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In 2003, a review of the use of statistics in Infection and Immunity (IAI) found that more than half of articles had errors of statis-
tical analysis or reporting of statistical results. This updated review of recent articles identifies and discusses the most common
statistical methods reported in IAI and provides examples of both good reporting and common mistakes. Furthermore, it ex-
pands on the criteria for statistical analysis and reporting presented in the IAI “Instructions to Authors,” with the goal of help-
ing both readers and authors better understand and apply the criteria.

Adecade ago, a review of 141 articles in Infection and Immunity
(IAI) found errors of statistical analysis in 20% of articles,

insufficient reporting of statistical methods in 22%, and both
types of errors in 12% of articles (1). In 2011, IAI updated its
instructions to authors with a more detailed set of criteria for
statistics (2). To evaluate current statistical practice and reporting
in IAI, 110 IAI research articles published in print or online in
April and May 2013 were queried for the types of statistical meth-
ods used, and 10 articles were reviewed in-depth for errors.

Most articles in IAI report at least basic descriptive statistics,
and two-thirds include some kind of hypothesis testing. Of the 110
articles searched, 83 articles included at least one of the words
“mean,” “average,” “frequency,” or “percent,” and 73 articles in-
cluded at least one of the words “standard deviation,” “standard
error,” “standard error of the mean,” “variance,” or “range.” Sev-
enty-four mentioned at least one of the following standard statis-
tical tests: t test, analysis of variance (ANOVA), Wilcoxon/Mann-
Whitney test, Kaplan-Meier test, log rank test, chi-square test,
Fisher’s exact test, or regression analysis.

Specifically, 51 articles used t tests to compare means between
two groups. Forty-one articles used ANOVA to compare means
across multiple groups. When more than two groups are being
compared, ANOVA is better than using a series of t tests because it
can adjust for the increased likelihood of finding significant dif-
ferences when no true differences exist. The “Instructions to Au-
thors” specify that multigroup comparisons should report both an
overall P value (indicating whether there are any differences
among the groups being compared) and P values for specific com-
parisons of interest between group means (post hoc tests). An ex-
ample of this type of analysis is found in the work of Manivannan
et al. (3), which reports both the significance of the overall
ANOVA model and pairwise comparisons between all pairs of
group means using the Newman-Keuls multiple-comparison test
as shown in Fig. 1. Figure 2 is taken from the work of Navabi et al.
(4) and shows an example where Dunnett’s post hoc test was used
to compare each group to the control group. Comparisons be-
tween all pairs of means (using the Tukey-Kramer or other tests)
or between each mean and the mean from a control group (using
Dunnett’s test) are the most common applications of multiple-
comparison procedures, but other approaches, such as the Dunn
(for nonparametric analyses), Bonferroni, Holm-Šidák (less con-
servative than the Bonferroni test), or Scheffé test may be appro-
priate for different scenarios. The Bonferroni adjustment is par-
ticularly simple and can be applied in any multiple-comparison
situation, such as when two groups are compared across multiple

outcomes. It involves multiplying each P value by the total num-
ber of comparisons made. However, when the total number of
comparisons is large, the Bonferroni adjustment is overly conser-
vative.

Twenty articles used nonparametric tests, such as the Wil-
coxon signed-rank test or the Mann-Whitney U test. These tests
are useful for comparing groups when data do not follow a normal
distribution, because they are less sensitive to outliers and skew-
ness than standard t tests and ANOVA. Note that the Wilcoxon
rank sum and Mann-Whitney tests yield the same results and are
analogous to t tests in that they are appropriate for comparing two
unpaired groups. The standard nonparametric test for comparing
more than two groups is the Kruskal-Wallis test.

The “Instructions to Authors” specify that “Data should be
appropriately analyzed as parametric (normally distributed) or
nonparametric data” but provide scant guidance on how to decide
which method is appropriate. Common approaches are graphical
examinations using histograms, stem-and-leaf plots, or normal
probability plots or hypothesis tests, such as the Kolmogorov-
Smirnov and Shapiro-Wilk tests. Histograms and stem-and-leaf
plots should indicate the classic bell-shaped curve, normal prob-
ability plots should show all data points close to a 45° line, and
hypothesis tests should indicate no significant departures from
normality (P � 0.05). However, these approaches may be unreli-
able with a small number of samples; in particular, hypothesis tests
are likely to provide a false sense of security with small numbers of
samples, because they are unlikely to reject the hypothesis that the
data are selected from a normally distributed population. In prac-
tice, it is important to consider prior information about the
data along with graphs and hypothesis tests. For example, titers,
counts, ratios, and proportions generally do not follow a normal
distribution, while physical measurements, such as weight and
length, are more likely to be at least approximately normal.

When data do not follow a normal distribution, the first ap-
proach is usually to transform the data and check whether the
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transformed data are approximately normal. Log transformation
is the most commonly applied transformation in IAI articles, and
it tends to work well for titers, cell counts, and other quantities
that follow a skewed distribution with a long upper tail. In general,
if it is natural to think of differences between groups as percent
differences or fold changes, log transformation may be appropri-
ate. Figure 3 illustrates data in which groups with higher mean
values also have greater within-group variability, as indicated by a
wider spread of data points. This data set, taken from the report of
Dondji et al. (5), is a promising candidate for log transformation.

A related strategy is to examine a bar chart with standard deviation
bars. If the standard deviation bars are wider in groups that have
higher means, a log transformation may be appropriate. Paramet-
ric tests may then be used to compare means of the log-trans-
formed data. If desired, means can be exponentiated to display on
the original scale; these reverse-transformed means are known as
geometric means. If transformation does not result in standard
deviations that are similar across groups, common approaches
include t tests for unequal variances when two groups are com-
pared and Welch’s ANOVA for comparing three or more groups.
Finally, nonparametric tests are often a good alternative if no suit-
able transformation can be found for nonnormal data. Keep in
mind that nonparametric tests do not compare the means of the
data. For this reason, data that are analyzed using nonparametric
tests should be reported as medians and ranges, or medians and
selected percentiles (typically 25th and 75th percentiles), instead
of means and standard deviations.

Twelve articles used correlation or regression models to quan-
tify associations among continuous variables. The most common
measure of association is probably the Pearson (product moment)
correlation, but the nonparametric Spearman rank correlation is
an alternative when data are not normally distributed or the asso-
ciation is nonlinear. Eight articles compared proportions between
groups using either the chi-square test or Fisher’s exact test. Al-
though the two methods give similar results for large samples,
Fisher’s exact test is better than the chi-square test when analyzing
the small numbers of samples typical of studies published in In-
fection and Immunity. Tivendale et al. (6) provide an example of a
comparison of proportions using Fisher’s exact test, and their data
are reproduced in Table 1. Of note, this table reports 22 distinct P
values. Although this analysis compares proportions instead of
means (as in ANOVA), the Infection and Immunity instruction to
report both an overall P value and individual follow-up tests still
applies. The Bonferroni or Holm-Šidák test could be used to ad-
just for multiple comparisons in this case.

Eight articles used the Kaplan-Meier method to describe sur-
vival time and/or the log rank test to compare survival times be-
tween groups; a recent example is found in the paper of Goodyear

FIG 1 Liver candidate markers in different study groups in a mouse model,
illustrating results of ANOVA followed by the Newman-Keuls pairwise mul-
tiple-comparison test (3). Shown are comparisons of spot volumes of mouse
liver cytokeratin 18, interleukin 2 (IL-2), major urinary protein (MUP), Schis-
tosoma mansoni phosphoenolpyruvate carboxykinase (PEPCK), peroxire-
doxin 6, and liver hydroxyproline for uninfected (U), 6-week-infected (6wk),
8-week-infected (8wk), 12-week-infected (12wk), and 20-week-infected mice
with moderate splenomegaly syndrome (MSS) and hypersplenomegaly syn-
drome (HSS). Data shown are means � standard errors of the means (SEM).
P � 0.01 (overall ANOVA). Individual groups were compared using the New-
man-Keuls multiple-comparison test. ***, P � 0.001; **, P � 0.01; *, P � 0.05
(compared to all other study groups and as indicated). (This figure and its
legend are reprinted or modified from reference 3 with permission.)

FIG 2 Quantification of Muc1 during early and chronic Helicobacter pylori
infection, illustrating results of ANOVA followed by Dunnett’s multiple-com-
parison test with a control (4). The integrated densities of fluorescence as a
measure of Muc1 in the corpus during early and chronic infection are com-
pared. Data were compared to control values (n � 6) by ANOVA with Dun-
nett’s post hoc test (**, P � 0.01; NS, not significant). (This figure and its legend
are reprinted or modified from reference 4 with permission.)

FIG 3 Intestinal worm burden of infected hamsters (5). At each time point
postinfection, six infected hamsters were sacrificed and adult hookworms re-
moved from the intestines. The horizontal bars represent the mean numbers of
adult worms for each group. Days with higher mean worm burdens tend to
have more-variable data, indicating that ANOVA on the raw data may be
problematic and that ANOVA on log-transformed data may be preferable.
(This figure and its legend are reprinted or modified from reference 5 with
permission.)
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et al. (Fig. 4) (7). These methods are more appropriate for com-
paring times to death than simple comparisons of means or me-
dian survival times because they can account for animals that sur-
vived to the end of the study or that were withdrawn from the
study prior to the end for reasons other than death. Kaplan-Meier
curves also provide a more complete summary of mortality data
than survival percentages at the end of the study, because they
consider the time of death, not just whether death occurred. Fur-
thermore, they can be used to describe time to any event (such as
infection clearance), not just mortality.

A brief review of 10 IAI articles from 2013 found that four
showed significant errors in reporting or analysis (although some
showed more than one error). Two articles included figures with
error bars that were not labeled, so it was unclear whether the bars
represented standard deviation, standard error, or some other
measure of variability or precision. The two measures should not
be confused: standard deviation describes the variability of the
data in the sample, and standard error describes the precision of
the estimate of the mean. Standard error bars are popular in part
because they are always narrower than standard deviation bars,
but this is no excuse to use them when the goal is to describe the
spread of the data. When the goal is to compare groups, a useful
alternative to the standard error is the 95% confidence interval for
the mean, described below, which has a direct connection to sta-
tistical significance. One article appeared to report 95% confi-
dence intervals, but since the intervals were not described in Ma-
terials and Methods or the table caption, this was unclear.

Two articles used a series of t tests to compare several groups
when ANOVA would be preferable. For example, one experiment
involved three doses and three time periods, for a total of nine
conditions being compared, so some adjustment for multiple
comparisons should have been performed.

Two articles used t tests but were unclear about whether the t
test for paired or unpaired data was used. Paired t tests should be
used when comparing results from the same experimental units
(e.g., following the same animals over time), and unpaired t tests
should be used when comparing measurements from separate
groups of experimental units (e.g., comparing two strains of ani-

mal). In one of these articles, the study design suggested that
groups were unpaired, the figure captions indicated that paired t
tests were used, and Materials and Methods stated that paired-
sample analyses were performed using unpaired t tests.

This error highlights what is probably the most common major
pitfall in statistical analysis: failure to account for correlated data.
Most common statistical methods assume that observations are
independent. As noted in the “Instructions to Authors,” when
multiple samples are taken from one experimental unit (usually
an animal), this assumption is violated. It is reasonable to expect
that an animal with a higher infection load on day 1 will also have
a higher infection load on day 2 or that two slices from the same
brain will be more similar than two slices taken from different
brains, violating the independence assumption. When multiple
measures are taken over time for comparison, tests for paired or
repeated data are appropriate. Examples include paired t tests or
repeated-measures ANOVA for comparing means, the sign test
or Wilcoxon signed-rank test for nonparametric comparisons,
and McNemar’s test for comparing proportions. When multiple
measures are taken from the same experimental unit as technical
replicates, they should be combined in some way (usually as aver-
ages or percentages), and statistical analysis can be performed on
the summaries.

The editors of IAI have rightly emphasized the importance of
good statistical practice in the “Instructions to Authors.” Statisti-
cal inference is important because it quantifies the role of chance
in research results. A statistically significant finding is based on
sufficient evidence that it is likely to be reliable and repeatable,
whereas a nonsignificant finding could easily be a random occur-
rence. The role of chance in research results is often described by
the P value. P values are common to all hypothesis tests, are gen-
erated by all major statistical analysis programs, and are reported
in the majority of articles in IAI, so it is important to recognize
some of the common fallacies in interpreting P values.

The P value represents the probability of observing a result at
least as extreme as that observed in the experiment, if the null
hypothesis is true. The most common null hypothesis is that two
or more groups are equivalent, so the P value can often be inter-
preted as the probability of finding a difference between groups at
least as large as the difference observed from chance alone if the

TABLE 1 Mortality rates among chick embryos inoculated with APEC
and NMEC isolates compared using Fisher’s exact testd

Strain
Mortality
ratec

P value vsa:

DH5� APEC O2

Uninoculated 0/6 1.000 �0.001
PBS 3/10 0.300 0.001
E. coli DH5� 2/20 �0.001
APEC 79 7/20 0.127 �0.001
APEC 353 12/20 0.002 0.064
APEC 358 16/20 �0.001 0.661
APEC 380 16/20 �0.001 0.661
NMEC 15 14/20 �0.001 0.235
NMEC 18 11/20 0.005 0.031
NMEC 38 19/20 �0.001 1.000
NMEC 58 14/20 �0.001 0.235
APEC O2b 32/40 �0.001
a P value determined by Fisher’s exact test for comparing proportions.
b Positive control for the chicken embryo lethality assay.
c Data represent the number of embryos that died/total number of embryos tested.
d This table is reprinted from reference 6 with permission. APEC, avian-pathogenic E.
coli; NMEC, neonatal meningitis E. coli.

FIG 4 Example of Kaplan-Meier curves for describing survival data (7).
Gamma interferon (IFN-�) treatment protects MyD88�/� mice against lethal
Burkholderia mallei infection. MyD88�/� mice were treated i.p. with recom-
binant IFN-� (rIFN-�) or a diluent (phosphate-buffered saline [PBS] plus
0.1% bovine serum albumin [BSA]) (5 mice per group) as described in refer-
ence 7. Mice were challenged with 500 CFU B. mallei intranasally. Survival was
monitored, and mice were euthanized upon reaching a predetermined end-
point. Statistical differences were determined by using Kaplan-Meier curves
and log rank analysis. (This figure and its legend are reprinted or modified
from reference 7 with permission.)
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groups are truly equivalent. In classical hypothesis testing, the
researcher chooses to reject the null hypothesis and conclude that
the groups are not equivalent if the P value is sufficiently small.
Traditionally, the threshold for statistical significance is a P of
�0.05, although this value is arbitrary.

Note that most P values correspond to two-tailed or two-sided
hypothesis tests. They test whether the data deviate from a null
hypothesis in either direction. For example, in studies of gene
expression, a two-tailed test would yield a significant result if a
gene is either overexpressed or underexpressed. In contrast, for a
one-tailed or one-sided hypothesis test, the researcher would have
to decide in advance whether to test for over- or underexpression.
If the one-tailed test was designed to look for genes that are over-
expressed and a particular gene is underexpressed instead, the
result would not be statistically significant. Researchers are often
tempted to report P values from one-tailed tests because they are
always smaller than the corresponding P values from two-tailed
tests. However, one-tailed tests are appropriate only if the re-
searcher specifies the direction of the hypothesis before analyzing
the data and should be accompanied by a strong justification for
why a one-tailed test is appropriate.

The P value has several limitations as a summary of experimen-
tal results. First, a significant P value alone does not mean that a
finding is important. The P value incorporates information about
both the effect size (such as the difference between groups) and the
precision of the estimates into a single summary. If the precision
of the estimate is increased (e.g., by increasing the sample size), the
P value will decrease even though the difference between groups is
unchanged. If the sample size is large enough, even tiny differences
between groups will be statistically significant. Therefore, P values
should never be reported without some indication of the magni-
tude of the difference between groups. This does not seem to be a
major problem of reporting in IAI, possibly because for many
microbiologists, P values are (appropriately) viewed as adjunct to
the main goal of presenting numerical results.

To illustrate the disconnect between P values and effect sizes,
consider a series of experiments where proportions surviving are
compared between two groups of animals. In each experiment,
none of the animals in group A survive, and half of the animals in
group B survive, so the effect size is the same in each experiment.
When the sample size is six animals per group, the P value for this
comparison is 0.18 (based on a two-sided Fisher exact test), a
result that is not statistically significant. When the sample size is 12
animals per group, the P value for this comparison is 0.01, and
when the sample size is 24 animals per group, the P value is
�0.001. In this example, the smaller P values do not indicate a
larger difference between groups, only that the difference between
groups was measured with more precision because of the in-
creased sample size.

A statistically significant P value does not prove that the results
of the experiment are true. Using the standard probability crite-
rion (P � 0.05) for statistical significance, 1 in 20 comparisons will
be statistically significant by chance alone. Furthermore, the P
value provides only information about chance. If the experiment
is poorly designed and subject to bias, this will not be reflected in
the P value. For example, a study might show that two groups
differ significantly with a P value of 0.01, but if the two groups
were tested in different labs or on different equipment, it is im-
possible to determine whether the difference is due to the treat-
ment or to other differences in experimental conditions.

Conversely, lack of statistical significance does not prove that
there is no difference between groups. It is also possible that a
difference exists but that, due to bad luck, large variation in the
data, and/or a small sample size, the difference did not reach sta-
tistical significance in this particular experiment. Interpreting
nonsignificant P values as proof of equivalence can lead to aban-
donment of promising ideas when small initial studies do not yield
statistical significance. When a result is not statistically significant,
the observed difference and the variability in the data can provide
an indication of whether the result was biologically meaningful,
regardless of statistical significance, and further studies can be
planned. Confidence intervals are especially informative in this
situation.

Confidence intervals provide an alternate approach to quanti-
fying the role of chance in research. Confidence intervals describe
a range of values which is likely to include the true quantity that is
being estimated. A 95% confidence interval, for example, is con-
structed so that if the experiment is repeated 100 times, 95 of the
experiments will yield 95% confidence intervals that include the
true value. Loosely, a confidence interval provides a range of plau-
sible values for the truth, acknowledging that any individual ex-
periment will deviate from the truth due to random variation. For
example, the result stated earlier that 4 of 10 (or 40%) sampled
articles in IAI showed statistical errors can be used to conclude, via
confidence intervals, that the data support a proportion of statis-
tically flawed IAI papers of between 14% and 71%. The “Instruc-
tions to Authors” require that authors report confidence intervals
for data presented as endpoints, such as 50% lethal doses (LD50s)
or 50% infectious doses (ID50s), but confidence intervals are use-
ful in many other situations.

One common use of confidence intervals is to define the error
bars on bar charts. Used in this way, 95% confidence interval bars
that do not overlap generally imply a statistically significant dif-
ference between the two groups, with P being �0.05 (3). However,
overlapping 95% confidence interval bars do not necessarily imply
nonsignificance. van Belle (8) discusses this phenomenon in detail
and suggests that as a rule of thumb, overlaps of 25% or less sug-
gest statistical significance. Hypothesis tests should be conducted
for confirmation, so confidence intervals do not entirely replace P
values in this context.

Confidence intervals can also be constructed for the difference
or ratio of summary measures between two groups. If the 95%
confidence interval for the difference does not include 0, then the
two groups are significantly different (P � 0.05). Similarly, if the
95% confidence interval for a ratio does not include 1, the P value
is �0.05. Confidence intervals for differences and ratios are espe-
cially useful because most researchers have an intuitive idea of
what sort of ratio or difference between groups is large enough to
be scientifically important. Regardless of statistical significance, if
a 95% confidence interval for the difference between groups in-
cludes effects that are scientifically important, then it would be
shortsighted to rule out the possibility that such an effect might
exist.

For example, suppose the ratio between two groups is 1.5, with
a 95% confidence interval from 0.7 to 3.1. Because this confidence
interval includes 1, the null hypothesis that the two groups are
equivalent (their ratio equals 1) cannot be ruled out. However, it is
also impossible to rule out a 3-fold-higher result in the first group.
If this is a scientifically meaningful difference, it might be worth
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further exploration in a study that might compare the groups with
greater precision.

In summary, when reading or reviewing statistical results in
IAI, P values should be interpreted in proper perspective: they are
useful for indicating that results are not likely due to chance, but
they do not address bias, they do not provide information about
the magnitude of differences or associations, and, if they are non-
significant, they do not imply that differences do not exist. Confi-
dence intervals provide a useful adjunct or alternative that incor-
porates information about both the magnitude and the precision
or reliability of results.
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