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Indwelling medical devices have become a major source of nosocomial infections, especially Pseudomonas aeruginosa infections,
which remain the most common cause of ventilator-associated pneumonia (VAP) in neonates and children. Using medical grade
polyvinyl chloride endotracheal tubes (ETTs), the activity of tobramycin and polymyxin E was quantified in a simulated preven-
tion and treatment static time-kill model using biofilm-forming P. aeruginosa. The model simulated three clinical conditions: (i)
planktonic bacteria grown in the presence of antibiotics (tobramycin and polymyxin E) without ETTs, (ii) planktonic bacteria
grown in the presence of P. aeruginosa, antibiotic, and ETTs (simulating prevention), and (iii) a 24-h-formed P. aeruginosa bio-
film grown on ETTs prior to antibiotic exposure (simulating treatment). In the model simulating “prevention” (conditions 1 and
2 above), tobramycin alone or in combination with polymyxin E was more bactericidal than polymyxin E alone at 24 h using a
concentration of greater than 2 times the MIC. However, after a 24-h-old biofilm was allowed to form on the ETTs, neither
monotherapy nor combination therapy over 24 h exhibited bactericidal or bacteriostatic effects. Against the same pathogens,
tobramycin and polymyxin E, alone or in combination, exhibited bactericidal activity prior to biofilm attachment to the ETTs;
however, no activity was observed once biofilm formed on ETTs. These findings support surveillance culturing to identify patho-
gens for a rapid and targeted approach to therapy, especially when P. aeruginosa is a potential pathogen.

Indwelling medical devices are a major source of nosocomial
infections. In particular, patients requiring mechanical ventila-

tion (intubation with an endotracheal tube [ETT]) face a high
probability of contracting one of the most prevalent nosocomial
infections, ventilator-associated pneumonia (VAP) (1–3). Neo-
natal and pediatric populations are at especially high risk for VAP
because the current standard of care involves prolonged intuba-
tion without ETT exchange or tracheostomy, both common prac-
tice in adult patients. In neonates and infants, the inner diameter
of the ETT is often 2.5 to 3.5 mm (the size of a thin straw), which
complicates suctioning of secretions and confounds attempts to
maintain patency. Despite aggressive bedside hygiene, Pseudomo-
nas aeruginosa remains one of the most common causes of VAP in
intubated children (2, 4, 5).

P. aeruginosa, often found on indwelling devices such as ETTs,
forms a biofilm which serves as an ideal environment for antibi-
otic resistance, making VAP difficult to treat (6, 7). Biofilm on
ETTs is considered to be a reservoir for infecting pathogens de-
rived from oropharyngeal flora and gastric microaspiration and is
highly correlated with lower airway infection and subsequent VAP
(8–11). To date, few side-by-side studies have compared killing
activity (defined as 99.9% kill) of tobramycin to that of polymyxin
E against P. aeruginosa, especially in the context of ETT biofilm
and VAP (12–15). The effect of monotherapy and/or combination
therapy (synergistic versus antagonistic activity) must be assessed
when evaluating antimicrobial drug therapy, especially in the
presence of medical grade polyvinyl chloride (PVC) or conven-
tional ETTs. For convenience, most studies investigating antibi-
otic susceptibility in formed biofilms have used PVC coupons
rather than clinically available medical devices (16–18). However,
most of the coupons made of PVC are not medical grade and, in
many cases, do not contain equivalent plasticizer content. These
differences result in different texture and flexibility characteristics

of medical grade PVC products and PVC coupons used in biofilm
experiments. Using clinically available ETTs, this study aimed
both to assess the efficacy of antibiotics against planktonic versus
biofilm-formed P. aeruginosa and to identify which antibiotic,
alone or combination, demonstrates the best in vitro activity
against P. aeruginosa in the context of VAP.

(This study was presented as a poster at the 52nd Interscience
Conference of Antimicrobial Agents and Chemotherapy, San
Francisco, CA, 7 to 12 September 2012 [19].)

MATERIALS AND METHODS
Bacterial isolates. American Type Culture Collection (ATCC, Manassas,
VA) strain 25668 was obtained. Reference strain PAO1 was obtained from
Thomas Murray, Frank H. Netter MD School of Medicine, Quinnipiac
University, North Haven, CT (20, 21). Prior to use, all bacteria were stored
in tryptic soy broth (TSB; Difco Laboratories, Sparks, MD) with 15%
glycerol and frozen at �80°C. Both strains are prolific biofilm producers
(22, 23).

Antimicrobial agents. Commercially available, chemical grade poly-
myxin E (lot 081M1525V) powder and chemical grade tobramycin (lot
090M1196V) powder were purchased from Sigma-Aldrich (St. Louis,
MO). Tobramycin powder and polymyxin E powder were stored at 4°C.
Both tobramycin and polymyxin E were diluted in sterile water, and a
fresh stock was made each day and prior to every experiment. Tobramycin
and polymyxin E were tested at one, two, four, and eight times their
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respective MICs at 0, 4, and 24 h after inoculation (24). Cation-adjusted
Mueller-Hinton broth (CA-MHB; Difco Laboratories, Sparks, MD) sup-
plemented with 25 mg/liter calcium, 12.5 mg/liter magnesium, and 0.25%
dextrose (Fisher Scientific, Pittsburgh, PA) was used to obtain a suspen-
sion corresponding to a 0.7 to 0.8 McFarland standard to produce an
initial inoculum of 5.5 to 6.0 � 106 CFU/ml. Colony counts were deter-
mined using tryptic soy agar (TSA; Difco, Becton, Dickinson Co., Sparks,
MD) plates.

Susceptibility testing. MIC tests were performed in triplicate using
broth microdilution in accordance with Clinical and Laboratory Stan-
dards Institute (CLSI) and National Committee for Clinical Laboratory
Standards (NCCLS) guidelines (25, 26). The MIC was defined as the min-
imum concentration of antibiotic that would inhibit the visual growth of
the isolated organism. Minimum bactericidal concentrations (MBC) were
also determined in triplicate for each antimicrobial agent using NCCLS
guidelines (26). Bacteria were quantified using CFU/ml, and 5-�l aliquots
were used for determination of MBC after 24 h incubation at 37°C using
TSA (27).

Endotracheal tubes (ETTs). Commercially available Sheridan un-
cuffed ETTs (Hudson RIC, Temecula, CA) (6.0-mm inner diameter [ID])
were obtained. Each ETT was cut into 0.6-cm-by-0.3-cm rectangular
pieces (ETT chips) using a one-quarter-rectangle hand puncher (Fiskars
Corporation, Helsinki, Finland) and sterilized with ethylene oxide gas
prior to use in preformed- and formed-biofilm time-kill experiments
(23). For comparisons, we also tested commercially available PVC cou-
pons (part number RD 128-PVC; Biosurface Technologies Corp., Boze-
man, MT) for preformed-biofilm P. aeruginosa PAO1 (16–18).

Biofilm formation. Sterile ETT chips were placed in each well of a
24-well plate (BD Biosciences, San Jose, CA). The ETT chip was sub-
merged with 2 ml of a final bacterial inoculum, either PAO1 or ATCC
25668, obtained as described above using TSB supplemented with 1%
dextrose, 2% NaCl, and 25 mg/liter calcium (STSB) and a modified ver-
sion of a previously described method (28). The well plate was incubated
at 37°C under static conditions for 24 h to promote biofilm formation
on ETT chips. After 24 h, each ETT chip was gently rinsed three times
in sterile phosphate-buffered saline (PBS) (Fisher Scientific, Pitts-
burgh, PA).

Time-kill study. Using a 24-h time-kill study, three clinical conditions
were modeled using P. aeruginosa strains PAO1 and 25668: (i) planktonic
bacteria in the presence of the antibiotics tobramycin and polymyxin E,
without ETTs, (ii) planktonic bacteria grown in the presence of P. aerugi-
nosa, antibiotics, and ETTs (simulating prevention), and (iii) a 24-h-
formed P. aeruginosa biofilm on ETTs prior to antibiotic exposure (sim-
ulating treatment). Each time-kill experiment was carried out in a
minimum of triplicate iterations. All antimicrobial agents were tested at
one, two, four, and eight times their respective MICs with starting inocula
of 5.5 � 106 to 6.0 � 106 CFU/ml adjusted to McFarland standards using
a Vitek colorimeter (bioMérieux, Inc., Durham, NC) (18, 29).

Sample aliquots (0.1 ml) were removed from cultures at 0, 4, and 24 h
after each tube was shaken using a vortexing device for 1 min to remove
biofilm growth from the ETT chip (23). Antimicrobial carryover was ac-
counted for by serial dilution (10- to 10,000-fold) of plated samples with
normal saline or vacuum filtration. This methodology has a lower limit of
detection of 2.0 log10 CFU/ml (29). Growth control tubes for each organ-
ism were prepared without antibiotic and run in parallel to the antibiotic
test tubes.

For single antimicrobial agents, bactericidal activity (99.9% kill) was
defined as a �3 log10 CFU/ml reduction at 24 h in colony count from the
initial inoculum. Bacteriostatic activity was defined as a �3 log10 CFU/ml
reduction at 24 h in colony count from the initial inoculum, while inac-
tivity was defined as no observed reduction from the initial inoculum
(24). For antibiotics evaluated in combination, synergy was defined as a
�2 log10 CFU/ml decrease, indifference was defined as a 1 to 2 log10

CFU/ml change (increase or decrease), and antagonism was defined as a

�2 log10 CFU/ml increase in growth compared to the most active single
agent.

Data analysis. All statistical analyses were performed using SPSS sta-
tistical software (IBM SPSS statistics version 20, IBM Corporation, Ar-
monk, NY). After 24 h of exposure to an antimicrobial agent(s), the bio-
film formation was quantified and bacteria were counted at 4 h and 24 h
(with a lower limit of detection 2.0 log10 CFU/ml) to compare antimicro-
bial groups, concentrations, and strains using analysis of variance
(ANOVA) followed by Tukey’s post hoc analysis. Multiple regressions for
the association between substrates and CFU/ml were analyzed. A P value
of �0.05 indicated statistical significance.

RESULTS

The MIC for tobramycin was 0.5 �g/ml and for polymyxin E was
2 �g/ml for both the PAO1 and 25668 strains. The MBCs for
tobramycin were 4 and 32 �g/ml and for polymyxin E were 16 and
64 �g/ml, respectively, for the Pseudomonas PAO1 and ATCC
25668 strains.

In the planktonic time-kill study, tobramycin demonstrated
bactericidal activity against both Pseudomonas isolates at 24 h,
with average decrease of 3.81 � 0.16 log10 CFU/ml for all concen-
trations except 1 times the MIC for PAO1 (Fig. 1a and b). Poly-
myxin E demonstrated bacteriostatic activity at 2 times and 4
times the MIC (average decrease of 2.16 to 2.63 log10 CFU/ml) and
bactericidal activity at 8 times the MIC (average decrease of 3.07 to
3.56 log10 CFU/ml) but inactivity at 1 times the MIC for both
isolates at 24 h (Fig. 1c and d). The combination therapy at 2
times, 4 times, and 8 times the MIC demonstrated indifference,
with �3.44 log10 CFU/ml kill for PAO1 and �3.46 log10 CFU/ml
kill for 25668 at 24 h (Fig. 1e and f).

In the preformed-biofilm time-kill studies (simulating preven-
tion) at 24 h, tobramycin demonstrated bactericidal activity
against both Pseudomonas isolates (average decrease of �3.3 log10

CFU/ml), except 1 times the MIC for 25668, which showed inac-
tivity (1.02 � 1.86 log10 CFU/ml increase; Fig. 2a and b). Similarly,
polymyxin E demonstrated bactericidal activity (average decrease
of �3.08 log10 CFU/ml) at greater than 2 times the MIC but bac-
teriostatic activity at 1 times the MIC for both isolates at 24 h (Fig.
2c and d). The combination of tobramycin and polymyxin E dem-
onstrated indifferent activity at all concentrations for both isolates
(Fig. 2e and f).

In formed-biofilm time-kill studies (simulating treatment) for
PAO1, combination therapy at 4 times the MIC was significantly
more active at 4 h than therapy with polymyxin E alone at 4 times
the MIC (mean difference [MD] � �1.34; 95% confidence inter-
val [CI], �2.4 to �0.3 log10 CFU/ml; P � 0.004) and 8 times the
MIC (MD � �1.45; 95% CI, �2.5 to �0.4 log10 CFU/ml; P �
0.001). Similarly, combination therapy at 8 times the MIC was
significantly more active at 4 h than therapy with polymyxin E
alone at 8 times the MIC (MD � �1.23; 95% CI, �2.3 to �0.2
log10 CFU/ml; P � 0.01). However, indifferent activity was ob-
served at 24 h. Similarly, for 25668, combination therapy at 8
times the MIC was significantly more active than therapy with
polymyxin E alone at 4 h (MD � �1.06; 95% CI, �1.7 to �0.4
log10 CFU/ml; P � 0.001). However, indifferent activity was ob-
served at 24 h. Once biofilm is formed, both single-agent and combi-
nation antibiotics resulted in inactivity or indifference (Fig. 3).

In addition to medical grade PVC ETTs, we assayed time kill
using commercially available PVC coupons (16–18). A similar
trend of bactericidal activity was demonstrated at 24 h with greater
than 4 times the MIC of tobramycin (average decrease of �3.03
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log10 CFU/ml) and with greater than 2 times the MIC of poly-
myxin E (average decrease of �3.1 log10 CFU/ml), but indiffer-
ence was noted when the combination of tobramycin and poly-
myxin E was evaluated at 2, 4, and 8 times the MIC (average
decrease of �3.21 log10 CFU/ml). ANOVA showed that there was
a significant difference between substrates and CFU/ml at 4 h
(MD � 0.08; 95% CI, 2.5 to 3.7 log10 CFU/ml; P � 0.041) (Table
1). Multiple-regression analysis demonstrated that there was a
significant association between CFU/ml and the substrate at 4 h
(partial eta squared [eta] � 0.493; P � 0.001) and at 24 h (eta �
0.208; P � 0.001). The overall model fit was R2 � 0.954.

DISCUSSION

Ventilator-associated pneumonia, a common nosocomial infec-
tion often caused by bacteria that produce biofilm, results in in-

creases in morbidity, medical costs, and multidrug-resistant or-
ganisms (2, 3, 30–33). In one study, adult patients with VAP were
hospitalized longer (38 versus 13 days; P � 0.01), mortality rates
were higher (50% versus 34%; P � 0.01), and hospital costs were
greater ($70,568 versus $21,620; P � 0.01) than were seen with
uninfected ventilated patients, with estimated VAP-attributable
costs of $11,897 (33). However, limited diagnostic criteria and
modification of ETTs make VAP prevention particularly challeng-
ing and difficult, especially for neonates and children (2).

In children, reintubation and tracheostomy insertion create
the additional risk of damaging their small and fragile airway;
therefore, reintubation or tracheostomy after a standard duration
of intubation is not routinely practiced. Thus, the longer the ETTs
remain in patients due to prolonged mechanical ventilation, the
more likely biofilms are to develop and adhere (34–36). This bac-
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FIG 1 Time kill against planktonic P. aeruginosa. Data shown represent the results for tobramycin against planktonic P. aeruginosa PAO1 (a) and 25668 (b),
polymyxin E against planktonic P. aeruginosa PAO1 (c) and 25668 (d), and the combination of tobramycin and polymyxin E against planktonic P. aeruginosa
PAO1 (e) and 25668 (f). Results are presented as means � standard deviations.
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terial accumulation of biofilms on ETTs may become dislodged
during simple routine care such as suctioning or due to ventilation
airflow. Bacteria and biofilm that break off become planktonic
and seed further in the airway, causing more-complicated pneu-
monia (8, 37).

One controversial approach to treatment of VAP is “selective
decontamination of the digestive tract” with broad-spectrum in-
travenous (IV) antimicrobials (38, 39). However, IV prophylaxis
is not widely accepted due to fear of creating antibiotic-resistant
strains among VAP pathogens. In the pediatric population, one of
the most common VAP pathogens is P. aeruginosa, accounting for
17% to 25% of VAP cases (2, 4, 5). Our model is most consistent
with the practice of direct instillation of liquid antimicrobial
agents through the ETT as prophylaxis against or treatment of

VAP caused by P. aeruginosa compared to inhalation of nebulized
antibiotics (40). Instillation treatments pose less risk of systemic
toxicity than IV administration because antimicrobial agents can
be delivered locally using ETTs or tracheostomy tubes in children
and neonates. Moreover, instillation can deliver drug directly to
the site of pneumonia whereas nebulized drug may adsorb on the
ETT, permeate into the ETT wall, or remain in the proximal air-
way. Therefore, our study model using ETT chips is useful to help
understand the effects of tobramycin and polymyxin E, alone or in
combination, to treat VAP caused by P. aeruginosa.

In our study, we examined P. aeruginosa growth with or with-
out the presence of medical grade polyvinyl chloride (PVC) ETT
to evaluate the bactericidal effects of two antibiotics under the
conditions of VAP. We found that under in vitro conditions, the
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FIG 2 Time kill against pre-biofilm-formed P. aeruginosa. Data shown represent the results for tobramycin against P. aeruginosa PAO1 (a) and 25668 (b),
polymyxin E against planktonic P. aeruginosa PAO1 (c) and 25668 (d), and the combination of tobramycin and polymyxin E against P. aeruginosa PAO1 (e) and
25668 (f) in the presence of ETT chips. Results are presented as means � standard deviations.
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bactericidal effect of tobramycin or polymyxin E monotherapy
required greater than 2 times the MIC at 24 h for the prebiofilm
condition (prevention). However, antibiotics demonstrated dif-
ferent levels of activity against the two different strains. For PAO1,
tobramycin monotherapy and the combination approach were
equally active for killing. For 25668, the combination therapy was
more active than monotherapy for killing at 24 h (Fig. 2); this
finding may be related to the biofilm-forming abilities of each
bacterium.

Our study also demonstrated that two of the antibiotics tested
either in monotherapy or in combination showed inactivity
against or indifference to both Pseudomonas strains once biofilm
was formed on ETTs (Fig. 3). This is in contrast to the conclu-
sions drawn by Herrmann et al. using a 96-peg Calgary biofilm

device in vitro showing that combination therapy with colistin-
tobramycin was superior to monotherapy against Pseudomonas
biofilm (41).

Many in vitro studies have used commercially available PVC
coupons, which have different characteristics with respect to tex-
ture and flexibility (based on the plasticizer content compared to
medical grade PVC ETTs). We hypothesized that bacterial colo-
nies would form differently on commercially available PVC cou-
pons compared to medical grade PVC ETTs. To capture Pseu-
domonas growth in relation to different material surfaces more
accurately, we studied the same antibiotic therapy against Pseu-
domonas PAO1 using both PVC coupons and PVC ETTs. There
was a significant association between CFU/ml and substrate at 4
and 24 h (Table 1); thus, the results showed the importance of
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FIG 3 Time kill against biofilm-formed P. aeruginosa. Data shown represent the results for tobramycin against P. aeruginosa PAO1 (a) and 25668 (b), polymyxin
E against planktonic P. aeruginosa PAO1 (c) and 25668 (d), and the combination of tobramycin and polymyxin E against P. aeruginosa PAO1 (e) and 25668 (f).
Results are presented as means � standard deviations.
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utilizing the same device material to mimic VAP conditions to
evaluate antibiotic activity on biofilm.

In conclusion, neither single nor combination therapy with
tobramycin and/or polymyxin E demonstrated killing activity
once Pseudomonas biofilm was already formed on ETTs; however,
no antagonism was noted. Bactericidal effects against preformed
biofilm (simulating prevention) in the presence of ETTs suggest
that surveillance cultures could identify pathogens prior to bio-
film formation and could allow prophylactic or targeted ap-
proaches to therapy, especially when Pseudomonas is a potential
pathogen. In addition, this study demonstrated the importance of
material choice in an in vitro time-kill study. Further investigation
could incorporate wild-type strains as well as clinically feasible
treatment options for VAP in children.
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