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SOX13 Exhibits a Distinct Spatial and Temporal Expression
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SUMMARY SOX13isa member of the SOX family of transcription factors. SOX proteins play

essential roles in development, and some are associated with human genetic diseases. SOX13

maps to a multi-disease locus on chromosome 1g31-32, yet its function is unknown. Here we

describe the temporal and spatial expression of SOX13 protein during mouse organogenesis. KEY WORDS

SOX13 is expressed in the three embryonic cell lineages, suggesting that it may direct various SOX13

developmental processes. SOX13 is expressed in the developing central nervous system in- mouse embryonic development
cluding the neural tube and the developing brain. Expression is also detected in the con- expression pattern

densing mesenchyme and cartilage progenitor cells during endochondral bone formation in neural tube
the limb as well as the somite sclerotome and its derivatives. SOX13 is also detected in the endochondral bone
developing kidney, pancreas, and liver as well as in the visceral mesoderm of the extra- sclerotome
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embryonic yolk sac and spongiotrophoblast layer of the placenta.
J Histochem Cytochem 54:1327-1333, 2006)

SOX [SRY-related high-mobility group (HMG) BOX]
genes encode a family of transcription factors that bind
and bend DNA through the HMG domain (Ferrari
et al. 1992; Harley et al. 1992). SOX transcription
factors have been implicated in a variety of develop-
mental processes including sex determination, neuro-
genesis, and endochondral bone formation (Laudet
et al. 1993; Pevny and Lovell-Badge 1997; Southard-
Smith et al. 1998; Wegner 1999).

Spatial and temporal expression patterns of SOX
genes during mammalian development support a role
governing cell fate and differentiation. For instance,
Sox9 is expressed in Sertoli cells of the developing testis
as well as during mesenchymal condensation prior to
chondrocyte development. Other tissues expressing
Sox9 include the notochord, otocysts, vibrissae, tubular
heart structures, and ventricular central nervous system
(CNS) during embryonic development (Foster and Graves
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visceral mesoderm
spongiotrophoblast

1994; Bell et al. 1997; Lefebvre et al. 1998). Further-
more, mutations in SOX9 result in clinical pathologies
consistent with an essential function in the development
of these tissues. SOX9 is required for chondrogenesis
and testis development as evidenced by mutations in
campomelic dysplasia syndrome, characterized by severe
skeletal malformation and autosomal sex reversal (Foster
and Graves 1994; Wagner et al. 1994). Mutations in
SOX10 result in the neurological disorder Hischsprung—
Wardenberg syndrome (Inoue et al. 2002; Paratore
etal. 2002), and mutations in SRY result in XY gonadal
dysgenesis (Schmitt-Ney et al. 1995; Scherer et al. 1998;
Canto et al. 2000; Uehara et al. 2002).

SOX13 belongs to group D of the SOX gene family.
Murine Sox13 was cloned from a cDNA library of mouse
embryonic tissue (Kido et al. 1998; Roose et al. 1998),
whereas human SOX13 was cloned from a pancreatic
islet cell cDNA expression library (Rabin et al. 1992;
Argentaro et al. 2000; Kasimiotis et al. 2000). Human
and mouse SOX13 share 99% amino acid sequence
identity within the HMG domain and 90% overall
amino acid identity (Kido et al. 1998; Argentaro et al.
2000; Kasimiotis et al. 2000), suggesting conserved
function of SOX13 in mouse and human.
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Human SOX13 mRNA has been detected in diverse
tissues such as pancreas, heart, brain, placenta, lung,
liver, and kidney (Kasimiotis et al. 2000). Furthermore,
SOX13 maps to human chromosome 1q31.3-32.1
(Argentaro et al. 2000). This region is associated with
insulin-dependent diabetes mellitus and other complex
genetic disorders (Durand et al. 1995; Kraus et al.
1996b; Bahabri et al. 1998; Cornelis et al. 1998;
Vollmer et al. 1998; Houdayer et al. 1999). Chromo-
some 1q31-32 also exhibits loss of heterozygosity in
pancreatic cancer and hepatoblastoma (Kraus et al.
1996a) and various neoplastic diseases (Kraus et al.
1996a,b; Steiner et al. 1996; Benitez et al. 1997; Fogt
et al. 1998). Given its unknown function and potential
disease association, we examine here the expression of
SOX13 protein during mouse embryonic development
from embryonic day (E) 9.5 to E15.5, as well as in the
yolk sac and placenta.

Materials and Methods

Mice

All procedures involving mice were approved by the Animal
Ethics Committee of Monash University, Victoria, Australia.

Embryos from E10.5 to E15.5 were removed from F1
(C57BL6 X CBA) natural mating.

Whole-Mount Immunohistochemistry (IHC)

Embryos were fixed overnight at 4C in 4% paraformalde-
hyde/PBS (pH 7) and dehydrated through a methanol series in
PBS. Embryos were bleached in 5% hydrogen peroxide in
methanol for 1 hr at room temperature, rehydrated through a
reverse methanol series, and blocked by incubation in PBMT
(3% skim milk, 0.1% Triton X-100/PBS) overnight at 4C.
Embryos were then incubated overnight at 4C in PBMT
containing 10% BSA and 4 pg/ml of affinity-purified rabbit
polyclonal SOX13 antibody followed by five 1-hr washes in
PBST (0.1% Triton X-100/PBS) at 4C. Antibody was raised
against a human SOX13 peptide spanning amino acids 80-103
(Kasimiotis et al. 2000). As a negative control, 4 pg/ml of
SOX13 antibody was preincubated with 3.6 X 10~ M of
SOX13 peptide (80-103) in 20% FBS/PBS on ice for 30 min.
Primary antibody was detected by incubation with 2 pg/ml of
horseradish peroxidase (HRP)-conjugated anti-rabbit anti-
body (Chemicon; Temecula, CA) in PBMT overnight at 4C
followed by PBST washes as above. For enzyme detection,
embryos were preincubated with 0.3 mg/ml diaminobenzidine
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(DAB; Sigma, St Louis, MO) and 0.05% NiCl, in PBST for
1 hr, and color development was activated by addition of
0.03% hydrogen peroxide. When optimal color development
was achieved, the reaction was stopped by a PBST wash.

IHC Using Embryo Sections

Embryos were fixed for 2 hr to overnight at 4C in 4%
paraformaldehyde/PBS (pH 7) and cryoprotected by incuba-
tion in 30% sucrose/PBS overnight at 4C. Embryos were
embedded in optimal cutting temperature compound and cryo-
sectioned into 8-pm sagittal or transversal sections on Super-
frost Plus slides (Menzel-Glaser; Braunschweig, Germany).
Sections were air dried at room temperature and nuclear
epitopes were unmasked by boiling in 0.01 M citrate buffer
(pH 6) for 8 min followed by a wash in PBS (pH 7) with 0.1%
Triton/X-100. Sections were blocked with 6% H,O,/PBS
followed by CAS blocking solution (Zymed; South San
Francisco, CA) for 30 min, respectively, at room temperature
to block endogenous peroxidases and nonspecific antigens.
Sections were then incubated with 1.2 pg/ml of affinity-
purified rabbit polyclonal SOX13 antibody diluted in 20%
fetal bovine serum/PBS (pH 7) at 4C overnight. Preimmune
serum or peptide-blocked SOX13 antibody was used as nega-
tive control. Primary antibody was detected using a biotin-
ylated goat anti-rabbit IgG secondary antibody (Vector
Laboratories; Burlingame, CA) at a 1:200 dilution in PBS for
1 hr at room temperature, washed three times for 10 min each
in PBST (0.1% Triton X-100/ PBS), and followed by incu-
bation with 1:500 dilution of Streptavidin-HRP (Amersham
Bioscience; Piscataway, NJ) at room temperature for 1 hr.
Sections were incubated with liquid DAB substrate (DAKO;
Carpinteria, CA) until optimal color development was
achieved and then counterstained with hematoxylin.

Results

Temporal and Spatial Expression of SOX13

We examined the spatial and temporal expression of
SOX13 during mouse organogenesis using whole-
mount IHC from E9.5 to E12.5. As shown in Figure 1,
SOX13 was broadly expressed throughout the embryo
at all stages examined, with greatest abundance in
neural tissues, somites, limb buds, and the oronaso-
pharyngeal region (Figures 1A-1D). At E9.5, expres-
sion of SOX13 was evident in the brain and neural tube,
limb buds, somites, and branchial arches (particularly
the maxillary and mandibular arches) and in the naso-
pharyngeal ectoderm (Figure 1A). At E10.5-E12.5,

Figures 1-2

Figure 1 Expression of SOX13 during mouse embryonic organogenesis. Whole-mount immunohistochemistry (IHC) analysis of SOX13 was
performed at (A) embryonic day (E) 9.5, (B) E10.5, (C) E11.5, (D) E12.5. Inset C, E11.5 is a negative control at E11.5. Tel, telencephalon; Mes,
mesencephalon; Met, metencephalon; MA, mandibular arch; H, heart bulge.

Figure 2 Expression of SOX13 revealed by whole-mount IHC in forelimb bud in (A) E9.5, (B) E10.5, (C) E11.5, and (D) E12.5 and in the hindlimb
at E9.5 (E), E10.5 (F), E11.5 (G), and E12.5 (H). IHC on sagittal sections through the forelimb are shown in (I) E11.5 and (J) E13.5. r, rostral;
p, proximal; d, distal; ¢, caudal; Ec, ectoderm. Bars: I = 200 pum; J = 50 pm; inset J = 25 pm.
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expression was maintained in these tissues, although
dynamic changes were observed as the tissue became
more complex (see the limb bud, for example, as shown
in Figures 1B-1D and Figure 2).

Expression of SOX13 in the Developing Central
Nervous System

At E9.5, as the brain vesicles begin to separate and the
four major divisions of brain are defined from the
surface, ectoderm SOX13 was detected in the prospec-
tive forebrain to the hindbrain region and along the
length of the neural tube (Figure 1A). At E10.5-E11.5,
expression of SOX13 was also detected in the neural
tube (Figure 1B). By E12.5, when neuroepithelium
actively undergoes differentiation and outward migra-
tion to form the lateral subventricular zone, expression
of SOX13 is observed in all three regions of the
developing brain and neural tube (Figure 1D). From
E13.5 to E15.5, whereas neuronal genesis is ongoing,
SOX13 is persistently highly expressed in the develop-
ing CNS where expression can be seen throughout the
forebrain, midbrain, hindbrain, and spinal cord (Fig-
ures 1A-1D). Interestingly, expression of SOX13 is
largely confined to the outer layer of the developing
neuroepithelium where neural precursor cells stop
dividing and begin to differentiate. At the subcellular
level, SOX13 is located in the nucleus of neuroepithelial
cells in the spinal cord and developing brain (Wang
et al. 2005).

Dynamic Expression of SOX13 in the Developing Limb
Bud and Somite

SOX13 expression is highly dynamic during limb bud
development. At E9.5, as soon as the limb bud is dis-
cernible, SOX13 protein is first broadly expressed in
the mesenchyme and surface ectoderm of the limb bud
(Figures 2A, 2E, and 2I), and then SOX13 is progres-
sively repositioned from the rostral perichondrial area
to the mesenchyme of the paddle-shaped limb bud in
the prospective arm region and hand plate (but is absent
in the caudal surface ectoderm) (Figures 2B and 2F). As
the prospective digits are formed in the hand plate,
SOX13 expression is initially broadly detected in the
distal limb bud mesenchyme with reduced expression
toward the proximal mesenchyme (Figures 2C and 2G).
At E12.5, expression of SOX13 is subsequently
consolidated to the prospective arm regions. We exam-
ined sagittal sections from forelimb at E11.5 and E13.5
(Figure 3). Expression of SOX13 is confined to the
cartilage progenitors in the developing tibia (Figure 21I)
and digits (Figure 2J). Expression of SOX13 in the
hindlimb bud is similar to that in the forelimb bud
except for the developmental time delay (forelimb in
Figures 2A-2D, 21, and 2J; hindlimb in Figures 2E-2H).
Dynamic expression of SOX13 in the developing limb
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Figure 3 Expression of SOX13 in the developing somite revealed
by whole-mount IHC in (A) E12.5 and by IHC on sagittal sections in
(B) E12.5, (€) E13.5, and (D) E15.5. SC, spinal cord; V, vertebra; R, rib.
Bar = 200 pm.

bud suggests that SOX13 may play a role in limb pat-
terning and later in chondrocyte differentiation.

Parallel to the expression in limb bud, SOX13 is also
detected in the somite as early as E9.5 (Figure 1A) and
continues at E11.5 and E12.5 (Figures 1C and 1D). To
determine the regional expression of SOX13 in the
developing somites, we sectioned somites from E12.5
to E15.5 and examined them using IHC. SOX13 is
expressed in the sclerotome of the somites and the
derivative vertebrae and ribs (Figures 3A-3D). SOX13
is not detected in the dermatome and myotome of
the somite.

Other Regions of SOX13 Expression

During Embryogenesis

SOX13 expression is transiently detected in cardiac
tissues at E10.5 (Figure 1B) but is not detected in these
tissues at E11.5-E13.5. Later, SOX13 is weakly
detected in the arterial wall of the heart at E15.5.

SOX13 Expression in the Developing Placenta and
Yolk Sac

SOX13 is detected in the placenta and extra-embryonic
yolk sac. At E15.5, SOX13 is strongly expressed in the
spongiotrophoblast layer (Figure 4B), and expression
of SOX13 is weakly detected in the labyrinth layer
(Figure 4B). In addition, SOX13 is located in the spongio-
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Figure 4 Expression of SOX13 in the
placenta and yolk sac revealed by IHC
onsections. (A) Hematoxylin—eosin stain-
ing reveals the overall appearance of
placenta at E15.5, the boxed area indi-
cating the approximate region in (B).
SOX13 protein was observed in the
spongiotrophoblast layer. Expression
of SOX13 in the yolk sac is shown in
(C) E13.5 and (D) E15.5. SOX13 protein
localizes to the nucleus of giant tro-
phoblast cells (arrow) and the cyto-
plasm of visceral mesodermal cells in
yolk sac shown in insets in D,E at high
magnification. S, spongiotrophoblast;
L, labyrinth. Bars: B = 200 um; C,D =
50 pm; inset D = 25 um.

trophoblast layer of the placenta (Figure 4) with subcel-
lular localization in the nucleus of these cells (Figures 4B
and 4C). In the E13.5 and E15.5 yolk sac, SOX13 is lo-
calized to the visceral mesoderm (Figures 4D and 4E).

Discussion

We analyzed expression of SOX13 protein during
mouse embryo organogenesis from E9.5 to E15.5 us-
ing whole-mount and section IHC. Our data demon-
strated that SOX13 is widely expressed in a number of
developing organs including the CNS, cartilage, and
derivatives of neural crest such as the branchial arches.
Apart from embryonic expression, SOX13 is also
observed in the placenta and yolk sac, suggesting the
possible role of SOX13 in both organogenesis and
support of embryonic growth. Certain sites of SOX13
immunoreactivity are consistent with the sites by
SOX13 RNA observed by in situ hybridization (Roose
et al. 1998), such as cardiac tissues and the arterial wall
of the heart.

SOX13 exhibits a dynamic expression profile during
limb development and chondrogenesis. During limb
development, expression of Sox8 and Sox9 occurs
before morphological or structural changes in prechon-
drogenic mesoderm, and these proteins are required for
mesenchymal condensation (Bi et al. 1999; Akiyama
et al. 2002; Chimal-Monroy et al. 2003). Induction of
Sox8, Sox9, and Sox10 precedes that of bone morpho-
genetic protein receptor 1b (Bmprlb), suggesting that

these Sox factors are upstream of BMP signaling during
mesenchymal condensation. Conversely, BMPs have a
positive influence on Sox gene expression in maintenance
of the chondrocyte phenotype (Enomoto-Iwamoto
et al. 1998; Chimal-Monroy et al. 2003). SOX13 is
first broadly expressed in the condensed mesenchyme
of the developing limb, becoming regionalized in the
center of the condensed mesenchyme. This expression
pattern is similar to that of L-Sox5 and Sox6 (Chimal-
Monroy et al. 2003), which exhibit a loop-shaped
domain of expression in cartilage. These Sox factors
have been shown to be essential for overt chondrocyte
differentiation (Smits et al. 2001; Chimal-Monroy et al.
2003). Furthermore, SOXS and SOX6 cooperate with
SOX9 to activate the Col2al enhancer. SOX13
together with L-Sox5 and Sox6 belong to SOX D
subgroup and share high homology both within and
outside the HMG domain, suggesting a conserved
function during development in vertebrates. This over-
lapping expression suggests that SOX13 may also play
a role in chondrocyte differentiation. Therefore, SOX
proteins of the same group might act cooperatively
where coexpressed.

SOX13 is highly expressed in the developing CNS.
SOX13 is expressed in the prospective brain and neural
tube and later in the outer layer of the neuroepithelium
during active neuronal genesis. A number of Sox genes
are known to function in the specification and differen-
tiation of the CNS (Uwanogho et al. 1995; Collignon
et al. 1996; Rex et al. 1997; Mizuseki et al. 1998; Pevny



>~
=
%
=
D)
-
O
S
—
>~
)
S
>~
=
@
=
<]
-
O
S
—
%
I
Y
o
=
c
|-
>
=
D)
e
|_

1332

etal. 1998; Bylund et al. 2003; Graham et al. 2003). For
instance, Sox4 and Sox11 (both group C) are predom-
inantly expressed in differentiating neuronal cells, sug-
gesting a role in neurogenesis. Restricted expression of
SOX13 in the lateral region of the CNS suggests that
SOX13 may function in the differentiation of the neu-
roepithelium. Given the similar expression of SOX13
with L-Sox5 and Sox6 during limb development, it
might be important to compare the expression of these
three group-D SOX members in the developing CNS.

In the placenta, high SOX13 expression was de-
tected in the spongiotrophoblast layer within the nuclei
of trophoblast giant cells. As far as we know, this is the
first evidence of SOX protein expression in giant tro-
phoblast cells. The trophoblast is involved in both blas-
tocyst implantation and in fetoplacental growth and
development. Trophoblast giant cells produce a num-
ber of angiogenic and vasoactive substances that may
mediate uterine vascular remodeling (Cross et al. 2002b).
So far, it has been shown that the basic helix-loop—
helix transcription factor Hand1 is essential for differ-
entiation of trophoblast giant cells in mice and for the
regulation of the giant-cell-specific hormone, placental
lactogen 1 gene promoter (PI1) (Cross et al. 2002a).
SOX13, as a nuclear transcription factor, may have a
role in uterine vascular remodeling to support embry-
onic development.

In conclusion, we have demonstrated that SOX13,
like other SOX factors, is expressed during embryonic
development and may play a role in limb development,
chondrogenesis, and neurogenesis. SOX proteins often
display a widespread expression profile during different
stages of embryogenesis, yet still play specific roles in
development (Pevny and Lovell-Badge 1997; Wegner
1999). SOX13 is no exception, demonstrating wide-
spread and dynamic expression during embryonic
growth and development. The study of SOX13 at both
the cellular and molecular levels in these developmen-
tal processes is being undertaken.
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