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Abstract

Dynamin 1–3 isoforms are known to be involved in endocytotic processes occurring during synaptic transmission. No data
has directly linked dynamins yet with normal animal behavior. Here we show that dynamin pharmacologic inhibition
markedly impairs hippocampal-dependent associative memory. Memory loss was associated with changes in synaptic
function occurring during repetitive stimulation that is thought to be linked with memory induction. Synaptic fatigue was
accentuated by dynamin inhibition. Moreover, dynamin inhibition markedly reduced long-term potentiation, post-tetanic
potentiation, and neurotransmitter released during repetitive stimulation. Most importantly, the effect of dynamin
inhibition onto memory and synaptic plasticity was due to a specific involvement of the dynamin 1 isoform, as
demonstrated through a genetic approach with siRNA against this isoform to temporally block it. Taken together, these
findings identify dynamin 1 as a key protein for modulation of memory and release evoked by repetitive activity.
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Introduction

The role of dynamin in modulating synaptic activity has been

widely debated since its discovery [1]. Dynamin is key in

controlling various endocytotic pathways during neurotransmis-

sion [2], including the classical clathrin-mediated pathway [3].

Studies on dynamin and exocytosis have shown a block of

exocytosis in the dynamin-impaired shibire Drosophila model [3].

Recent studies have demonstrated that inhibition of dynamin

activity impairs evoked exocytosis occurring during low frequency

stimulation without affecting spontaneous exocytosis in the

mammalian brain [4–8]. Despite the intense research activity

around the role of dynamin in synaptic transmission, it is not yet

clear whether this involvement translates to normal animal

behavior. Here we have investigated the effect of both pharma-

cologic and genetic block of dynamin function on memory

formation. Furthermore, we have explored how blocking dynamin

activity can affect neurotransmitter release evoked through

repetitive activity that is known to underlie forms of synaptic

plasticity that are, in turn, likely to be linked with memory

formation.

Materials and Methods

Ethics Statement
All animals (C57BL/6J mice) were used and handled in strict

accordance with good animal practice as defined by the Ethical

Guidelines for Treatment of Laboratory Animals of Columbia

University and specifically approved by Columbia University

IACUC (protocol #AC-AAAB8674). Specific Pathogen Free,

male mice, aged 4–5 months, were obtained from Jackson

Laboratories. Mice were housed under a 12-h (8.00–20.00)

light/dark cycle in a climate-controlled room (23uC61) with ad

libitum access to food and water. All efforts were made to minimize

the number of animals used and their suffering. Animals were

housed 4–5 per cage after weaning.

Drugs and treatments
Dynasore, kindly provided by Tomas Kirchhausen (Harvard

Medical School, Boston, USA) was dissolved in anhydrous DMSO

to obtain a 200 mM stock concentration and then stored at

280uC. Working solutions were obtained by diluting, in dim light

environment, aliquots of stock solutions in artificial cerebro-spinal

fluid (ACSF) containing NaCl 124 mM, KCl 4.4 mM, Na2HPO4

1 mM, NaHCO3 25 mM, Glucose 10 mM, CaCl2 2 mM, MgCl2
2 mM, supplemented with 0.3% DMSO. Drug solution was then

either perfused for 20 minutes onto hippocampal slice prepara-

tions or injected into dorsal hippocampi.

siRNA duplexes with a 59 thiol on the sense strand were

synthesized (Thermo Scientific Dharmacon, CO). The siRNA

sequence against Mus musculus dynamin 1 was: ‘‘59(S-S) UAA

GUG UCA AUC UGG UCU C dTdT 39’’ while the siRNA

sequence for the control siRNA was ‘‘59(S-S) CGU ACG CGG

AAU ACU UCG AUU dTdT 39’’. Annealed siRNA duplexes

were re-suspended in K+ buffer, incubated at 90uC and then

treated with an equimolar mixture of TCEP (#20490, Thermo

Scientific, USA), a strong reducing agent, at 20uC for 15 min. An

equimolar ratio of monomeric Penetratin1 (#11PENA0500, MPI

Biomedicals, USA) was then incubated at 65uC for 15 min with

the siRNA mixture, followed by a further incubation at 37uC for

1 hr, as previously described [9]. 59-siRNA/Penetratin1 linking

was assessed by Tris-Borate PAGE, visualized with SyBrGold (#S-

11494, Life Technologies). The efficacy of the siRNA to block

endogenous dynamin 1 was previously validated on primary

hippocampal neuronal cultures, prepared as previously described

[9]. Dynamin detection was assessed by harvesting cell cultures

upon extensive washing with fresh medium and then with cold

Hank’s Balanced Salt Solution. Tissue lysis was carried out in cold
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3% lithium dodecylsulfate (#L-2274, Sigma Aldrich, USA) in

62.6 mM Tris buffer, pH 6.8, supplemented with 3X protease and

phosphatase inhibitors (#05 892 970 001 cOmplete ULTRA

Mini, and #04906837001 PhosStop, Roche Applied Science, IN,

USA). Protein concentration was determined using the detergent-

resistant protein concentration assay (BioRad DC kit, #500-0006).

Equal amounts of protein (5 mg) were loaded on each lane of the

7% Tris-Acetate gel (Life Technologies) and then electrotrans-

ferred onto a nitrocellulose membrane (ProTran #BA79 0.1 mm,

Whatman GmbH, Germany). Dynamin 1 was immunoblotted by

using a rabbit polyclonal anti-dynamin1 antibody (1:1000, #PA1-

660, Affinity Biosciences) then probed with a horseradish

peroxidase-conjugated donkey anti-rabbit secondary antibody

(1:20,000, JacksonImmuno Laboratories, USA). Dynamin signal

detection was achieved using SuperSignal West Pico chemilumi-

nescent substrate (#34080 Thermo Scientific Pierce, IL, USA)

and band intensities were normalized to that of b-III-tubulin signal

(1:2000, #G7121, Promega, WI, USA), used as housekeeping

protein for neuronal samples.

Infusion technique
Bilateral cannulas were fixed to the skull, as previously described

[10]. Briefly, six-to-eight days before behavioral testing, mice were

implanted with intracerebral cannula for the intrahippocampal

drug delivery. Pre-emptive analgesia was induced by carprofen

and marcaine injection at the time of anesthesia induction. Local

anesthesia at the implantation site was obtained by subcutaneous

infiltration of marcaine at 2 mg/Kg post op. Analgesia was

achieved through carprofen 5 mg/kg subcutaneous injection every

24 hours for 48 hours. When general anesthesia was obtained

(Avertin 250 mg/kg i.p.), animals were placed in the stereotaxic

frame. A 26-gauge guide cannula was lowered above the dorsal

hippocampi (stereotaxic coordinates: AP = 2.4 mm, ML = 1.5 mm

to a depth of 1.3 mm), and secured to the skull by acrylic dental

cement (Paladur). After 6–8 days, mice were bilaterally injected

(1.5 ml/injection over 1 minute) through intracerebral cannulas

connected to a microsyringe by polyethylene tubing. To ensure

sterility of the infused substances, drugs were diluted in filtered

artificial cerebrospinal fluid. The injected substances were either

with vehicle (ACSF +0.3% DMSO), or dynasore (80 mM, in

vehicle medium), or siRNA (80 nM, in vehicle medium). For the

experiments employing dynasore, mice received a single injection

20 minutes prior to the electric shock. For the siRNA experiments,

however, mice were treated with either vehicle or siRNA against

dynamin 1 or control siRNA against luciferase two times/day for

three days; last administration was 12 hours before training. Mice

were handled once a day for 3 days before behavioral experiments.

During infusion, animals were handled gently to minimize stress.

After infusion, the needle was left in place for 1 minute to allow

diffusion. Histological localization of infusion cannulas was

performed after behavioral testing, using a solution of 4%

methylene blue.

Behavioral Studies
All behavioral studies were performed by an observer who did

not know the treatment group of the mice until the entire test had

been completed, and conducted during the light phase (between

13:30–18:00) of the light/dark cycle (lights on 8:00–20:00).

Contextual and cued learning were assessed using the fear

conditioning test, as previously described [10]. Briefly, mice were

placed in a novel context (fear conditioning box) and exposed to a

mild foot electric shock (2 s, 0.45 mA) together with a tone (30 s,

85 dB sound at 2800 Hz). The electric shock was delivered during

the last two seconds of the auditory tone. Freezing was scored by

using FreezeView software (SD Instruments, USA.) Learning was

assessed 24 hours later by measuring freezing behavior for 5

minutes in the chamber in which the mice were trained in

response to representation of the context (chamber) without

auditory cue. Cued fear responses were assessed 48 hours after the

shock by exposing the mice to the tone in a novel environment.

Baseline behavior was monitored during the training phase. In

separate experiments, sensory perception of the shock was

determined through threshold assessment, as previously described

[10]. The threshold to flinching (first visible response to shock),

jumping (first extreme motor response), and screaming (first

vocalized distress) was quantified for each animal by averaging of

the shock intensity at which each animal manifested a behavioral

response of that type to the foot shock (0.1 mA for 1 s). Shock

intensity was increased at 30 s interval by 0.1 mA to 0.7 mA.

Experiments were repeated in three different cohorts, grouped and

analyzed together, in which controls and dynasore or siRNA

treated mice were equally distributed.

Slice Preparation and Electrophysiology
Mice were sacrified by cervical dislocation followed by

decapitation. Transverse hippocampal slices (400 mm) were

obtained by using a tissue-chopper and maintained in an interface

chamber at 29uC. CA3–CA1 field excitatory post-synaptic

potentials (fEPSP) were recorded by placing the stimulating

electrode on CA3 fibers projecting to CA1 stratum radiatum where

the recording electrode was placed [10]. Basal synaptic transmis-

sion was assayed by plotting the stimulus voltages (V) against the

slope of fEPSPs to generate input-output relations before each

experiment. For the long-term potentiation (LTP) experiments, a

30-minute baseline was recorded every minute at an intensity that

evokes a response approximately 35–40% of the maximum evoked

response. In most of the experiments LTP was induced using a

theta-burst stimulation (4 pulses at 100 Hz, with the bursts

repeated at 5 Hz and each tetanus including 3 ten-burst trains

separated by 15 seconds). In a few experiments, LTP was induced

through a different protocol (three tetani at 50 Hz, 1 sec each, 20

second interval between tetani) that is known to solely involve post-

synaptic mechanisms [11]. Post-Tetanic Potentiation (PTP) was

induced through the same theta burst tetanus used to induce LTP.

Within the same slice, PTP was first recorded in absence of

dynasore, then in its presence, and finally after its washout. In

Synaptic Fatigue (SF) experiments, the slope of the evoked

responses during a single 100 Hz-1 second stimulus train was

measured every 10 stimuli and compared with the one associated

with the first stimulus of the train. Similar to PTP, SF was first

recorded in absence of dynasore, then in its presence, and finally

after its washout within the same slice. SF experiments were also

carried out in presence of GABAA (picrotoxin, 30 mM) and

GABAB (SCH50911, 100 mM) receptor blockers, or in the

presence of an AMPA receptor desensitization blocker (cyclothia-

zide, 100 mM). For both PTP measurement and SF assessment,

the tetanic stimulation was applied in the constant presence of

100 mM D-APV, a competitive NMDA receptor antagonist. PPF

analysis was carried out by providing a double stimulation

delivered at different interstimulus intervals (10R1000 ms) and

then comparing the ratio between the slope of the evoked response

after the second stimulus (S2) vs. the slope of the evoked response

obtained for the first stimulus (S1). Tetanic efficiency as an

evaluation of the facilitation induced throughout the tetanus (an

indirect index of neurotransmitter release) was evaluated through

intra-burst analysis [12]. Briefly, the area of successive burst

responses (charge) was expressed as a percentage fraction of the

area of the first burst response. In these measurements each burst
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consisted of 4 pulses at 100 Hz with bursts repeated at 5 Hz. This

measure normalizes differences between slices in the area of the

first burst, thereby allowing for the detection of any effect that

develops during the course of the stimulation train.

Statistical analysis
All data are shown as mean 6 SEM. Statistical tests included

two-way ANOVA with repeated measures for multiple compar-

isons or two-tails Mann-Whitney test when appropriate.

Results

Dynamin is required for memory formation
In a first series of experiments, we checked whether memory is

affected by dynasore, a synthetic non-peptidic inhibitor of

dynamins [13]. The compound blocks both dynamin-dependent

endocytosis [4] and dynamin-dependent evoked release [7] while it

generates branched tubular membrane networks, capped by

clathrin-coated pits upon intense exocytosis [14], similar to those

observed in the neurons of dynamin 1-null mice [5]. We analyzed

the effects of dynasore on contextual fear memory [15], a form of

associative, hippocampal-dependent memory in which mice have

to associate the environment they are exposed to with the

occurrence of an aversive stimulus that is delivered during the

training phase. Memory is then assessed via observation of freezing

behavior upon re-exposure to the same context. Either dynasore

or vehicle was administered via intrahippocampal bilateral

injection to avoid any systemic side effect (Fig. 1A). Interestingly,

dynasore infusion (80 mM, 20 minutes prior to the electric shock)

reduced the amount of freezing compared to vehicle (Fig. 1B). By

contrast, cued conditioning, a hippocampus-independent task [15]

that was assessed 24 hours after contextual memory by exposing

the animals to the tone in a novel environment, was not affected

by dynasore (Fig. 1C). Similarly, assessment of the sensory

threshold did not reveal any difference between dynasore- and

vehicle-infused mice (Fig. 1D) suggesting that treatment with

dynasore does not affect perception of the electric shock. Taken

together, these data strongly support the possibility that dynamin

inhibition impairs contextual fear memory.

Dynamin is involved in synaptic fatigue evoked by high-
frequency stimulation

Memories are stored in the brain as short- and long-term

changes in synaptic strength [16]. Because of this link, we next

analyzed the effects of dynamin inhibition on synaptic functioning

during high frequency stimulation, a type of sustained activity that

is known to reinforce synapses. Prolonged, repetitive stimulation is

known to cause synaptic fatigue (SF), a form of short-term

plasticity generally reflecting a depletion of a readily releasable

vesicle pool within the presynaptic terminal [17]. Perfusion of

hippocampal slices with dynasore (80 mM for 20 minutes)

accelerated SF evoked by a 100 Hz, 1 second, high frequency

stimulation (Fig. 2A). These experiments were performed in the

presence of the N-methyl-d-aspartate (NMDA) receptor blocker D-

aminophosphovaleric acid (D-APV) (100 mM), leaving intact 2-

amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)-propanoic acid (AMPA)

receptor-mediated events [17]. Perfusion with cyclothiazide

(100 mM), to antagonize AMPA receptor desensitization and

exclude the possibility that the cause of the heightened fatigue was

a desensitization of postsynaptic receptors [18,19], did not modify

the decay rate produced by dynasore alone (Fig. 2B). Furthermore,

perfusion with both picrotoxin (30 mM), a GABAA receptor

antagonist, and SCH 50911 (100 mM), a GABAB receptor

antagonist, applied to antagonize the GABAergic input, was not

capable of protecting from the further decay rate induced by

dynasore (Fig. 2C). Interestingly, the presence of the two

antagonists slowed down the decay of the SF, as previously

demonstrated [20]. Additionally, the effect of dynasore on SF in

the presence of the two antagonists was weaker than in the other

two conditions, probably due to augmentation in vesicle reuse

produced by picrotoxin [20]. Taken together, these findings

support the hypothesis that dynamin regulates release evoked by

repetitive activity through presynaptic mechanisms.

Dynamin inhibition reduces hippocampal long-term
potentiation

Since long-term potentiation (LTP) is an activity-dependent

phenomenon widely proposed as a cellular model for learning and

memory [21], we aimed to see whether mice display any LTP

deficit in evoked hippocampal responses following dynamin

inhibition. Dynasore perfusion (80 mM for 20 minutes) before

(Fig. 3A) - but not after (Fig. 3B) a theta-burst stimulation (4 pulses

at 100 Hz, with the bursts repeated at 5 Hz and each tetanus

including 3 ten-burst trains separated by 15 seconds), markedly

reduced CA3-CA1 LTP, suggesting a role of dynamin specifically

related to the tetanus-mediated stimulation.

Changes in evoked responses during sustained activity were not

associated, in turn, with significant modification of basal neuro-

transmission (Fig 3C). Treatment of mouse hippocampal slices

with dynasore (80 mM for 20 minutes) did not affect fEPSP input/

output relationships. These results are consistent with studies

showing that basal evoked exocytosis is not affected by dynamin

inhibition in rodent neurons [4,5,7]. Furthermore, they suggest

that synaptic AMPA receptor currents in basal conditions are not

affected by a brief dynamin block.

The theta-burst stimulation protocol used in the experiments

reported above is known to produce a compound LTP involving

both pre- and post-synaptic mechanisms [11]. As our data shown

on Fig. 2 support the hypothesis that dynamin inhibition may

regulate release evoked by repetitive activity through presynaptic

mechanisms, we investigated whether dynamin inhibition may also

reduce a form of LTP that does not require a strong presynaptic

input for its induction (three tetani at 50 Hz, 1 sec each, 20

seconds interval between tetani) [11]. This different stimulation

protocol was indeed able to produce a weaker LTP in vehicle-

treated slices (Fig. 3D). However, no difference was observed in

LTP between dynasore-treated (80 mM for 20 minutes) and

vehicle-treated slices (Fig. 3D), indicating that dynasore yielded no

apparent modification of LTP propensity at lower stimulation

frequency.

Dynamin inhibition reduces synaptic plasticity by
impinging on pre-synaptic mechanisms evoked by high-
frequency stimulation

To test whether a possible decrease of neurotransmitter vesicle

availability produced by dynamin inhibition would decrease

tetanic stimulation efficacy in inducing plasticity, we measured

the depolarization occurring during the tetanus [12]. We found a

marked reduction in the area under the curve of depolarization

after dynasore treatment (80 mM for 20 minutes) compared to

vehicle-treated slices (Fig. 4A–B), suggesting a reduction of

presynaptic input along the tetanus. Interestingly, the reduction

in area was present within the first burst of 4 pulses at 100 Hz

(Fig. 4C) and became statistically significant along the burst set

with the third group (Mann-Whitney U51, 15 = 0.00001,

p = 0.0043). This indicates that the efficacy of the theta-burst

stimulation in triggering the compound LTP is not conserved
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upon dynamin inhibition, and supports the possibility that

dynamin block reduces presynaptic input.

An additional evidence in favor of a dynamin inhibition-

induced impairment of neurotransmitter released during sustained

activity derived from studies on post-tetanic potentiation (PTP).

This is a type of short-term synaptic plasticity dependent upon

Ca2+ elevation within the presynaptic terminal during high

frequency stimulation [17]. Theta-burst stimulation in slices

treated with dynasore (80 mM for 20 minutes; in the presence of

D-APV to block NMDA receptors, leaving intact AMPA receptor-

mediated events) produced less PTP (Fig. 4D). Thus, similar to the

SF and LTP experiments, the reduced potentiation upon dynasore

treatment suggests a presynaptic deficit produced by dynamin

inhibition during sustained activity.

Dynamin inhibition does not affect paired-pulse
facilitation evoked by a paired stimulation

Paired-pulse facilitation (PPF) is a short-term plasticity phe-

nomenon that, differently than SF, PTP and LTP, is not due to

sustained release. It occurs when a synaptic response is enhanced

by a preceding stimulation of similar intensity, presumably

elevating the Ca2+ concentration for a very short time [17]. We

found that dynamin inhibition with dynasore (80 mM for 20

minutes) did not modify PPF (Fig. 5). This finding suggests that

dynamin does not control short-term plasticity phenomena unless

they are related to sustained/prolonged activity such as PTP or

SF. The dissociation between effects of dynamin inhibition onto

SF, PTP, LTP, and tetanus efficacy on one side and PPF on the

other side is very interesting as it indicates that dynamin intervenes

in different and mechanistically separated release phases. Such a

phenomenon has already been described for SF, PPF and PTP

which are known to have different intracellular mechanisms [22].

Indeed, KO animals for different types of synapsin, as well as other

presynaptic proteins such as synaptogyrin I and synaptophysin,

display a dissociation between different forms of short-term

plasticity [23,24].

Figure 1. Dynamin inhibition by dynasore impairs associative memory. A, Schematic representation of the hippocampi bilaterally
implanted with cannulas. B, Bilateral injections of dynasore (80 mM in a final volume of 1.5 ml over 1 minute) into dorsal hippocampi, 20 minutes
before training, dramatically impairs contextual fear memory (open bars) compared to vehicle treated mice (black bars) (Mann-Whitney U137,

73 = 18.00, p = 0.00147). C, Mice do not show changes in cued fear conditioning following dynasore infusions (open bars) compared to vehicle-treated
animals (black bars) (Mann-Whitney U121, 89 = 34.00, p = 0.2412). Each bar represents the average percent of time spent in freezing posture. Error bars
indicate SEM. D, Sensory threshold was not affected regardless of treatment (n = 10).
doi:10.1371/journal.pone.0091954.g001
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Figure 2. Dynamin inhibition by dynasore increases synaptic fatigue following sustained activity in hippocampus. A, Dynasore
treatment (80 mM, open triangles) increases SF in slices that were previously treated with vehicle (black circles) (F1,12 = 6.395, p = 0.026). The increase is
already present at the 10th pulse during the stimulation (Mann-Whitney U69, 36 = 8.00, p = 0.0379). The effect was reversed by washout with vehicle
(open squares). SF was induced by high frequency stimulation in the presence of D-APV (100 mM). B, SF was induced by high frequency stimulation
(100 Hz, 1 second) in slices containing both D-APV (100 mM) and cyclothiazide (100 mM). Dynasore (80 mM, open triangles) further increases SF
compared to fatigue of the same slices in the presence of vehicle (black circles) (F1,12 = 6.395, p = 0.026). SF increases in dynasore-treated slices already
at the 10th pulse during the tetanus (Mann-Whitney U35, 10 = 0.0001, p = 0.0159). The effect is reversed by washout with vehicle (open squares), re-
establishing SF to the values obtained prior to dynasore perfusion. C, SF is induced by high frequency stimulation (100 Hz, 1 second) in vehicle-
treated slices (black circles) containing both D-APV (100 mM), the GABAA receptor blocker picrotoxin (30 mM), the GABAB receptor blocker SCH 50911
(100 mM). Dynasore (80 mM, open triangles) further increases SF compared to fatigue of the same slices in the presence of vehicle (black circles)
(F1,12 = 6.395, p = 0.026). SF increases in dynasore-treated slices already at the 10th pulse during the tetanus (Mann-Whitney U159, 94 = 28.00,
p = 0.0356). The effect is reversed by washout with vehicle (open squares), re-establishing SF to the values obtained prior to dynasore perfusion. Data
shows dynasore-induced increase in SF is not associated to AMPA receptor desensitization or changes in GABAA/B responsiveness. Error bars indicate
SEM.
doi:10.1371/journal.pone.0091954.g002

Figure 3. Dynamin inhibition by dynasore affects LTP, a type of synaptic plasticity due to sustained activity in hippocampus. A,
Dynasore (80 mM, 20 minute perfusion, open triangles) decreases LTP induced by theta-burst stimulation in CA3–CA1 synapses compared to vehicle-
treated slices (black circles)(F1,10 = 9.081, p = 0.013). The horizontal bar indicates the period of perfusion with dynasore before tetanic stimulation. B,
Post-tetanus dynamin inhibition by dynasore (80 mm, 20 minute perfusion after the tetanus delivery, open triangle) induced by theta-burst
stimulation in CA3–CA1 synapses compared to vehicle-treated slices (black circles; F1,7 = 0.209, p = 0.662). The horizontal bar indicates the period of
perfusion with dynasore after tetanic stimulation. C, Basal synaptic transmission is unmodified by dynamin inhibition with dynasore. Averaged
evoked field potential slopes as a function of stimulation intensity measured in volts (V) at CA3–CA1 synapses in slices do not show significant
differences between vehicle-treated (black circles) and dynasore (80 mM, open triangles) treated slices (F1,11 = 40.081, p = 0.7013). D, Dynamin
inhibition by dynasore (open triangles; 80 mm, 20 minute perfusion before the tetanus) does not produce changes in solely post-synaptic LTP
induced by three tetani at 50 Hz for 1 second, each tetanus separated by 20 seconds, at the CA3–CA1 synapse compared to vehicle-treated slices
(black circles; F1,8 = 1.538, p = 0.250). The horizontal bar indicates the period of perfusion with dynasore before tetanic stimulation. Error bars indicate
SEM.
doi:10.1371/journal.pone.0091954.g003
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Synaptic plasticity and memory rely upon the dynamin 1
isoform

Dynamin has three different isoforms, dynamin 1–3. Given that

dynasore is not selective toward a specific dynamin isoform [13]

and to address concerns related to the specificity of pharmaco-

logical tools [7], we next examined both synaptic plasticity and

associative memory upon knocking down dynamin. Dynamin 1 is

pre-synaptically located and highly-expressed in neurons, whereas

dynamin 2 is located both pre- and post-synaptically and dynamin

3 is localized mostly post-synaptically [25]. Therefore, we decided

to block dynamin 1. Dynamin 1 knockouts are lethal at 2 weeks of

age [5]. Thus, we used a different genetic approach in which we

conjugated a small interfering RNA (siRNA) against dynamin 1

with penetratin [26]. In preliminary experiments, we demonstrat-

ed by quantitative Western blot analysis that dynamin 1 was

reduced by approximately 90% in primary hippocampal cultures

that were exposed to Penetratin1-conjugated dynamin 1-siRNA

(80 nM) for 48 hours prior to cell collection (Fig. 6A), whereas a

control siRNA did not affect dynamin 1 expression. Next, we

infused Penetratin1-conjugated dynamin 1-siRNA (80 nM in a

final volume of 1.5 ml over 1 minute, bilateral intrahippocampal

infusions twice a day for 3 days prior to electrophysiology or

behavior). We found a reduction in both contextual fear memory

and LTP (Fig. 6B–D). By contrast, controls, treated with

intrahippocampal infusion of Penetratin 1-conjugated siRNA

against luciferase, did not reveal any effect on memory and

LTP. These findings suggest a prominent role for dynamin 1 in

associative fear memory and synaptic plasticity phenomena

associated with sustained activity.

Discussion

The main finding of the present work is that dynamin 1 is

important for the formation of associative memory in hippocam-

pus. An additional finding is that both short- and long-term

plasticity phenomena caused by fast and prolonged activity and

Figure 4. Dynamin inhibition affects presynaptic mechanisms underlying synaptic plasticity evoked by sustained activity. A, Tetanic
efficiency, expressed as percent in evoked potential area across a train of 10 bursts at 5 Hz, each consisting of 4 pulses at 100 Hz, is reduced by
dynasore (80 mM, open bars) with respect to percent response area in vehicle-treated slices (black bars) (F1,9 = 12.071, p = 0.007). The reduction
reaches statistical significance at the third burst (Mann-Whitney U51, 15 = 0.00001, p = 0.0043); B, Dynasore (80 mM, open bars) already produces a
partial reduction of the area within the first group of 4 pulses at 100 Hz compared to vehicle-treated slices (black bars); C, Raw fEPSP signals recorded
during tetanic stimulation in vehicle-treated and dynasore (80 mM, 20 minutes before tetanus)-treated hippocampal slices. Calibration: 0.5 mV, 2 ms;.
D, Perfusion of hippocampal slices with dynasore (80 mM) in the presence of D-APV (100 mM) for 20 minutes prior to theta-burst stimulation
diminishes PTP to about 50% of the values obtained with vehicle perfusion (F1,12 = 6.924, p = 0.022). The effect was reversed by washout with vehicle.
Error bars indicate SEM.
doi:10.1371/journal.pone.0091954.g004
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thought to be linked to memory formation, depend upon dynamin

function. Specifically, we have demonstrated that SF, LTP, PTP,

and tetanus efficacy, all phenomena due to sustained release, are

markedly reduced following dynamin inhibition.

The involvement of dynamin 1 in memory function opens new

perspectives to studies on the function of the protein. Specifically,

it translates effects of inhibition of this isoform into animal

behavior, and memory in particular. These data are consistent

with the observation that shibirets1, a temperature-sensitive

dynamin mutant gene in Drosophila melanogaster, alters neuronal

mechanisms that are thought to be linked to learning and memory

[27]. Similar to dynamin, two other synaptic proteins, the t-

SNARE proteins SNAP-25 and syntaxin-1, are also required for

memory formation [28,29]. Interestingly, long-term memory

formation in fresh water pond snail Lymnaea stagnalis is associated

with increased expression of syntaxin 1 and dynamin 1 coincident

with elevated CREB 1 levels, and knockdown of CREB1

prevented memory consolidation and reduced expression of both

syntaxin and dynamin 1 [30]. Moreover, hippocampal dynamin-

binding protein mRNA expression is reduced with aging in rats

undergoing an inhibitory avoidance task [31]. Finally, a relation-

ship between dynamin 1 and memory was hypothesized in a

manuscript in which Btbd9 knock-out mice displayed an increase

in dynamin 1 expression together with enhanced synaptic plasticity

and memory [32]. Taken together, these observations support the

hypothesis that dynamin is activated during memory processes

concurrently with other proteins acting in the presynaptic

terminal.

The role of different forms of plasticity involving dynamin in

evoked release during sustained activity is also very interesting. It is

noteworthy to remark the fact that memory formation is not

always linearly paired with the level of neurotransmitter release as

one might assume a priori, given that other proteins are still able to

increase memory and synaptic plasticity while decreasing the

presynaptic input [33,34]. In the case of dynamin inhibition,

instead, we did observe a parallelism between memory and

plasticity and availability of presynaptic input. Consistent with this

finding, it has been shown that dynamin binds to the vesicle-

associated presynaptic protein synaptophysin, such that disruption

of the interaction between the two proteins results in a decrease of

transmitter release during high-frequency stimulation [35].

LTP at CA3–CA1 connection is not a single-compartment

phenomenon, but rather a mix of both presynaptic and

postsynaptic processes that independently strengthen the synapse.

Theta-burst CA3-CA1 LTP activates second messanger cascades

including the cAMP-PKA pathway either in the presynaptic

terminal to directly boost presynaptic function or in the

postsynaptic site to produce a retrograde messenger as well as

activate glutamate receptors and L-voltage-gated calcium channels

in the post-synaptic neuron [36–40]. By contrast, LTP induced

with a weaker tetanic stimulation (three tetani at 50 Hz, 1 sec

each, 20 second interval between tetani) is not affected by either

PKA or L-voltage gated calcium channels inhibition. Moreover,

this form of LTP induced with a weaker tetanic stimulation is not

accompanied by changes in signal decay rate of markers used to

monitor presynaptic functions (either FM 1–43 staining or spH

fluorescence) [11,41], indicating that it is not sensitive to

presynaptic changes. In our studies, we found that LTP induced

through a weak tetanic stimulation was not affected by the

dynasore treatment. This finding together with the lack of

modification in basal evoked post-synaptic responses indicates

that a brief application of dynasore does not interfere with

postsynaptic mechanisms. Thus, it is likely that dynamin regulates

LTP induced at high (theta-burst at 100 Hz) rather than at low

frequency (50 Hz) stimulation. Moreover, these data further

support the idea that dynamin functions in plasticity phenomena

consist of modulating vesicle release efficiency.

Recent evaluations of vesicle dynamics [7,42,43] might provide

an explanation for the memory and plasticity impairment

following dynamin inhibition. When dynamin is unable to

contribute to the endocytotic processes, whether by affecting the

vesicle pools or by disrupting the release machinery activity,

decreased vesicle availability may affect the neuron capability for

an effective synaptic release sustaining memory phenomena. This

effect might be particularly evident when assessing synaptic

plasticity during the high frequency tetanic stimulation, as

highlighted by the reduced evoked potential during tetanus in

the presence of dynamin blockage and by the lack of any effect of

dynasore when administered after the tetanic stimulation suggest-

ing, in turn, that dynamin inhibition affects memory acquisition.

Dynamin activity becomes essential for memory and plasticity

induced by high frequency stimulations, such as theta burst

stimulation, in line with the independent findings of Ferguson et al

[5] and Bartolomé-Martı́n et al [14] showing that dynamin

inhibition generates branched tubular membrane networks or

intense clusterization of vesicles, capped by clathrin-coated pits

upon intense exocytosis, limiting de facto the vesicle availability for

prompt release. This suggests that, at least at high frequency

stimulation, even the slow vesicle recovery due to the classic

clathrin-dependent/dynamin-dependent endocytosis is necessary

to compensate the intense vesicle use for rapid release due to

tetanic stimulation. Our data on contextual fear conditioning and

LTP are novel because they correlate the possible efficiency of

dynamin-dependent vesicle availability selectively with memory

and plasticity phenomena, while our data on basal synaptic

transmission confirm that synaptic potentials not evoked by

sustained release are not affected by residual vesicle availability

upon dynamin inhibition. Further investigations, beyond the scope

of this work, are required to discern whether solely the classical or

any alternative endocytotic pathways or even non endocytosis-

Figure 5. Dynamin inhibition with dynasore does not affect
paired-pulse facilitation, a type of synaptic plasticity that is not
linked with sustained activity. Paired-pulse-induced change is
calculated as the ratio of the slope of the second evoked field potential
to the first one at different interpulse intervals (1–1000 ms). Paired-
pulse ratio is not modified in dynasore (80 mM, open triangles) treated
slices with respect to vehicle-treated slices (black circles)(F1,12 = 0.339,
p = 0.914). No effect is observed by subsequent washout with ACSF
(open squares). Error bars indicate SEM.
doi:10.1371/journal.pone.0091954.g005
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related mechanisms are critical for dynamin-dependent memory

and synaptic plasticity.

In our studies, we provide both pharmacologic and genetic

proof of the involvement of dynamin in memory formation. There

are several advantages with using a genetic approach in addition to

a pharmacologic one. The experiments with dynamin 1 siRNA

provide an independent genetic validation of the findings with

dynasore. Furthermore, they demonstrate that the isoform 1 of

dynamin is active in memory and synaptic plasticity. Finally, they

offer precious insight into the complementarity of the three major

dynamin isoforms. Neither dynamin 2 nor dynamin 3 were

capable of compensating for the detrimental effect exerted on

cognition and plasticity by selective dynamin 1 knockdown

obtained through siRNA technique. Similarly, the presence of

dynamin 2 and 3 was not able to avoid death in dynamin 1-

knockout mice at two weeks of age [5]. Interestingly, dynamin 2 is

involved in slower forms of endocytosis than dynamin 1 [44]. By

contrast, dynamin 1, whose over-expression triggers recruitment of

clathrin–independent and dynamin-dependent vesicles, regulates

both fast and slow endocytosis [45]. Therefore, the differential

ability of the dynamin isoforms in modulating the neurotransmit-

ter vesicle availability over time may be relevant in terms of release

during fast stimulation [46] and controlling plasticity underlying

the onset of associative memory.

Figure 6. Selective dynamin 1 inhibition through siRNA impairs both synaptic plasticity and associative memory. A, siRNA specific for
murine dynamin 1 reduces protein expression. An example of western blot showing that Penetratin 1- conjugated dynamin 1 siRNA reduces protein
expression. Cells are lysed 48 hours after the treatment with siRNA. Dynamin 1 is detected using a rabbit polyclonal anti-dynamin1 antibody.
Penetratin 1- conjugated Control siRNA, that does not affect dynamin 1 expression, does not change protein levels. n = 3 for each group. B,
Penetratin 1- conjugated dynamin 1 siRNA (open bars) (80 nM in a final volume of 1.5 ml over 1 minute, bilateral injections twice a day for 3 days)
impairs contextual fear memory compared to control siRNA infused mice (grey bars) (Mann-Whitney U150, 126 = 21.00, p = 0.0089). Moreover, control
siRNA infused mice show similar amount of freezing as vehicle-infused animals (black bars). C, Penetratin 1- conjugated dynamin 1 siRNA (open bars)
does not modify cued fear memory compared to Penetratin 1- conjugated Control siRNA (grey bars) (Mann-Whitney U99, 90 = 44.50, p = 1.00) in mice
previously tested for contextual fear conditioning at 24 hours after the shock. D, Bilateral infusions of Penetratin 1- conjugated dynamin 1 siRNA
(open triangles) (80 nM in a final volume of 1.5 ml over 1 minute, repeated 2 times a day for three days) into dorsal hippocampi decrease LTP
compared to Penetratin 1- conjugated Control siRNA treatment (grey squares) (F1,9 = 5.578, p = 0.001). As an internal control, slices from vehicle-
infused animals (black circles) show similar amounts of potentiation as those from Penetratin 1- conjugated Control siRNA treated animals. Error bars
indicate SEM.
doi:10.1371/journal.pone.0091954.g006
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Genetic ablation of dynamin 1 produced a less marked effect

onto synaptic plasticity than the pharmacologic block with

dynasore. Possible explanations for the incomplete block of LTP

by the siRNA are likely to be linked to the fact that dynasore

inhibits multiple dynamin isoforms whereas the siRNA blocks

selectively dynamin 1, and/or that dynasore affects substrates

other than dynamins [47]. Interestingly, astrocytic dynamin 2

controls the recycling of the tissue plasminogen activator, a factor

regulating NMDA functions and glutamate release and regulated

itself by ambient glutamate [48]. Along this direction, dynamin 2

in glia might cooperate with dynamins in neurons to modulate

synaptic plasticity. Additionally, dynamin 3 but not dynamin 2,

when overexpressed, partially rescues the dynamin 1 knock-out

phenotype. Consistent with this observation, dynamin 1 and 3

conserve phosphorylation sites on key residues that are controlling

protein-protein interactions. Instead, phospho-sites on dynamin 2

are important for other functions [48]. Nevertheless, one should

keep in mind that dynamin 1 is the major dynamin isoform in

neurons [5] and levels of dynamin 2 and 3, as well as many other

proteins involved in synaptic transmission and endocytosis, are not

changed in dynamin 1 knock-out mice [49].

As previously reported, the level of neurotransmitter release

during ongoing activity may be regulated by the availability of

release-ready vesicles and, therefore, depends on the speed of

vesicle recruitment. In that sense, synaptic vesicles need to

undergo fast recycling to prevent depletion of the synaptic vesicle

pool [50]. Interfering with the endocytosis produces a fast,

stimulation-frequency-dependent depression of exocytosis [6].

This would prompt the likely idea that lack of release-prone

vesicles is actually due to the absence of recycled vesicles following

consumption of synaptic vesicles through exocytosis and slowed

rates of vesicle recycling producing, in turn, a reduction of synaptic

vesicles in the readily releasable pool [4,6]. However, this idea has

been confuted several times. For instance, both rapid and slow

endocytosis do not recycle vesicles within the readily releasable

pool [42]. Moreover, the exocytosis and endocytosis are thought to

be functionally independent of each other and therefore the

endocytosis block does not immediately affect subsequent exocy-

tosis [4,6]. Furthermore, the inhibition of vesicle replenishment by

folimycin (limiting de facto the number of vesicle recovered and

ready to be reused) does not mimic the clear stimulation-

frequency-dependent release depression after treatment with

dynasore or a clathrin inhibitor treatment, while it efficiently

blocks vesicular refilling [50]. Instead, these results suggest that

dynasore would interfere with the process of rapid clearance of

exocytosed vesicle components from the synaptic release sites [50],

as previously postulated [6,51]. These components include

synaptotagmin 1, a calcium sensor protein involved in both exo-

and endocytosis [52–54], and calmodulin [55]. If this interpreta-

tion of dynasore effect is conceivable, this means that dynamin,

along with other endocytic proteins, is essential for sustained

synaptic transmission well beyond its well-established role in

endocytosis [50].
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