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Invasion into red blood cells is an essential step in the life cycle of parasites that cause human malaria. Antibodies targeting the
key parasite proteins in this process are important for developing a protective immune response. In the current issue, Boyle and
colleagues provide a detailed examination of Plasmodium falciparum invasion and specifically illuminate the fate of surface-
exposed parasite proteins during and immediately after invasion.

Human malaria remains a leading cause of death and disease
worldwide. Recent estimates suggest that there were 225 mil-

lion cases of malaria in 2009, with more than 1 million deaths in
2010 (1, 2). The parasite Plasmodium falciparum causes the most
severe forms of malaria. Resistance to existing antimalarial medi-
cations is a constant and continually emerging hurdle to the effec-
tive treatment of malaria. At the same time, efforts to find a
broadly effective vaccine providing sustained protection have not
yet been successful. For these reasons, and many more, a more
intricate understanding of the molecular details of the parasite life
cycle is needed. Knowledge of the molecular mechanism of para-
site invasion, replication, and egress will hopefully provide new
targets for antimalarial therapeutics and vaccines. The work de-
scribed in this issue by Boyle and colleagues (3) provides a new
layer of complexity in our understanding of P. falciparum invasion
into human red blood cells (RBCs).

PLASMODIUM FALCIPARUM: AN EVASIVE INVADER

After a susceptible person is bitten by an infected female Anopheles
mosquito, P. falciparum sporozoites travel to the liver and invade
hepatic cells. Inside the hepatocyte, the sporozoite differentiates
and produces thousands of RBC-invasive merozoites (4). Once
released from the protected intracellular environment, a merozo-
ite has a very limited window of time to find and invade a RBC or
risks clearance by the host reticuloendothelial system and/or in-
activation by antibodies. Several elegant studies have described the
basic steps of merozoite invasion of RBCs (5–12) (Fig. 1). The
predominant model of parasite invasion proposes that the mero-
zoite reversibly binds the surface of the RBC via multiple low-
affinity interactions between parasite-expressed merozoite surface
proteins (MSPs) and RBC surface proteins (e.g., Band 3) or hep-
arin-like glycosaminoglycans (13–15). The invading merozoite
must reorient itself to bring the apical end, with its associated
apical organelles (rhoptries, micronemes, and dense granules),
into direct contact with the RBC surface. Reorientation likely re-
quires the action of P. falciparum apical membrane protein 1
(PfAMA1) (7). Interestingly, the “receptor” for PfAMA1 is an-
other parasite protein, RON2, that is injected into the host side of
the RBC membrane (16, 17). Following reorientation, the mero-
zoite forms an irreversible attachment to the RBC, known as the
tight junction, which is made in part from the PfAMA1-RON2
interaction. The formation of the tight junction likely involves
multiple interactions between parasite ligands located in the mi-
cronemes and rhoptries and RBC surface receptors (5, 6, 9, 18–
21). The exact sequence of events surrounding the engagement of

apical organelle receptor proteins, the timing of the release of or-
ganelle contents, and the trigger for their release remain incom-
pletely resolved (22–24). The final step of invasion is junction
movement and formation of the intracellular parasitophorous
vacuole. This stage of invasion involves actinomyosin motor com-
plexes inside the parasite (12). The signal to initiate actinomyosin-
dependent movement after junction formation remains unknown
but likely involves calcium signaling.

PLEASE REMOVE YOUR COAT AT THE DOOR

Because merozoites actively power themselves into the host cell
instead of relying on the host endocytic machinery, the multiple
parasite ligand-host cell receptor interactions must be disengaged
to allow the parasite to “drive” into the RBC, form its parasito-
phorous vacuole, and reseal the host cell plasma membrane. It has
been hypothesized that in multiple Apicomplexa, including P. fal-
ciparum, Toxoplasma gondii, Neospora caninum, Eimeria tenella,
and Cryptosporidium parvum, parasite-derived proteases catalyze
the removal of the invading zoite surface proteins during invasion
(25). Prior to their identification, the hypothesized proteases that
cleaved surface proteins at the tight junction and at the posterior
end of the invading zoite were called “sheddases” and “cap pro-
teases.” The major sheddase has been identified as a subtilisin-like
serine protease, PfSUB2 (26). More recently, the cap protease was
identified as a rhomboid-type protease, PfROM4 (27). The rhom-
boid proteases are intramembrane serine proteases that cleave
their substrates within the transmembrane domain. Another es-
sential rhomboid protease, PfROM1, that cleaves multiple inva-
sion ligands has been identified in P. falciparum (28, 29); however,
it is unclear if this protease is required for priming of invasion
ligands prior to invasion or for surface shedding after receptor
engagement.

Some of the remaining “stubs” of merozoite surface proteins
are known to be maintained by the parasite for several hours. The
glycosylphosphatidylinositol (GPI)-anchored stub of MSP1,
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MSP11-19, is known to be retained by the parasite for several hours
after invasion and may play a role in the formation of the food
vacuole (30, 31). A role for the stub of AMA1 in T. gondii has been
similarly hypothesized (32). Aside from the stub functions de-
scribed above, the current paradigm for parasite invasion is that
most (or all) of the surface proteins are removed by parasite pro-
teases during entry. Boyle and colleagues challenge this paradigm
in this issue, demonstrating that at least two of the merozoite
surface proteins, MSP2 and MSP4, are retained intact on the sur-
face of the merozoite during and immediately after invasion (3).
In a previous study from this same group, they described a method
to purify viable and invasive extracellular (“free”) merozoites
(33). Shortly after this initial description, the free-merozoite tech-
nique was used to visually evaluate the steps of parasite invasion by
using superresolution microscopy (22). In their current study,
Boyle and colleagues utilize these invasive merozoites to analyze
the fate of surface membrane proteins and membrane-associated
proteins immediately prior to, during, and after invasion. It is
important to note that the use of free merozoites followed by rapid
fixation allows analysis of events that occur within seconds to
minutes after initial contact between the parasite and the RBC. By
generating a series of both monoclonal and polyclonal antisera
against MSP2 and MSP4, Boyle and colleagues demonstrate that
both GPI-anchored surface proteins are kept intact on the interior
and exterior sides of the tight junction, thus escaping the action of
the sheddases. While antibodies directed against MSP2 did not
inhibit parasite invasion or growth, bound antibodies were carried
inside the parasitophorous vacuole. MSP2 was rapidly degraded
following the completion of invasion (with or without bound an-
tibodies and by an unknown mechanism), but the anti-MSP2 an-
tibodies were retained for several additional hours without an ill
effect on parasite growth. Polyclonal antibodies against MSP4
caused a modest decrease in parasite invasion. In contrast to the
rapid, postinvasion degradation of MSP2, MSP4 is retained, likely
fully intact, by the parasite for up to 19 h. Using a series of immu-
nofluorescence and immunoblot analysis experiments, Boyle and
colleagues convincingly demonstrate that MSP4 is maintained for
at least 19 h and is then degraded in the following 5 h. This suggests
the interesting possibility that MSP4 has a specific role in the first
20 h postinvasion, a period of time when the parasite must re-
model the host RBC to allow specific trafficking of parasite pro-
teins to the RBC surface.

LIFE BEYOND THE SHEDDASE?

The reasons for the lack of shedding of MSP2 and MSP4 during
invasion remain unknown. While it is possible that these proteins
have no postinvasion function, it seems more likely that the essen-
tial MSP2 and MSP4 proteins, and potentially other surface pro-
teins, have essential postinvasion functions. Boyle and colleagues
bring this intriguing hypothesis to the forefront in this issue. This
provides a new fundamental biological step in the parasite life
cycle that can be investigated and hopefully targeted and/or
blocked by new vaccines or antimalarial therapeutics. Armed with
this detailed molecular knowledge of the parasite life cycle, the
research community can design the next set of experiments and,
more importantly, the next techniques to block parasite replica-
tion in humans.
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