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Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal
biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis
(ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 �g/ml for fosfomycin,
4/>64 �g/ml for rifampin, 1/2 �g/ml for ampicillin, 2/>256 �g/ml for linezolid, 16/32 �g/ml for gentamicin, 1/>64 �g/ml for
vancomycin, and 1/5 �g/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8� and 16� MIC, but regrowth
of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat produc-
tion was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in
combination with daptomycin reduced planktonic counts by �4 log10 CFU/ml below the levels before treatment. Fosfomycin
cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43%
of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages;
in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin
cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination
with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed
in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal bio-
films should be further investigated, especially in combination with rifampin and/or daptomycin treatment.

Treatment of implant-associated infections is challenging be-
cause bacteria form biofilms on implant surfaces (1). Micro-

organisms in a biofilm are up to 1,000-fold more resistant to an-
tibiotics than their planktonic counterparts (2). Thus, successful
treatment requires antimicrobials that retain activity against ad-
herent and metabolically less active bacteria and thus persist dur-
ing the stationary growth phase (3).

Enterococci are an important global cause of health care-asso-
ciated infections, as they are increasingly associated with endocar-
ditis, urinary tract, intra-abdominal, catheter-related, surgical
site, and central nervous system infections (4). In addition, en-
terococci have emerged as multidrug-resistant pathogens, causing
infections in patients with intravascular or extravascular implants
(5, 6). Several virulence and genetic factors involved in the immu-
nity and pathogenesis of enterococcal infections have been iden-
tified (7).

Enterococci cause 3 to 10% of prosthetic joint infections, and
the treatment of these infections is associated with high failure
rates, mainly due to antimicrobial tolerance and the slow bacteri-
cidal activities of �-lactam antibiotics and glycopeptides (8).
While rifampin combination treatment has been established for
staphylococcal implant-associated infections (9), an optimal
treatment for enterococcal infections has not been determined.
Despite gentamicin-containing regimens showing activity against
Enterococcus faecalis biofilms in an experimental foreign-body in-
fection model, the failure rates remain high (10).

Fosfomycin is a bactericidal agent with a broad spectrum of
activity against Gram-positive and Gram-negative microorgan-
isms, including E. faecalis (11). Although for fosfomycin the main
drawback is the high rate of in vitro emergence of resistance, which

limits its use in the clinic, the rate of in vivo resistance remains low
(12, 13). Despite fosfomycin’s main use for the treatment of un-
complicated urinary tract infections, activities against biofilms
and bone infections have also been demonstrated, as fosfomycin
penetrates well into soft tissue and bone tissue (14, 15).

In this study, we investigated the activities of fosfomycin, ri-
fampin, gentamicin, ampicillin, vancomycin, daptomycin, lin-
ezolid, and their combinations against planktonic and adherent E.
faecalis in vitro and in a guinea pig foreign-body infection model.
This animal model has been previously used for the evaluation of
antimicrobial agents against biofilms and has been predictive for
clinical outcomes in implant-associated infections (10, 16–20).

MATERIALS AND METHODS
Study organism. The biofilm-forming E. faecalis ATCC 19433 strain was
used for all in vitro and in vivo experiments (21). Bacteria were stored in a
cryovial bead preservation system (Microbank; Pro-Lab Diagnostics,
Richmond Hill, Ontario, Canada) at �80°C. An inoculum was prepared
by spreading one cryovial bead on a blood agar plate and incubating the
plate overnight at 37°C. One colony was resuspended in 5 ml tryptic soy
broth (TSB) and incubated at 37°C without shaking. Overnight cultures
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were then adjusted to a turbidity of 0.5 McFarland, which corresponded to
�5 � 107 CFU/ml.

Antimicrobial agents. Fosfomycin was provided as purified powder
by the manufacturer (InfectoPharm, Heppenheim, Germany). A 50-
mg/ml stock solution was prepared in sterile and pyrogen-free 0.9% sa-
line. Daptomycin for injection was supplied by the manufacturer (No-
vartis Pharma Schweiz, Bern, Switzerland). A stock solution of 50 mg/ml
was prepared in sterile and pyrogen-free 0.9% saline. Vancomycin was
supplied as 10-mg powder ampoules (Teva Pharma, Aesch, Switzerland).
A stock solution of 50 mg/ml was prepared in sterile and pyrogen-free
0.9% saline. Rifampin (Sandoz, Steinhausen, Switzerland) was prepared
as a 60-mg/ml stock solution in sterile water. Ampicillin was provided as a
purified powder by the manufacturer (Roche Diagnostics, Mannheim,
Germany), and a 5-mg/ml stock solution was prepared in sterile water.

Antimicrobial susceptibility testing. The MICs and the logarithmic
MBC (MBClog) values for fosfomycin, ampicillin, rifampin, gentamicin, lin-
ezolid, daptomycin, and vancomycin were determined by the broth macrodi-
lution method in cation-adjusted Mueller-Hinton broth (CAMHB), accord-
ing to the Clinical and Laboratory Standards Institute (CLSI) guidelines
(22). An inoculum of �3 � 105 CFU/ml was used. Two-fold serial dilu-
tions of each antimicrobial agent were prepared in 2 ml Mueller-Hinton
broth (MHB) in plastic tubes and incubated for 18 h at 37°C. The MIC was
defined as the lowest concentration of antibiotic that completely inhibited
visible growth. After the incubation, all tubes without visible growth were
vigorously vortexed and incubated for an additional 4 h at 37°C without
shaking. Aliquots of 100 �l were plated on blood agar plates, and the
numbers of bacteria were determined. The MBClog was defined as the
lowest antimicrobial concentration that killed �99.9% of the initial bac-
terial count (i.e., �3 log10 CFU/ml) in 24 h. For bacteria in the stationary
phase, MBCstat was determined in phosphate-buffered saline (PBS) with
the addition of 0.1% TSB. Media were supplemented with 25 mg/liter
glucose-6-phosphate for testing of fosfomycin and with 50 mg/liter Ca2�

for testing of daptomycin. All experiments were performed in triplicate.
Time-kill studies. The activities of fosfomycin, rifampin, ampicillin,

and linezolid were investigated in time-kill studies performed with cells in
the logarithmic growth phase. The tests were performed in plastic tubes in
a final volume of 10 ml CAMHB and were further incubated at 37°C. At
time points of 2, 4, 6, 8, and 24 h, 1-ml aliquots were sampled and washed
with 0.9% saline solution in order to prevent the antibiotic carryover
effect. Ten-fold dilutions were then plated on Muller-Hinton agar, and
the numbers of CFU were determined. Medium without antibiotics was
used as the growth control. Bactericidal activity was defined as a �99.9%
(i.e., �3-log10 CFU/ml) reduction of the initial bacterial count after 24 h.
The initial inoculum was �5 � 105 CFU/ml, and the medium used was
CAMHB supplemented with glucose-6-phosphate at 25 mg/liter for the
fosfomycin studies.

Microcalorimetry testing of antimicrobial activity against plank-
tonic and adherent E. faecalis. A 48-channel isothermal microcalorim-
eter (thermal activity monitor, model 3102 TAM III; TA Instruments,
New Castle, DE) was used as described for previous studies (23–26). Mi-
crocalorimetry is a highly sensitive method for assessment of bacterial
growth throughout the measurements of bacterial heat production over
time (the lower limit of heat flow detection is 0.25 �W). The antimicrobial
activity against planktonic and adherent E. faecalis can be quantitatively
assessed in real time by the impact on the heat flow curve, i.e., the delay of
heat production, reduction of peak heat flow, and total heat. All experi-
ments were performed in triplicate.

For planktonic E. faecalis, microcalorimetry ampoules containing
CAMHB with different concentrations of each tested antibiotic were in-
oculated with a standard inoculum size (6.7 � 105 CFU/ml). Media were
supplemented with 25 mg/liter glucose-6-phosphate for fosfomycin and
50 mg/liter Ca2� for daptomycin testing. The heat flow was recorded
during 24 h, and the results were plotted as the heat flow (in microwatts)
versus time. The minimal heat inhibition concentration (MHIC) was de-

fined as the lowest antimicrobial concentration that inhibited heat pro-
duction during 24 h.

For E. faecalis biofilms, porous sintered glass beads (diameter, 4 mm;
pore size, 60 �m; surface area, approximately 60 cm2) were incubated in
CAMHB, which was inoculated with 2 to 3 colonies of E. faecalis and
incubated at 37°C for 3 h (early biofilm) and 24 h (mature biofilm). Then,
beads were washed three times with sterile 0.9% saline to remove plank-
tonic bacteria and exposed to serial dilutions of fosfomycin, rifampin,
ampicillin, gentamicin, linezolid, daptomycin, or vancomycin in 1 ml of
CAMHB and incubated for a further 24 h at 37°C. CAMHB was supple-
mented with 25 mg/liter glucose-6-phosphate for fosfomycin testing and
with 50 mg/liter Ca2� for daptomycin testing. After antimicrobial expo-
sure, beads were rinsed three times with 0.9% saline and placed in micro-
calorimetry ampoules containing 3 ml of CAMHB. Sterile beads served as
a negative control. Heat production was recorded for 24 h to detect recov-
ering bacteria. The minimal biofilm eradication concentration (MBEC)
was defined as the lowest antimicrobial concentration that killed biofilm
bacteria on beads and led to an absence of regrowth after 24 h of incuba-
tion in the microcalorimeter.

Animal model. A previously described foreign-body infection model
in guinea pigs was used (27). Experiments were performed according to
the Swiss veterinary law regulations. Male albino guinea pigs (Charles
River, Sulzfeld, Germany) were used and their well-being was checked
daily, and the experiments were started when the animals weighed at least
450 g. Briefly, four sterile polytetrafluoroethylene (Teflon) cages (32 mm
by 10 mm) with 130 regularly spaced perforations 1 mm in diameter
(Angst-Pfister, Zurich, Switzerland) were subcutaneously implanted un-
der aseptic conditions in the flanks of the guinea pigs. After the complete
healing of the surgical wounds, which took approximately 2 weeks, the
sterility of the cages was verified by culturing aspirated cage fluid on blood
agar plates. Contaminated cages were excluded from the experiments.

Antimicrobial treatment regimens. Cages were infected by percuta-
neous injection of 200 �l containing 5.9 � 104 CFU of E. faecalis. Before
the start of treatment, the infection was determined by quantitative cul-
ture of aspirated cage fluid. Three hours after infection, antimicrobial
treatment was initiated (day 1). Three animals were randomized into each
of the following treatment groups (with 4 cages per animal): untreated
(control) group, fosfomycin (250 mg/kg), rifampin (12.5 mg/kg), genta-
micin (10 mg/kg) plus fosfomycin (250 mg/kg), daptomycin (40 mg/kg)
plus fosfomycin (250 mg/kg), daptomycin (40 mg/kg) plus rifampin (12.5
mg/kg), vancomycin (15 mg/kg) plus fosfomycin (250 mg/kg), and van-
comycin (15 mg/kg) plus rifampin (12.5 mg/kg). All antimicrobials were
administered intraperitoneally every 12 h, with the exception of daptomy-
cin, which was given once daily. The treatment was administered for 4
days. The dosing regimens for all tested antimicrobials were chosen ac-
cording to results of pharmacokinetic experimental studies that mim-
icked drug concentrations in humans (14, 28–30).

Antimicrobial activities on planktonic E. faecalis in the animal
model. To determine the activities of antimicrobials on planktonic E.
faecalis, each cage fluid was aspirated during treatment (preceding the last
dose, i.e., day 4) and 5 days after completion of treatment (i.e., day 9). The
treatment efficacy against planktonic bacteria was assessed based on the
reduction of bacterial counts in the cage fluid (expressed as the log10

CFU/ml) and the clearance rate (expressed as a percentage), which was
defined as the number of cage fluid cultures without growth of E. faecalis
divided by the total number of cages in the individual treatment group.

Antimicrobial activities on adherent E. faecalis in the animal model.
Five days after completion of treatment, animals were sacrificed and cages
were removed under aseptic conditions. Each cage was then incubated in
5 ml TSB at 37°C for 48 h. Aliquots of 100 �l of these mixtures were spread
on blood agar plates and incubated for an additional 48 h. The treatment
efficacies against biofilm bacteria were assessed through the “cure” rate,
defined as the number of cage cultures without E. faecalis growth divided
by the total number of cages in the treatment group (expressed as a per-
centage).
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Emergence of antimicrobial resistance in vivo. Susceptibilities
against fosfomycin, rifampin, and daptomycin were determined in E.
faecalis cells growing in TSB from explanted cages (i.e., in treatment fail-
ures) to screen for emergence of antimicrobial resistance. A gradient strip
diffusion test (Etest) was used, following the manufacturer’s instructions
(AB Biodisk, Solna, Sweden).

Statistical analyses. Comparisons for continuous variables were per-
formed by using the Mann-Whitney U test for continuous variables and
by using Fisher’s exact test for categorical variables. For all tests, differ-
ences were considered significant when P values were 	0.05. The graphs
in the figures were plotted using Prism software (version 6.01; GraphPad
Software, La Jolla, CA).

RESULTS
Antimicrobial susceptibility. Table 1 summarizes the in vitro sus-
ceptibilities of planktonic and adherent E. faecalis cells. Fosfomy-
cin, rifampin, and linezolid exhibited bacteriostatic activities in
the logarithmic and stationary growth phases, even at the highest
tested concentrations (64 to 512 �g/ml). The MIC, MBClog, and
MBCstat for ampicillin were 1, 2, and 2 �g/ml, respectively; how-
ever, at ampicillin concentrations above 2 �g/ml, the number of
bacteria recovered after 24 h of incubation increased with higher
ampicillin concentrations (paradoxical effect).

Time-kill studies. Fosfomycin inhibited bacterial growth at
1� MIC and was bactericidal at �2� MIC (Fig. 1). However, at
2� and 4� MIC, regrowth occurred after 24 h, and in these strains
fosfomycin resistance emerged (MIC, 
1,024 �g/ml). Rifampin
and linezolid inhibited growth at any concentration above 1�
MIC. Ampicillin was bactericidal at 2�, 4�, and 8� MIC but
showed better killing activity at 2� MIC than at 4� and 8� MIC
(paradoxical antimicrobial effect).

Antimicrobial activities on planktonic E. faecalis cells based
on microcalorimetry. The MHICs correlated well with MICs ob-
tained with the standard broth macrodilution method (Table 1). The
antimicrobial activities were evaluated by the delay and reduction of

TABLE 1 Antimicrobial susceptibility of planktonic and adherent E.
faecalis (ATCC 19433) determined by conventional broth
macrodilution and microcalorimetry

Antimicrobial
agent

Susceptibilitya (�g/ml) based on:

Broth macrodilution Microcalorimetry

MIC MBClog MBCstat MHIC MBEC3 h MBEC24 h

Fosfomycin 32 
512 
512 64 
512 
512
Rifampin 4 
64 
64 4 
512 
512
Ampicillin 1 2b 2b 2 
512 
512
Linezolid 2 
256 
256 4 
512 
512
Gentamicinc 16 32 4 16 128 512
Vancomycinc 1 
64 
64 1 
512 
512
Daptomycinc 1 5 
20 1 
512 
512
a MBClog, the MBC during the logarithmic growth phase; MBCstat, the MBC during the
stationary growth phase; MHIC, minimal heat inhibition concentration; MBEC3 h, the
minimal biofilm eradication concentration in a 3-h biofilm; MBEC24 h, the minimal
biofilm eradication concentration in a 24-h biofilm. Values represent medians of
triplicate measurements.
b At ampicillin concentrations above 2 �g/ml, the number of E. faecalis organisms
recovered after 24 h of incubation increased with higher ampicillin concentrations (a
paradoxical effect).
c Broth macrodilution data for this agent were extracted from reference 10.

FIG 1 Time-kill studies for fosfomycin (A), rifampin (B), ampicillin (C), and linezolid (D) during logarithmic growth. The horizontal dashed line represents the
reduction of 3 log10 CFU/ml compared to the initial bacterial count. GC, growth control.
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the heat flow peak compared to the growth control in the absence of
antibiotic (Fig. 2). Fosfomycin showed a reduction of the heat flow
peak at 0.5� MIC. However, after 12 h, regrowth was observed at
0.5� and 1� MIC, corresponding to the findings in time-kill studies.

Rifampin and linezolid caused delays in growth-related heat produc-
tion and a reduction of the heat flow peak at 0.125�, 0.25�, and 0.5�
MIC. Ampicillin showed activity at 0.125� MIC, mainly in the re-
duction of the heat flow peak.

FIG 2 Microcalorimetry of planktonic E. faecalis. Numbers represent concentrations (in �g/ml) of fosfomycin (A), rifampin (B), ampicillin (C), vancomycin
(D), gentamicin (E), linezolid (F), and daptomycin (G). Circled values represent the MHIC, defined as the lowest antimicrobial concentration that inhibited heat
production during 24 h. GC, growth control.
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Antimicrobial activity on adherent E. faecalis based on mi-
crocalorimetry evaluation. The antimicrobial activities on early
(3 h) and mature (24 h) biofilms are shown in Fig. 3 and 4,
respectively. With the exception of gentamicin, which sup-
pressed heat production at 128 �g/ml at 3 h (Fig. 3E) and at 512
�g/ml at 24 h (Fig. 4E), no complete inhibition of heat produc-
tion was observed with other antibiotics, even at concentra-
tions up to 512 �g/ml. However, the activity of each antibiotic
against early biofilm was stronger than against a mature bio-
film. At concentrations below the MIC, fosfomycin had no
effect on E. faecalis biofilm, whereas at higher concentrations (64
to 2,048 �g/ml), the heat production was delayed. This effect was
more evident in early than in mature biofilm (Fig. 3A and 4A,
respectively). With fosfomycin, no concentration-dependent ac-
tivity was observed. In contrast, rifampin showed concentration-
dependent activity (Fig. 3B and 4B). In the early biofilms, there

was a difference in the drug activity between low (2 to 4 �g/ml)
and high (8 to 512 �g/ml) concentrations. With ampicillin, the
longest delay in heat production was found at 2 �g/ml, especially
in early biofilms. No concentration-dependent differences in the
antibiofilm activity were observed between 4 �g/ml and 512 �g/
ml, in either early or mature biofilms (Fig. 3C and 4C). For van-
comycin, no differences were found between early and mature
biofilms, and its activity did not improve at higher concentrations
(Fig. 3D and 4D). Linezolid showed a concentration-dependent
activity from 2 �g/ml to 32 �g/ml on early biofilms (Fig. 3F) and
from 2 �g/ml to 64 �g/ml on mature biofilms (Fig. 4F); at higher
concentrations, no improved activity of linezolid was observed.

The combination of fosfomycin and gentamicin showed a
complete inhibition of heat production, in both early and mature
biofilms at concentrations of fosfomycin of 1,024 �g/ml plus gen-

FIG 3 Microcalorimetry results for adherent E. faecalis (3-h biofilm). Numbers represent concentrations (in �g/ml) of fosfomycin (A), rifampin (B), ampicillin
(C), vancomycin (D), gentamicin (E), and linezolid (F). Circled values represent the MBEC. GC, growth control.
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tamicin at 16 to 32 �g/ml and fosfomycin at 1,024 �g/ml plus
gentamicin at 64 �g/ml, respectively.

Antimicrobial activities on planktonic E. faecalis in the ani-
mal model. Before start of treatment (i.e., day 1), cage fluid
contained 1.6 � 105 CFU/ml (i.e., 5.20 log10 CFU/ml). Figure
5A shows the counts of planktonic bacteria in cage fluid during
treatment (i.e., day 4) and 5 days after the end of treatment
(i.e., day 9). In the untreated (control) animals, the bacterial
load was 4.08 and 4.16 log10 CFU/ml on day 4 and day 9, re-
spectively. During treatment, the bacterial count decreased to
1.29 log10 CFU/ml with fosfomycin alone (P 	 0.001), 0.75
log10 CFU/ml with fosfomycin plus gentamicin (P 	 0.001),
1.32 log10 CFU/ml with fosfomycin plus rifampin (P 	 0.001),
0.78 log10 CFU/ml with fosfomycin plus daptomycin (P 	
0.001), 1.86 log10 CFU/ml with fosfomycin plus vancomycin,
2.01 log10 CFU/ml with rifampin plus daptomycin, and 2.4 log10

CFU/ml with rifampin plus vancomycin. With rifampin alone, the

bacterial count was 4.65 log10 CFU/ml (during treatment) and
4.75 log10 CFU/ml (after treatment). Compared to the bacterial
count during treatment, the count increased after treatment to
0.97 log10 CFU/ml with fosfomycin plus gentamicin, to 2.17 log10

CFU/ml with fosfomycin plus rifampin, to 2.91 log10 CFU/ml with
fosfomycin plus vancomycin, and to 3.72 log10 CFU/ml with ri-
fampin plus vancomycin, whereas the count remained stable and
low at 0.73 log10 CFU/ml with fosfomycin plus daptomycin (P 	
0.001) and decreased to 0.92 log10 CFU/ml with fosfomycin alone
(P 	 0.001) and to 1.12 log10 CFU/ml with rifampin plus dapto-
mycin.

Figure 5B shows the clearance rate of planktonic bacteria from
the cage fluid. No spontaneous clearance was observed in the un-
treated (control) animals. Fosfomycin alone showed a clearance
rate of 74%, in combination with gentamicin the rate was 77%,
with daptomycin it was 75%, with vancomycin it was 33%, and
with rifampin the rate was 58%. Rifampin alone showed a clear-

FIG 4 Microcalorimetry results for adherent E. faecalis (24-h biofilm). Numbers represent concentrations (in �g/ml) of fosfomycin (A), rifampin (B), ampicillin
(C), vancomycin (D), gentamicin (E), and linezolid (F). Circled values represent the MBEC. GC, growth control.
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ance rate of 9%, which increased to 33% in combination with
vancomycin and to 58% with daptomycin.

Antimicrobial activity on adherent E. faecalis in the animal
model. In the control (untreated) animals, no spontaneous cure
occurred. Fosfomycin alone eradicated adherent E. faecalis in 43%
of cages. Fosfomycin in combination with gentamicin increased
the cure rate to 58%. Despite the high activities of fosfomycin and
daptomycin against planktonic bacteria, this combination eradi-
cated adherent bacteria in only 17% of cages. Rifampin alone had
no effect on adherent E. faecalis, whereas the addition of fosfomy-
cin and daptomycin enhanced the cure rate to 25% and 17%,
respectively.

Emergence of antimicrobial resistance in vivo. Among the
explanted cages that showed bacterial growth (treatment failures),
no resistant strains to fosfomycin, rifampin, or daptomycin were
detected.

DISCUSSION

Spread of resistance to penicillin derivatives, glycopeptides, and
aminoglycosides has reduced the available treatment options for
enterococcal infections (31, 32). In the presence of a foreign body,
enterococcal infections present an additional challenge, since
most antibiotics lack antibiofilm activity against enterococci (3,
8). In this study, the activities of fosfomycin and rifampin, alone
and in combination with antibiotics active against enterococci,
such as vancomycin, daptomycin, ampicillin, and linezolid, were
tested against E. faecalis biofilms in vitro and in an established
animal model.

In vitro, the macrodilution method and a microcalorimetry
assay showed comparable results, with the advantage of micro-
calorimetry providing real-time data on bacterial growth (or in-
hibition thereof in the presence of antibiotic combinations) by
continuous recording of bacterial heat production. Importantly,
microcalorimetry showed that regrowth of E. faecalis occurred in
the presence of fosfomycin at 16 and 32 �g/ml already after 12 h of
antimicrobial exposure, which was also observed in the time-kill
studies. The rapid emergence of fosfomycin resistance during
treatment is the main limiting factor for the use of fosfomycin in
clinical practice (33). The development of chromosomal resis-
tance to fosfomycin implies a biological cost in virulence and fit-
ness of Gram-negative pathogens (12, 34–36). Whether this ap-
plies also to enterococci is possible, but has not yet been
demonstrated.

Both microcalorimetry and time-kill studies showed the pres-
ence of a paradoxical effect for E. faecalis and ampicillin. The par-
adoxical effect (Eagle phenomenon), which was first described by
Eagle in 1948, is defined as a bactericidal activity that decreases
when the concentration of the antibiotic increases. The mecha-
nism of this phenomenon has not been clearly established; defec-
tive autolytic activity when exposed to high concentrations of an-
tibiotics has been implicated for E. faecalis (37). However, the
clinical relevance of this phenomenon is still unclear and needs
further investigation.

The activity against E. faecalis in biofilms was evaluated in vitro
by microcalorimetry using glass beads, which simulated the Cal-
gary biofilm device method (38) and determined the biofilm re-
covery after 24 h of antibiotic challenge. With the exception of
gentamicin, no other antibiotic inhibited bacterial heat produc-
tion in early or mature E. faecalis biofilms, even at concentrations
exceeding the achievable values in clinical practice. Antibiotics

FIG 5 Antimicrobial activity on planktonic and adherent E. faecalis cells in the
animal model. (A) Planktonic bacterial counts in cage fluid during treatment
(white bars) and 5 days after treatment (black bars). *, P 	 0.001 (compared to
control animals). SEM, standard error of the mean. (B) Clearance of plank-
tonic bacteria in cage fluid. *, P 	 0.05. (C) Cure rate of adherent E. faecalis
from explanted cages. *, P 	 0.05. FOS, fosfomycin; RIF, rifampin; DAP,
daptomycin; VAN, vancomycin; GEN, gentamicin; control, untreated ani-
mals.
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were more active against the early (3 h) rather than mature (24 h)
biofilm, highlighting the importance of a rapid start of treatment
for implant-associated infections caused by enterococci.

In the present study, the experimental conditions were modi-
fied from those used previously in the animal model (16–19).
First, the infection inoculum was reduced from 105 to 104 CFU/
cage, and second, the duration of infection was shortened to 3 h,
based on a previous study involving E. faecalis (10). If treatment
was started after an infection duration of 24 h, no cure of cage
infections was achieved with any antibiotic or combination regi-
men (data not shown). However, even with the short, 3-h dura-
tion of infection, the highest cure rate did not exceed 42%, high-
lighting that E. faecalis is a difficult-to-treat microorganism that
tends to adhere and persist on foreign bodies, explaining the high
rate of treatment failure.

Fosfomycin showed activity against both Gram-positive and
Gram-negative biofilms, Pseudomonas aeruginosa, extended-
spectrum �-lactamase-producing E. coli, and methicillin-resistant
S. aureus (MRSA) (13, 39–42; R. Mihailescu, U. Furustrand Tafin,
S. Corvec, A. Oliva, B. Betrisey, O. Borens, A. Trampuz, submitted
for publication). However, the role of fosfomycin in enterococcal
biofilm infections has not been widely investigated. In the present
study, fosfomycin alone eradicated adherent E. faecalis from 42%
of infected cages, which could be explained by the immunomodu-
latory effect of fosfomycin (34, 43). However, due to the risk of
emergence of fosfomycin resistance, fosfomycin is not recom-
mended for monotherapy in clinical practice (13).

In contrast to staphylococci, for which the combination of an
antistaphylococcal agent with rifampin has been shown to im-
prove the cure rate in implant-associated infections (9, 16, 17, 44,
45), the role of rifampin in enterococcal infection remains contro-
versial. Rifampin was investigated against enterococcal biofilms in
combination with ciprofloxacin and linezolid in vitro (46) and in
combination with tigecycline in vivo (47). In our study, rifampin
showed no activity against enterococcal biofilms, either in vitro or
in vivo. While alone a cure rate of 0% was observed, rifampin
activity against biofilms was improved to 8% in combination
with vancomycin, to 17% with daptomycin, and to 25% with
fosfomycin.

Despite the combination of fosfomycin and daptomycin show-
ing the highest clearance rate of planktonic bacteria (75%), the
cure rate (eradication of adherent bacteria from cages) was only
17%. Similar results were found in a recent study using the same
guinea pig model (Trampuz et al., submitted), where the combi-
nation fosfomycin plus daptomycin was active only on planktonic
and not biofilm MRSA, despite use of a higher daptomycin dose
(50 mg/kg), which was equivalent to �10 mg/kg in humans. The
daptomycin dose used in our animal experiments (40 mg/kg) cor-
responds to �8 mg/kg in humans (17, 48–50). This dose is higher
than the currently recommended dose for staphylococcal infec-
tions (4 to 6 mg/kg) (51). However, daptomycin MICs for entero-
cocci are in general 1- to 2-fold higher than those for S. aureus, and
higher daptomycin doses are probably needed for treatment of
enterococcal infections, especially in immunocompromised pa-
tients, device-related infections, and infective endocarditis (52–
56). Thus, higher daptomycin doses (equivalent to 10 to 12 mg/kg
in humans) may be needed in order to penetrate into biofilms and
kill adherent enterococci.

In the present study, the most efficient regimen for killing
planktonic and adherent E. faecalis was the combination of fosfo-

mycin and gentamicin. Previous studies had demonstrated that
gentamicin improves the activities of daptomycin and vancomy-
cin against E. faecalis (10), and the combination of fosfomycin and
gentamicin has been studied for multidrug-resistant Gram-nega-
tive bacteria (57). However, with regard to enterococcal infec-
tions, clinical data are lacking.

In conclusion, fosfomycin showed activity against planktonic
and adherent E. faecalis. Its role in the treatment of enterococcal
biofilms should be further investigated, especially in combination
with gentamicin, rifampin, and/or daptomycin.
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