it was presumed that PC-DA with 50 PCs or
higher would perform better, since this method was superior at
discriminating samples with known class assignment (Table 3 and
Fig. 3b). However, when PC-DA was used to predict the class of
Raman spectra from cultures treated with new antibiotics com-
pletely unknown to the model, it was evident that using 50 or more
PCs did not produce optimum results. The relationship between
the accuracy of PC-DA and the number of PCs used to build the
model (not shown) revealed that prediction accuracy peaked at 9
PCs and then declined as more PCs were included. It is possible
that including higher numbers of PCs in the PC-DA resulted in
overfitting, a common problem of multivariate statistical analysis
(36). With a smaller number of antibiotics, the R-DA, which is
based on using a selected number of biologically relevant Raman
bands, produced the best prediction results. However, as the num-
ber of antibiotics and complexity of the data set increased, R-DA
did not perform as well, as shown in Table 4. Overall, PC-DA with
9 PCs was 57.5% accurate at determining the antibiotic class of
unknowns. Raman spectra of phenotypes resulting from treat-
ment by chloramphenicol, clindamycin, gentamicin, streptomy-
cin, tetracycline, and kanamycin were all classified correctly as
protein synthesis inhibitors, with an average of 76.1% accuracy.
The average prediction accuracies for other antibiotic classes were
59.9, 49.9, and 26.5% for DNA, RNA, and cell wall synthesis in-
hibitors, respectively.

While the results given in Table 4 provide a convenient way to
assess the overall performance of the discriminant analysis model,
it does not provide access to all information that can be learned
from the model classifications. For example, results in Table 4
show that only 47.8% of the Raman spectra of cultures treated
with ciprofloxacin were classified correctly as DNA synthesis in-
hibitors when using PC-DA with 9 PCs. However, another repre-
sentation of the data is shown in Fig. 5 and reveals additional
details of this classification. When considering the detailed classi-
fication result shown in Fig. 5g, it was found that the dominant
classification count for ciprofloxacin was for the correct class (i.e.,
DNA synthesis inhibitors). Similarly, the prediction accuracy for
amoxicillin and cefotaxime were found to be 41.0 and 38.6% (Ta-
ble 4), respectively. This seems low given that the random classifier
accuracy (with no model) is 20%. However, the highest prediction

TABLE 4 Percent correct prediction of the class of an antibiotic
compound unknown to the PC-DA model with 9 and 50 PCs included
in building the model

Antibiotic Class

% Correct prediction

R-DA
PC-DA
(50 PCs)

PC-DA
(9 PCs)

Chloramphenicol PROT 89.8 93.9 93.9
Clindamycin PROT 40.0 70.9 83.6
Gentamicin PROT 42.7 78.7 69.3
Kanamycin PROT 27.8 50.0 63.0
Streptomycin PROT 59.2 67.3 71.4
Tetracycline PROT 5.7 60.4 75.5
Ciprofloxacin DNA 5.8 10.1 47.8
Nalidixic acid DNA 22.0 28.8 67.8
Trimethoprim DNA 11.3 24.5 64.2
Amoxicillin CW 32.8 45.9 41.0
Ampicillin CW 9.6 0.0 0.0
Cefotaxime CW 36.8 29.8 38.6
Rifampin RNA 1.8 1.8 3.5
Rifapentine RNA 49.2 78.0 66.1
Rifaximin RNA 63.1 80.0 80.0
Overall accuracy (%) 33.2 48.0 57.7
Randoma 20.0 20.0 20.0
a The probability of correct classifications by random assignment. These values were
not used in calculating the overall accuracy.
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counts for these two cell wall synthesis inhibitors were in the cor-
rect class (Fig. 5j and l). Prediction accuracy was not as good for
the third cell wall synthesis inhibitor, ampicillin, which was con-
sistently predicted as a DNA synthesis inhibitor. Poor prediction
results also persisted for the rifampin-induced phenotype, which
was consistently seen by the model as a phenotype with no antibi-
otic treatment. This result is clearly wrong but points to some
interesting observations. First, the phenotypes induced by ampi-
cillin and rifampin must be significantly different from those in-
duced by other antibiotics of their respective classes. This suggests
that the designation of antibiotic class needs to become more spe-
cific, or that there are critical members of each antibiotic class that
must be included in the model to cover all potential resulting
phenotypes. Furthermore, the model consistently recognized that
the rifampin-induced phenotype was different from the pheno-
types caused by other antibiotics. Results shown in Fig. 2, 3, and 4

suggest that Raman spectroscopy was sensitive enough to distin-
guish rifampin-induced phenotypes from the control phenotypes.
Taking these results together, it is reasonable to conclude that the
quality of prediction was limited by data processing and chemo-
metric analysis and not the sensitivity of Raman spectroscopy. As
the data set of antibiotics continues to grow with future imple-
mentations, these occurrences will become fewer.

(ii) Identifying individual antibiotics that elicit a phenotypic
response similar to that of the unknown antibiotic. PC-DA was
used to classify Raman spectra of cultures treated with antibiotics
unknown to the model according to individual antibiotic treatment
rather than antibiotic class. By doing so, PC-DA identifies the indi-
vidual antibiotic that elicits a phenotypic response closest to that of
the unknown antibiotic. Details of the PC-DA antibiotic-based clas-
sification results are shown in Fig. 6. Results presented in Fig. 6a
suggest that the phenotypic effects of chloramphenicol on E. coli
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are predominantly similar to those caused by clindamycin, genta-
micin, kanamycin, tetracycline, and streptomycin. Since all five
identified antibiotics are protein synthesis inhibitors, it can be
concluded from the modeling exercise that chloramphenicol also
acts by inhibiting protein synthesis. Indeed, it is well known that
chloramphenicol is a lincosamide antibiotic that inhibits protein
synthesis (1). The discriminant analysis classification model used
to produce these results had no prior knowledge from Raman
spectra related to chloramphenicol treatment. In general, all pro-
tein synthesis inhibitors were predicted to have phenotypic effects
similar to each other except for tetracycline, which was classified
as producing a phenotype similar to that caused by chloramphen-
icol, amoxicillin, and cefotaxime (Fig. 6a to f). However, this re-
sult was consistent with the fact that tetracycline, although pri-
marily a protein synthesis inhibitor, has damaging effects on the
cytoplasmic membrane (37, 38). It is also shown in Fig. 6g that out
of the 69 acquired Raman spectra of E. coli cells treated with cip-
rofloxacin, (i) 33.3% (23/69) were classified as similar to nalidixic

acid, a DNA synthesis inhibitor; (ii) 26.0% (18/69) were classified
as similar to trimethoprim, also a DNA synthesis inhibitor; (iii)
17.4 (12/69) were classified as similar to ampicillin, a cell wall
synthesis inhibitor; and (iv) 14.5% (10/69) were classified as sim-
ilar to rifampin, an RNA synthesis inhibitor. Previous research has
shown that although ciprofloxacin primarily inhibits DNA syn-
thesis, it also affects various macromolecules, including RNA, and
cell wall integrity (39). Thus, these results suggest that the discrim-
inant analysis classifier model also has the potential to recognize
multiple mechanisms of action of putative antibiotic compounds.
The discriminant analysis results also suggested that phenotypes
induced by nalidixic acid and kanamycin treatment have charac-
teristics similar to those caused by ampicillin. It has been reported
that some quinolones and aminoglycosides disorganize the cell
wall (40). Clindamycin was ineffective against E. coli compared to
other protein synthesis inhibitors used in this research, as indi-
cated by the relatively high MIC (Table 1). However, at 3� MIC,
clindamycin slowed E. coli growth significantly compared to the
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control culture, as was evident in OD600 measurements (data not
shown). The clindamycin data also support the central hypothesis
of this research: Raman spectroscopy can detect global phenotypic
changes induced by an antibiotic compound regardless of mech-
anism or strength. Raman spectroscopy was able to detect the
limited changes induced by clindamycin. In addition, chemomet-
ric analysis showed that the clindamycin-induced profile was most
similar to those caused by other protein synthesis inhibitors. The
fact that Raman spectroscopy was able to detect the changes in-
duced by a weak antibiotic speaks to the exceptional sensitivity of
this methodology. Furthermore, removing clindamycin from the
analysis did not change fundamental findings and conclusions
presented in this research.

Impact of Raman spectrum normalization methodology on
discriminant analysis results. The effects of Raman spectrum
normalization methods on the classification accuracy of the
PC-DA model were also evaluated. As discussed earlier, normal-
ization removes intensity variation that is related to experimental
setup and not actual sample variation. Four commonly used nor-
malization methods were examined. These include (i) vector nor-
malization and normalizing Raman signal intensities over an en-
tire spectrum, (ii) the signal intensity of the phenylalanine band at
1,003 cm�1, (ii) the signal intensity of the band at 1,450 cm�1,
which originates from CHx vibrations abundant in biomass, and
(iv) the signal resulting from the C-H stretching vibration from
2,900 to 3,100 cm�1. Prediction results using raw and normalized
data are given in Table 5. Without spectrum normalization, the
lowest prediction accuracy (43.8%) was observed. The best results
were obtained when Raman spectra were normalized using vector
normalization. It is noted that the case for vector normalization
can also be made since it is relatively unbiased toward any single
band or group of bands that could be affected by changes in the
bacterial phenotype. However, results using other normalization
methods were not substantially different, which highlights the ro-

bustness of the Raman spectroscopy-based discriminant analysis
model and its ability to compensate for experimental variation. It
is noted that the experimental data analyzed in this research were
obtained by the same instrument within a relatively short time
frame. Comparisons made on data obtained from different instru-
ments and time frames would likely show a larger influence of
normalization method on classification accuracy.

DISCUSSION

The results of this research have shown that Raman spectroscopy
with appropriate chemometrics is a powerful tool for profiling the
phenotypic response of bacteria to antibiotics. This technique will
have significant value to antibiotic drug development research.
With the relatively diverse data set analyzed, the ability of Raman
spectroscopy to profile the effects of an unknown antibiotic com-
pound on the phenotype of an E. coli culture was demonstrated.
First, it was shown that Raman spectroscopy data could be used to
discriminate cultured samples based on antibiotic treatment. This
was achieved by performing discriminate analysis on Raman spec-
troscopy data with results validated using the leave-one-out cross-
validation method. Second, it was shown that Raman spectros-
copy with discriminate analysis could be applied to predict the
phenotypic effects of a mechanistically unknown antibiotic com-
pound on an E. coli culture. To demonstrate this capability, indi-
vidual antibiotics were excluded from the model training data set
and were tested as unknowns. In this approach, none of the spec-
tra representing the excluded antibiotic were included in model
building (32). This more realistically mimics real-life situations
where the discriminant analysis model will have no prior knowl-
edge of the new antibiotic compound being examined. In several
papers published on the topic of Raman spectroscopy-based clas-
sification of bacterial samples, discriminant analysis results are
usually presented as evidence of the ability of Raman spectroscopy
to classify individual samples into predetermined classes (19, 24,

TABLE 5 Impact of Raman spectra normalization methods

Antibiotic Class

% Correct predictiona

No normalization
Vector
normalization 1,003 cm�1 1,445–1,455 cm�1 2,900–3,100 cm�1

Chloramphenicol PROT 46.9 93.9 81.6 89.8 89.8
Clindamycin PROT 23.6 83.6 61.8 58.2 87.3
Gentamicin PROT 16.0 69.3 60.0 36.0 73.3
Kanamycin PROT 13.0 63.0 40.7 37.0 61.1
Streptomycin PROT 30.6 71.4 71.4 71.4 71.4
Tetracycline PROT 11.3 75.5 34.0 37.7 67.9
Ciprofloxacin DNA 62.3 47.8 47.8 36.2 34.8
Nalidixic acid DNA 88.1 67.8 52.5 71.2 67.8
Trimethoprim DNA 81.1 64.2 64.2 67.9 62.3
Amoxicillin CW 63.9 41.0 57.4 42.6 42.6
Ampicillin CW 0.0 0.0 0.0 0.0 0.0
Cefotaxime CW 61.4 38.6 40.4 40.4 38.6
Rifampin RNA 0.0 3.5 3.5 3.5 1.8
Rifapentine RNA 78.0 66.1 59.3 72.9 66.1
Rifaximin RNA 80.0 80.0 86.2 83.1 78.5
Overall accuracy (%) 43.8 57.7 50.7 49.9 56.2
Randomb 20.0 20.0 20.0 20.0 20.0
a Percentage of correct PC-DA prediction of antibiotic class for the spectra representing each antibiotic excluded from the training data set. Raman signal intensities were
normalized using vector normalization and with respect to the signal intensity of the phenylalanine band at 1,003 cm�1, the signal intensity of the C-H band at 1,450 cm�1, and the
signal intensity of the C-H stretching vibration region at 2,900 to 3,100 cm�1.
b The probability of correct classifications by random assignment.
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32, 41, 42). These discriminant analysis results are often cross-
validated using the K-fold or leave-one-out method (32). Cross-
validation (i) removes a subset of Raman spectra from the data set,
(ii) reconstructs a discriminant model using remaining spectra,
and then (iii) uses the model to predict the class of the removed
spectra. This method of validation often produces positive results,
because spectra from the class to which the removed sample be-
longs are still included in the model training data set. The critical
question remains whether classification accuracy is as good for
samples from a completely new antibiotic treatment not included
in model training. For example, PC-DA with 50 PCs distinguished
among cultures based on the class of antibiotic treatments with
83.6% accuracy estimated using leave-one-out cross-validation
(Table 3). However, PC-DA with 50 PCs did not perform as well in
predicting the class of new antibiotic (new to the model), with
48.0% overall accuracy (Table 4). In contrast, PC-DA with 9 PCs,
which performed relatively poorly in the leave-one-out cross-val-
idation (70.6%), performed better than PC-DA with 50 PCs when
used to predict the group of unknown antibiotics, with 57.7%
overall accuracy. Using a smaller number of PCs preserved the
variance in the original data and was sufficient to develop a dis-
criminant analysis model with good predictive capabilities. Using
a smaller number of PCs (9 versus 50) also substantially reduced
computation time. This is significant because computation time
becomes a more critical issue as more antibiotics are added to the
data set and chemometric analysis becomes more sophisticated.

Identifying the target and the mechanism of action of a puta-
tive antibiotic is difficult and time-consuming. The Raman spec-
troscopy-based phenotypic profiling system can aid this process
by revealing important information about the phenotypic effects
of the mechanistically unknown antibiotic compound. This infor-
mation can be used to generate testable hypotheses and will fur-
ther inform the search for the mechanism of action and cellular
target(s) of the putative antibiotic compound. Indeed, as more
antibiotic response profiles are added to the database, the accuracy
and usefulness of the Raman spectroscopy-based phenotypic pro-
filing system will improve. In addition, this database not only can
become more diversified by adding data from additional antibi-
otic treatments but also has the potential to be expanded by in-
cluding other microbial strains.
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