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ABSTRACT

An effective type I interferon (IFN)-mediated immune response requires the rapid expression of antiviral proteins that are nec-
essary to inhibit viral replication and virus spread. We provide evidence that IFN-� regulates metabolic events important for the
induction of a rapid antiviral response: IFN-� decreases the phosphorylation of AMP-activated protein kinase (AMPK), coinci-
dent with an increase in intracellular ATP. Our studies reveal a biphasic IFN-�-inducible uptake of glucose by cells, mediated by
phosphatidylinositol 3-kinase (PI3K)/Akt, and IFN-�-inducible regulation of GLUT4 translocation to the cell surface. Addition-
ally, we provide evidence that IFN-�-regulated glycolytic metabolism is important for the acute induction of an antiviral re-
sponse during infection with coxsackievirus B3 (CVB3). Last, we demonstrate that the antidiabetic drug metformin enhances the
antiviral potency of IFN-� against CVB3 both in vitro and in vivo. Taken together, these findings highlight an important role for
IFN-� in modulating glucose metabolism during a virus infection and suggest that the use of metformin in combination with
IFN-� during acute virus infection may result in enhanced antiviral responses.

IMPORTANCE

Type I interferons (IFN) are critical effectors of an antiviral response. These studies describe for the first time a role for IFN-� in
regulating metabolism— glucose uptake and ATP production—to meet the energy requirements of a robust cellular antiviral
response. Our data suggest that IFN-� regulates glucose metabolism mediated by signaling effectors similarly to activation by
insulin. Interference with IFN-�-inducible glucose metabolism diminishes the antiviral response, whereas treatment with met-
formin, a drug that increases insulin sensitivity, enhances the antiviral potency of IFN-�.

Type I interferons (alpha and beta interferons [IFN-�/�]) are
pleiotropic cytokines that were originally identified for their

ability to interfere with viral replication (1) and are now recog-
nized for their potent immunomodulatory effects (2–4). Engage-
ment of their cognate heterodimeric receptor, comprised of
IFNAR1 and IFNAR2, initiates signaling that culminates in the
expression of interferon-stimulated gene (ISG)-associated pro-
teins, critical for antiviral activity. Given the rapid replication of
viruses, in the order of several hours (5–8), the IFN-�/� response
must be equally fast and robust, with rapid production of IFN-�
and the subsequent activation of signaling cascades downstream
of IFNAR1 and IFNAR2 within hours of infection (9–12). IFNAR
activation by IFN results in the induction of ISGs (13–15). This
rapid response initiated by IFN-�s and IFN-� is governed by a
series of signaling effectors that are intermediates in the JAK/
STAT, mitogen-activated protein kinase (MAPK), and phospha-
tidylinositol 3-kinase (PI3K)/mammalian target of rapamycin
(mTOR) pathways, which coordinately regulate the transcrip-
tional and translational expression of ISGs (3, 16).

Previously, we and others have shown signaling effectors in the
PI3K/mTOR pathway to be critical in governing an effective IFN-
�/�-mediated antiviral response. Cells lacking p85� and -�
(p85�/�) or Akt1 and -2 (Akt1/2) showed defective antiviral re-
sponses and reduced IFN-�/�-inducible ISG protein expression
(17–19). Pharmacological inhibition of PI3K, Akt, or mTOR in-
hibits IFN-�-mediated suppression of hepatitis C virus (HCV) in
a cell-based replicon system (20). Additionally, cells lacking re-
pressors of IFN-�/�-mediated translational regulation, namely,

TSC2 or 4E-BP1, show enhanced responsiveness to IFN-�/� and
greater inducible expression of ISG proteins (21, 22). In mice lack-
ing the translational suppressor 4E-BP1, we also showed enhanced
IFN-� antiviral potency in infection with coxsackievirus B3
(CVB3) (22).

Since protein synthesis consumes a large proportion of cellular
ATP, cellular processes are required to maintain energy homeo-
stasis during the induction of translation. AMP-activated protein
kinase (AMPK), an important sensor of cellular ATP flux, is in-
voked to balance energy-consuming pathways, mediated by regu-
lation of mTOR and glucose uptake (23). Indeed, various growth
factors (insulin, platelet-derived growth factor [PDGF], insulin-
like growth factor 1 [IGF-1], and vascular endothelial growth fac-
tor [VEGF]) and cytokines (interleukin-3 [IL-3], IL-5, IL-6, IL-7,
granulocyte-macrophage colony-stimulating factor [GM-CSF],
tumor necrosis factor-alpha [TNF-�], and CCL5) that signal
through PI3K/Akt/mTOR have been shown to regulate glucose
metabolism, specifically through the PI3K/Akt/mTOR pathway
(24–36). Cognizant that IFN-�/� engage PI3K/Akt/mTOR signal-
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ing to upregulate protein synthesis, we undertook studies to in-
vestigate any influence that IFN-� may exert on glucose metabo-
lism in the context of protection from viral infection. Our data
suggest IFN-� mobilization of metabolic events. Given the com-
mon signaling effectors between IFN-� and insulin, downstream
from their respective cell surface receptors, we examined the ef-
fects of metformin, an insulin sensitizer, during an acute viral
infection with CVB3. Our data reveal that IFN-� treatment en-
gages mechanisms that meet the energy requirements of cells,
thereby enabling a IFN-�-induced antiviral response, and that
metformin enhances the antiviral effects of IFN-�.

MATERIALS AND METHODS
Cells, virus, and reagents. Recombinant mouse IFN-� was provided by
Darrin Baker, Biogen Idec (Cambridge, MA, USA). Human insulin was
purchased from Eli Lilly. Immortalized mouse embryonic fibroblast
(MEF) cultures derived from transgenic mice are described elsewhere,
p85a�/� ��/� MEFs in references 18, 37, 38, and 39, Akt1�/�/2�/� in
references 19, 40, and 41, TSC2�/� MEFs in references 21, 42, and 43, and
AMPKa1�/�/a2�/� MEFs in references 44 and 45. Cells were cultured in
RPMI 1640 (Sigma) supplemented with 10% fetal calf serum (FCS) (Hy-
Clone) and antibiotics. Coxsackievirus B3-CG (CVB3) was available in
the laboratory as a stock of 1.3 � 109 PFU/ml. Monoclonal anti-phospho-
AMPK (Thr172) was purchased from Cell Signaling, and monoclonal
anti-alpha-tubulin was purchased from Sigma (Mississauga, ON, Can-
ada). Monoclonal anti-phosho-STAT1 (Tyr 701) and monoclonal anti-
ISG15 were purchased from Cell Signaling Technology (Danvers, Mas-
sachusetts). Monoclonal anti-GLUT4 (clone 3G10A3) was purchased
from Abcam (Cambridge, United Kingdom). Metformin was pur-
chased from Sigma (St. Louis, MO). 2-Deoxy-D-glucose (2-DG) was
purchased from Sigma (Mississauga, ON, Canada). 2-[1,2-3H(N)]-
deoxy-D-glucose was purchased from PerkinElmer (Waltham, MA,
USA).

Cell lysis and immunoblotting. Cells were cultured in medium con-
taining 2% FCS for 16 h and then left untreated or treated for the times
indicated below either with 10 mM 2-DG in the absence or presence of
1,000 U/ml IFN-� or with 1,000 U/ml IFN-� alone, after which the me-
dium was aspirated and the cells lysed with radioimmunoprecipitation
(RIPA) buffer (Cell Signaling) containing a protease and phosphatase
inhibitor cocktail (Cell Signaling). 5� Laemmli-reducing buffer was
added, and samples boiled for 10 min. An amount of 30 �g of protein
lysate was resolved on a 12% SDS–PAGE gel, transferred overnight to an
Immobilon polyvinylidene difluoride (PVDF) membrane, and blocked in
TBST containing 5% bovine serum albumin (BSA) (wt/vol) and 0.1%
Tween 20 (vol/vol). The blots were then probed with the antibodies indi-
cated below and visualized by chemiluminescence (Bio-Rad).

Glucose uptake assay. Subconfluent cell monolayers were cultured in
6-well plates in 2% FCS medium for 16 h at 37°C in 5% CO2 and then
treated with vehicle, IFN-�, or insulin at the doses and for the times
indicated below. The cells were washed twice with Krebs Ringer HEPES
(KRH) buffer, followed by the addition of 1 ml of KRH containing 0.5
�Ci/ml 2-[1,2-3H(N)]-deoxy-D-glucose (29.8 Ci/mmol). The cells were
then incubated at 37°C for 10 min, and 3H-2-deoxy-D-glucose (3H-2-DG)
uptake was terminated quickly by placing plates on ice and washing 3
times with ice-cold phosphate-buffered saline (PBS). The cells were then
lysed by the addition of 500 �l of Milli-Q water followed by freezing and
thawing. 3H-2-DG uptake was measured in a liquid scintillation counter
(PerkinElmer).

Intracellular ATP determination. Subconfluent monolayers of MEFs
were cultured in 10-mm plates in 2% FCS medium for 16 h prior to
treatment with murine IFN-� (mIFN-�) or 2-DG. The cells were treated
with 10 mM 2-DG or control medium for 30 min prior to the addition of
mIFN-� for 1 h. The medium was aspirated, and the cells immediately
lysed by the addition of 2.5% trichloroacetic acid (TCA), 4 mM EDTA.

The cell lysates were then diluted 10 times with 100 mM Tris, 2 mM
EDTA, pH 7.75, and assayed for intracellular ATP using an ATP biolumi-
nescent assay kit (Sigma).

GLUT4 measurement. Subconfluent MEF monolayers were cultured
in 2% medium for 16 h. The cells were then trypsinized and resuspended
in 2% FCS medium at a density of 106 cells/ml. Cells were kept in fluores-
cence-activated cell sorting (FACS) tubes for 2 h at 37°C in 5% CO2.
IFN-� or insulin was then added to the cells for the times indicated below,
after which the cells were fixed with 2% formalin in 2% serum containing
FACS buffer and subsequently washed with FACS buffer before being
stained with anti-GLUT4 antibody. Alexa Fluor 488-conjugated goat anti-
rabbit antibody was used as a secondary antibody. Cell fluorescence was
measured using a BD FACSCalibur flow cytometer and analyzed using BD
CellStar software.

CVB3 infection of MEFs. MEFs were cultured in 2% FCS medium for
16 h. IFN-� was added 6 h prior to infection with CVB3 at a multiplicity of
infection (MOI) of 1 (1 PFU/cell). After 8 h of incubation with virus, the
cells were washed twice with PBS and viral titers measured by plaque assay
using HeLa cells, as described previously (22, 46). For those experiments
where the influence of 2-DG on IFN-�-inducible antiviral effects was
evaluated, 2-DG was added either 30 min prior to IFN-� treatment or at
specified times following IFN-� treatment and remained in the medium
for the duration of virus infection. In experiments evaluating the effect of
metformin on IFN-�, metformin (10 mM) was added 30 min prior to
treatment with the doses of IFN-� indicated below and remained in the
medium for the duration of virus infection. Quantitation of differences
between untreated and IFN-�-treated cells in each group was calculated
by dividing the viral titers determined in untreated cells by the titers de-
termined in treated cells and expressing this value as a fold reduction.

In vivo studies. Female C57Bl/6J mice aged 8 to 12 weeks were ordered
from Taconic or The Jackson Laboratory and housed in pathogen-free
conditions. All procedures were approved by the Toronto General Re-
search Institute Animal Care Committee. One day prior to infection,
treated mice were administered metformin ad libitum at a dose of 200
mg/kg of body weight/day, based on previous measurements of daily wa-
ter consumption. Water consumption was found to be equivalent in met-
formin-treated and control animals. Normal drinking water was given to
the mice at the time of infection. Prior to CVB3 infection, mice were
administered an intraperitoneal injection of 105 U of mIFN-�. Four hours
later, mice were infected by intraperitoneal injection with a sublethal dose
of CVB3 (103 PFU). At 3 days postinfection, mice were euthanized and
tissues aseptically harvested and frozen in liquid nitrogen. After 3 freeze-
thaw cycles, viral titers were determined by plaque assay in HeLa cells as
described previously (22, 46).

Statistical analysis. Statistical significance was measured by analysis
of variance. P values of �0.05 were considered statistically significant.
Data are expressed as means � standard errors.

RESULTS
Effects of IFN-� on AMPK phosphorylation and intracellular
ATP. Since AMP-activated protein kinase (AMPK) is a central
sensor and regulator of cellular ATP stores, we undertook at the
outset studies to determine any effects that IFN-� would exert on
AMPK activation, by examining phosphorylation of AMPK on
Thr172. As anticipated, IFN-� treatment of wild-type (WT) MEFs
resulted in the rapid tyrosine phosphorylation of STAT1 (Fig. 1A).
A simultaneous decrease in AMPK activation, i.e., Thr172 phos-
phorylation, was observed (Fig. 1A). Next, we examined the ef-
fects of IFN-� treatment on ATP production, and the data in Fig.
1B show a dose-dependent increase in IFN-�-inducible ATP pro-
duction. This IFN-�-inducible ATP is inhibited in the presence of
the nonmetabolized analog of glucose, 2-DG (Fig. 1B).

IFN-� induces glucose uptake mediated by regulation of the
PI3K/Akt signaling cascade. As glucose is a major source of cel-
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lular ATP, we next investigated the influence of IFN-� treatment
on glucose uptake. In time course experiments, we identified a
biphasic enhancement of glucose uptake by IFN-�-treated cells
(Fig. 2A). Using 3H-2-DG, we observed a rapid spike in 3H-2-DG
uptake within minutes of IFN treatment, followed by a sustained
decrease in uptake over a period of hours. Subsequent studies
revealed that the influence of IFN-� treatment on glucose uptake
is dose dependent, albeit less potent than the effects observed for
100 nM insulin treatment (Fig. 2B).

To identify potential IFN-regulated signaling effectors that
might contribute to the regulation of glucose uptake, we em-
ployed a panel of MEFs with targeted disruption of elements of the
PI3K/Akt/mTOR signaling cascade (Fig. 2C). Earlier published
studies have shown that MEFs with targeted disruption of the p85
subunits of PI3K or Akt1/2 fail to respond to the antiviral effects of
IFN when challenged with virus (18, 19). In contrast, targeted
disruption of TSC1/2 results in enhanced responsiveness to the
antiviral effects of IFN (21). In contrast to wild-type MEFs that
respond to IFN-� treatment with a modest but rapid uptake of
2-DG, cells that lacked the p85�/� subunits of PI3K or Akt1/2 had
decreased 3H-2-DG uptake (Fig. 2C) in response to IFN-� treat-
ment. Cells lacking either TSC2 or AMPK�1/2 remained responsive
to treatment with IFN-� in terms of 3H-2-DG uptake (Fig. 2C).

Glucose uptake is mediated by cell surface glucose transporters
(47). Among these, GLUT4 is responsive to insulin treatment.
Notably, insulin also regulates glucose uptake mediated by PI3K
signaling (31, 48). Accordingly, we examined the effects of IFN-�
treatment on cell surface expression of GLUT4 and observed a
modest yet reproducible increase in expression by 1 h (Fig. 2D).

Inhibition of glycolysis affects the antiviral activity of IFN-�.
To investigate the importance of glycolytic metabolism during an
IFN-induced antiviral response, we next examined the effects of
2-DG treatment on an IFN-induced anti-CVB3 response. When
cells were treated with IFN-� in the presence or absence of 2-DG,
we observed a dose-dependent blunting of the IFN-�-inducible
antiviral response in the presence of 2-DG (Fig. 3A). 2-DG treat-
ment alone also inhibits viral replication. To further demonstrate
the importance of glycolytic metabolism during the earliest stages
of an IFN-induced antiviral response, we added 2-DG at various
times relative to IFN-� treatment and examined the antiviral re-
sponse (Fig. 3B and C). The results indicate that inhibition of
glycolysis by 2-DG inhibits an IFN response in a time-dependent
manner, specifically, during the earliest induction phase of the
IFN response (Fig. 3C). Additionally, the expression of the IFN-
�-inducible antiviral protein ISG15 was also sensitive to glycolytic
inhibition by 2-DG (Fig. 3D). Given that the IFN-� dose em-

FIG 1 IFN-� reduces AMPK phosphorylation and increases intracellular ATP. (A) MEFs were treated with 1,000 U/ml IFN-� for the indicated times. Cells were
harvested, and protein lysates were resolved by SDS-PAGE and immunoblotted with anti-phospho-AMPK� (Thr172) or anti-phospho-STAT1 (Tyr701)
antibodies. Membranes were stripped and reprobed with anti-AMPK� or anti-�-tubulin antibody for loading. Phosphorylation is shown relative to that of
untreated cells and normalized for loading. Data are representative of two independent experiments (�standard errors of the means [�SEM]). (B) MEFs were
pretreated with medium or 10 mM 2-DG for 30 min prior to treatment with the indicated doses of IFN-� for 1 h. Cells were lysed, and intracellular ATP
quantified by a bioluminescence assay. Quantification is shown relative to the results for control-treated samples. Data are representative of 4 independent
experiments (�SEM). *, P � 0.05.
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ployed, 103 U/ml, induces a robust antiviral response in vitro, the
inhibitory effect of blocking glycolysis underscores the relevance
of glycolysis to an IFN-induced antiviral response.

Treatment with metformin enhances the antiviral activity of
IFN-�. Metformin, an antidiabetic drug, increases insulin sensi-
tivity, activates AMPK, and enhances GLUT4 translocation to the
cell surface (49, 50). Accordingly, we next examined the effects of
combination treatment with IFN-� and metformin against CVB3
infection of MEFs. As shown by the results in Fig. 4A, treatment of
MEFs with a combination of metformin and IFN-� led to an en-
hanced antiviral response, greater than that of either treatment
alone.

In a final series of experiments, given our preceding data that
suggest a role for IFN-� in regulating metabolic events that would
meet the energy needs of a cell to invoke an antiviral response, we
examined the effect of combination treatment with IFN-� and
metformin on CVB3 infection in mice. Our earlier published
studies identified that IFN-� treatment is protective against infec-
tion with the cardiotropic CVB3 (22, 46). When infected with
CVB3, mice exhibit signs of infection, i.e., reduced activity and
ruffled fur. Heart viral titers indicate acute virus infection, with
the peak viral burden at 3 days postinfection and then progressive
clearance of the virus from the heart (22). Mice were allowed ad
libitum access to metformin in their water supply. We observed no

difference in water consumption whether metformin was in-
cluded in the water or not. Mice were either left untreated or
treated with IFN-� and then challenged with CVB3. Three days
postinfection, all mice were euthanized, blood and various tissues
aseptically harvested, and viral titers measured. The results in Fig.
4B demonstrate that combination treatment with IFN-� and met-
formin significantly reduced heart, liver, spleen, and serum viral
titers compared with the results for treatment with IFN-� or met-
formin alone. A similar trend was observed, although less pro-
nounced, in the pancreata of infected mice.

DISCUSSION

Type I IFNs exert their immunomodulatory influence in a wide
variety of cell types and, in the context of virus infections, do so
rapidly to inhibit virus replication and limit virus spread. This
antiviral activity is mediated by transcriptional and posttranscrip-
tional signaling proteins, including STATs, MAPKs, and PI3K
(16). In recent years, the role of type I IFNs in regulating PI3K/
mTOR-mediated posttranscriptional effects has become better
defined, with a significant area of focus on translational regulation
(18–21, 37, 51–53). It has become increasingly apparent that
mTOR is a central sensor of metabolic stresses and, in addition to
translation, regulates processes such as autophagy and lipid and
carbohydrate metabolism, thereby maintaining cellular energy

FIG 2 IFN-� influences glucose uptake. (A) MEFs were treated with medium or 1,000 U/ml IFN-� for the indicated times. At time zero, cells were washed and
then incubated with 0.5 �Ci 3H-2-deoxy-D-glucose for 10 min. Reactions were quenched, and radioactivity measured by liquid scintillation counting. Data are
shown relative to the results for control-treated samples at each time point and were combined from 3 independent experiments (�SEM). (B) MEFs were treated
with the indicated doses of IFN-� or 100 nM insulin for 1 h. Uptake was measured as described above. Data are shown relative to the results for control-treated
samples and were combined from 3 independent experiments (�SEM). *, P � 0.05. (C) MEFs were treated with medium or 1,000 U/ml IFN-� for 1 h. Uptake
was measured as described above. Data were combined from 3 independent experiments (�SEM). **, P � 0.05. (D) Serum-starved MEFs were treated with
medium, 1,000 U/ml IFN-�, or 100 nM insulin for 1 h. Cells were fixed with 2% paraformaldehyde, stained for surface GLUT4 expression, analyzed by FACS,
and quantified for mean fluorescence intensity (MFI). Data are shown relative to the results for medium-treated control and were collected from 4 independent
experiments (�SEM).*, P � 0.05.
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FIG 3 Glucose metabolism is critical for induction of a IFN-�-mediated antiviral response. (A) MEFs were pretreated with medium or indicated doses of 2-DG
30 min prior to addition of medium or 1,000 U/ml IFN-� for 6 h. Cells were then infected with CVB3 at an MOI of 1. Cells were washed and lysed by freeze-thaw
after 8 h, and viral titers determined by plaque assay. Data are shown as PFU/ml, and antiviral effect indicated as fold reduction relative to the viral titer for
medium-treated cells. Data are from 3 independent experiments (�SEM). *, P � 0.05; **, P � 0.01; ***, P � 0.001. (B, C) MEFs were treated with medium or
1,000 U/ml IFN-� 6 h prior to infection with CVB3 (MOI of 1). At the indicated times following IFN-� treatment, 2-DG was added. Following an 8-h infection,
cells were washed and lysed. Time points (hr) for 2-DG treatment prior to infection are indicated. Data are representative of 2 independent experiments (�SEM).
IFN-�-inducible antiviral effect is quantified as fold reduction relative to the viral titer for control-treated cells. *, P � 0.05; **, P � 0.01. (D) MEFs were
pretreated with medium or 10 mM 2-DG 30 min prior to the addition of medium or 1,000 U/ml IFN-� for 6 h. Cells were harvested, and protein lysates were
resolved by SDS-PAGE and immunoblotted with anti-ISG15 and anti-�-tubulin antibodies. Expression is shown relative to the results for untreated cells and
normalized for loading. Data are representative of technical triplicates and 3 independent experiments (�SEM).
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FIG 4 Metformin enhances antiviral effect of IFN-� during infection with CVB3. (A) MEFs were left untreated or treated with 10 mM metformin 30 min prior to
treatment with indicated doses of IFN-�. Following 6 h of treatment, cells were infected with CVB3 for 8 h. Data were combined from 3 independent experiments and
are shown as mean PFU/ml (�SEM). (B) Mice were administered metformin in drinking water ad libitum prior to treatment with IFN-� for 4 h prior to infection with
CVB3. At 3 days following infection, mice were sacrificed and tissues collected for determination of viral titers. Data were combined from 5 independent experiments and
are shown as mean log PFU/g (�SEM). Data from 15 mice were collected for each treatment group. P values are given relative to the results for control-treated samples.
*, P � 0.05; ***, P � 0.001.
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homeostasis (54). Here, we report on the influence of IFN-� on
glucose metabolism in the context of virus infection.

Given the high energy demands of IFN-inducible protein syn-
thesis, we anticipated an effect on AMPK activation and cellular
ATP synthesis accompanying treatment with IFN-�. Indeed,
IFN-� treatment reduced AMPK phosphorylation at Thr172,
with a concurrent increase in STAT1 phosphorylation at Tyr701,
which is indicative of a IFN-�-inducible cell response. Since
AMPK is a sensitive indicator of the cytosolic AMP/ATP ratio
(55), activated by phosphorylation in the presence of low ATP
concentrations, we infer that the decrease in Thr172 phosphory-
lation we identified upon IFN-� treatment is associated with an
increase in ATP production. Indeed, IFN-� treatment of MEFs
resulted in an increase in ATP production. It is unlikely that
IFN-� directly regulates AMPK phosphorylation; rather, it is
likely that IFN-� induces an effect which indirectly influences
AMPK activation through changes in the AMP/ATP ratio. IFN-�-
mediated changes in ATP levels were abrogated in the presence of
the nonmetabolizable glucose analog 2-DG. This inhibition of gly-
colytic-derived ATP provides evidence that IFN-� influences glu-
cose metabolism. In support of this, we demonstrate that IFN-�
promotes a dose-dependent uptake of 3H-2-DG by cells.

For IFNs to be most effective as antivirals, it is crucial that cells
respond rapidly in terms of producing antiviral proteins that will
inhibit viral replication. Accumulating data implicate IFN-�/� in
the regulation of translation of host protein synthesis and the cor-
responding expression of antiviral proteins (18, 19, 21). Our data
suggest that there is a rapid and robust uptake of glucose by cells,
within minutes of IFN-� treatment, consistent with meeting the
energy demands of protein synthesis. Moreover, the nature of the
biphasic response, whereby glucose uptake is initially increased,
followed by a suppression, is in agreement with the paradigm of
type I IFN-mediated antiproliferative effects (56–71). Specifically,
in uninfected cells, the early translation of antiviral proteins is
followed by a progressive shutdown of protein synthesis that
would disable cell growth and, upon infection, inhibit viral pro-
tein synthesis. Indeed, this biphasic response is consistent with a
scenario where virus replicates rapidly and infection spreads. An
infected cell produces and secretes IFN-� in response to viral rep-

lication prior to viral progeny egress, thereby activating the anti-
viral response in neighboring uninfected cells (9–11). Transiently,
uninfected cells rapidly increase their metabolism to support the
synthesis of antiviral proteins, such as 2=-5=-oligoadenylate syn-
thetase (2=-5=-OAS), protein kinase R (PKR), and RNase L, fol-
lowed by the subsequent downregulation of metabolism. Upon
viral spread, IFN-�-primed cells respond to viral RNA by secret-
ing additional IFN-�, thereby inhibiting further viral replication
and spread.

In contrast, when astrocytes are exposed to low concentrations
of IFN-�2a, IFN-�2b, or IFN-� (�5 U/ml), no significant
changes in glucose consumption are observed over 2 h, and yet
chronic exposure to low-dose IFN reduces glucose uptake (71).
This model of low-dose, chronic IFN exposure was intended to
reflect the systemically low plasma concentrations of type I IFN in
HCV-infected individuals over the duration of a chronic infec-
tion. In contrast, our studies reflect a scenario of localized virus
infection where cells in close proximity experience high concen-
trations of IFN-�/� produced by tissue-resident cells or plasma-
cytoid dendritic cells during an acute immune response to virus
infection. In other studies, Navarro et al. examined the effects of
type I IFN treatment on glucose metabolism in primary mesen-
teric and splenic lymphocytes after 48 h and likewise showed a
suppression of glucose uptake (72). Notably, in the earliest IFN
experiments of Isaacs and Lindenmann, conducted in chicken
embryo cells, they identified a modest IFN-inducible effect on
lactate production after 4 h, an indicator of glycolysis (73).

A number of studies have confirmed the roles of PI3K and Akt
signaling in regulating glucose uptake induced by growth factors
or cytokines in adipocytes, skeletal muscle cells, and lymphocytes
(24–35). Our strategy was to examine the contribution of different
effector intermediates in the PI3K/Akt/mTOR signaling cascade
to the IFN-�-inducible regulation of glucose uptake that we ob-
served, specifically, by using MEFs with targeted disruption of
certain genes (Fig. 5). A striking effect was observed in cells null for
either p85�/� or Akt1/2. The lack of either of these two signaling
effectors was sufficient to completely ablate IFN-�-inducible glu-
cose uptake. Consistent with the negative regulatory role that
TSC2 exerts on mTOR activity, IFN-�-inducible glucose uptake

FIG 5 Schematic of IFN-�-mediated regulation of PI3K/Akt/mTOR signaling and pharmacological agents active in this pathway.
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in TSC2�/� cells was unaffected. MEFs lacking mLST8, a nones-
sential component of mTORC1, exhibited a partial reduction in
IFN-�-inducible glucose uptake, suggestive of a role for mTORC1
in regulating glucose uptake. Surprisingly, in cells lacking
AMPK�1/2, an upstream negative regulator of mTOR through
TSC2 (74), we observed only a partial reduction in responsiveness
to IFN-�-inducible glucose uptake. This may be attributed to the
other role that AMPK has in influencing GLUT4 translocation to
the cell surface (49, 75). Consistent with our findings of IFN-�
regulation of glucose uptake, the surface expression of GLUT4 was
also increased upon treatment with IFN-�. PI3K and Akt activa-
tion are associated with GLUT4 translocation to the cell surface
(31, 48, 76), providing further support for a potential mechanism
whereby IFN activation of these effectors enhances the expression
of glucose transporters required for glucose uptake.

Previous publications have identified that treatment of cells
with 2-DG reduces the replication of a variety of viruses, including
CVB3 (77–83). Limiting the energy supplies in an infected cell
would affect protein synthesis and the assembly of viral progeny.
In contrast, a rapid burst of energy will enable an early robust IFN
response, as we show, and yet the biphasic nature of the effect we
observe supports the subsequent inhibition of cell growth and
viral replication.

Clinical studies have drawn attention to a correlation between
insulin and IFN sensitivities in individuals who are infected with
hepatitis C virus (84). The expression levels of TNF-� are often
increased in HCV-infected livers. TNF-� upregulates the activity
of the phosphatase, PTP-1B, which is responsible for the down-
regulation of insulin and type I IFN signaling (85). In the same
study, metformin, an inhibitor of PTP-1B, was used effectively to
restore insulin and IFN sensitivities in mouse livers expressing
high levels of TNF-�. Indeed, metformin is used to treat insulin
resistance in patients with type 2 diabetes (86). Moreover, earlier
studies demonstrated the negative regulatory effects of PTP-1B on
JAK/STAT signaling (87–90). We therefore reasoned that met-
formin may be administered along with IFN-� to enhance antivi-
ral potency during a virus infection. Coxsackieviruses encompass
a group of cardiotropic viruses that can cause acute myocarditis
and lead to dilated cardiomyopathy (91). While it is not a standard
treatment for viral myocarditis, the administration of IFN-�/�
has been shown to improve cardiac function (92, 93). Interest-
ingly, patient TNF-� expression levels are measured in the serum
and heart during acute virus myocarditis, reflective of an inflam-
matory response to infection (94–97). Given our data, it is intrigu-
ing to speculate that this TNF may influence endogenous type I
IFN signaling in the heart, exacerbating infection. In our study, we
provide evidence that metformin enhances the antiviral effects of
low-dose IFN-� treatment of MEFs challenged with CVB3. Simi-
larly, treating mice with IFN-� and metformin prior to infection
with CVB3 enhanced the antiviral effects of IFN-�, most notably
reducing viral titers in the hearts, livers, spleens, and sera of in-
fected mice. We speculate that the antiviral effects of metformin
alone may be associated with the promotion of endogenous type I
IFN activity.

Viewed together, our data provide new evidence that IFN-�
modulates glucose metabolism through a PI3K/Akt-dependent
mechanism and that this regulation of metabolism appears im-
portant for the induction of an effective antiviral response. Addi-
tionally, we provide evidence for the application of metformin to
enhance the antiviral activity of IFN-�.
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