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ABSTRACT

Background. Intrahepatic cholangiocarcinoma (ICC) is a sub-
typeofprimary livercancer that is rarelycurablebysurgeryand
is rapidly increasing in incidence. Relapsed ICC has a poor
prognosis, and current systemic nontargeted therapies are
commonly extrapolated from those used in other gastrointes-
tinal malignancies.We hypothesized that genomic profiling of
clinical ICCsampleswould identifygenomicalterationsthatare
linked to targeted therapies and that could facilitate a person-
alized approach to therapy.
Methods. DNA sequencing of hybridization-captured libraries
was performed for 3,320 exons of 182 cancer-related genes
and 36 introns of 14 genes frequently rearranged in cancer.
Sample DNA was isolated from 40 mm of 28 formalin-fixed
paraffin-embedded ICC specimens and sequenced to high
coverage.

Results. Themost commonlyobserved alterationswerewithin
ARID1A (36%), IDH1/2 (36%), and TP53 (36%) as well as
amplification ofMCL1 (21%). Twenty cases (71%) harbored at
least one potentially actionable alteration, including FGFR2
(14%), KRAS (11%), PTEN (11%), CDKN2A (7%), CDK6 (7%),
ERBB3 (7%),MET (7%), NRAS (7%), BRCA1 (4%), BRCA2 (4%),
NF1 (4%), PIK3CA (4%), PTCH1 (4%), and TSC1 (4%). Four (14%)
of the ICC cases featured novel gene fusions involving the
tyrosine kinases FGFR2 and NTRK1 (FGFR2-KIAA1598, FGFR2-
BICC1, FGFR2-TACC3, and RABGAP1L-NTRK1).
Conclusion.Two thirds of patients in this study harbored
genomic alterations that are associated with targeted ther-
apies and that have the potential to personalize therapy se-
lection for to individual patients. The Oncologist 2014;
19:235–242

Implications for Practice: The recent translation of next-generation DNA sequencing technology from the research laboratory to
clinical practice has enabled oncologists to personalize therapy decisions for each patient by targeting the genomic alterations
driving the disease. For tumors such as primary cholangiocarcinoma of the liver, this new ability to determine all of the major
genomic alterations (base substitutions, short insertions and deletions, copy number changes, homozygous deletions, and gene
fusions)onvery small formalin-fixedparaffin embeddedclinical samplesholdsgreatpromise that less toxic targeted therapiesmay
be available for patients currently being treated with conventional “one size fits all” approaches.

INTRODUCTION

Cancer of the bile ducts can arise within the liver as an
intrahepatic cholangiocarcinoma (ICC) or originate from extra-
hepatic bile ducts as a bile duct carcinoma [1–4]. ICC is the
second most common primary hepatic malignancy after he-
patocellular carcinoma and accounts for 3% of the malignant
tumors of the gastrointestinal system and 15% of primary
hepatic malignancies [1–4]. In that ICC has a routine histologic
appearanceofanadenocarcinoma,thediagnosisof ICCona liver
biopsyrequiresan immunohistochemicalstudyofthetumorand
a thorough clinical workup including imaging studies to rule out
a metastatic adenocarcinoma to the liver [1–4].

Numerous studies have indicated that the incidence and
mortality from ICC are increasing worldwide [1–4]. ICC is
associatedwith primary sclerosing cholangitis, parasitic biliary
infection, polycystic disease of the liver, congenital intra-
hepatic bile duct dilatation (Caroli’s disease), congenital
hepatic fibrosis, and choledochal cysts [1–4]. Chronic hepatitis
C infection is an established cause of ICC, with some studies
describing a more than 300-fold increase in ICC incidence in
patients with long-standing hepatitis C infections [5]. ICC has
also been associated with cigarette smoking, alcohol con-
sumption, and exposure to a variety of toxins and chemical
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carcinogens [1–4].The initial symptomsof ICC areoften vague,
typically arise late in the course of the disease, and include
abdominal pain, anorexia, and palpable abdominal mass
lesions [1–4]. The median survival is less than 6 months for
inoperable tumors and only 20%–40% for patients who
undergo surgery and achieve clear margins [6, 7].

A series of previously published studies using traditional
techniques have described a variety of gene mutations and
genomic alterations in ICC, includingwell-knowncancer-related
genes such as KRAS and BRAF [8–10]. Nevertheless, these
studies have focused predominantly on the causation and
progression of the disease and not on a search for potential
actionable genomic alterations that could lead to targeted
therapies. Although several oncogenic alterations are known to
influence ICC pathogenesis, the percentage of tumors express-
ing any given alteration remains low, limiting the ability to
developaneffectivetherapythatwouldbebroadlyapplicableto
the treatment of ICC. For each particular tumor, discovering the
limitednumberof targetable alterationswill require a sensitive,
specific sequencing assay capable of detecting all categories of
genomic alterations in a large number of cancer-related genes.
In the following study, ICC DNAextracted from clinical cases has
been studied in depth by next-generation sequencing to assess
how targeted therapies could be used to treat this devastating
disease. More than two thirds of tumors were found to have at
least one potentially clinically actionable alteration that sug-
gests sensitivity to targeted therapies.

This updated approach to characterizing ICC tumors has
also revealed several key concepts with the potential to guide
future research and affect the treatment of ICC [7]. First, the
prevalence of mutations within the RAS and PI3K pathways
strongly suggests that therapies targeting key components of
these signal transduction networks would be valuable for
many patients with ICC. Second, these results highlight driver
mutations that may facilitate the development of novel the-
rapeutic strategies. Receptor tyrosine kinase fusions previously
unidentified in ICC indicate that clinically available, targeted
inhibitors more commonly used in other tumor types will be
relevant for some patients. Furthermore, a host of mutations in
proteins related to cell-cycle control suggest that CDK inhibitors
under investigation in clinical trials may provide additional
treatment options for nearly a quarter of patients with ICC.

METHODS

Next-generation sequencing was performed on hybridization-
captured, adaptor ligation-based librariesusingDNAextracted
from four formalin-fixed paraffin-embedded (FFPE) sections
cut at 10 mm from 28 ICC that had clinically progressed after
either surgical resection and/or conventional chemotherapy.
The pathologic diagnosis of each case was confirmed on
routine hematoxylin and eosin-stained slides, immunohisto-
chemistry, and clinical/imaging evaluations to rule out the
possibilityofanonhepaticprimaryadenocarcinoma.Allsamples
sent for DNA extraction contained a minimum of 20% nuclei
derived from tumor cells. Sequence samples were obtained
from liver biopsies in 16 cases (59%), from liver resections in 10
cases (37%), a lymph nodemetastasis in 1 case (4%), and a lung
metastasis in 1 case (4%). DNA sequencing was performed for
3,320 exons of 182 cancer-related genes and 36 introns of 14
genes frequently rearranged in cancer on indexed, adaptor-

ligated, hybridization-captured fragments (Agilent SureSelect
custom kit; Agilent Technologies, Palo Alto, CA, http://www.
agilent.com) using 49-base pair paired reads on the Illumina
HiSEquation 2000 (Illumina Inc., San Diego, CA, http://www.
illumina.com) at an average sequencing depth of 1,1153.
Resultingsequencedatawereevaluatedforgenomicalterations
including point mutations, insertions, deletions, copy number
alterations (amplifications and homozygous gene deletions),
and select gene fusions/rearrangements, as described pre-
viously [11]. To maximize mutation-detection sensitivity in
heterogeneous ICC specimens, the test was validated to detect
base substitutions as well as short insertions and deletions at
a$10%mutantallele frequencywith$99%sensitivity. Publicly
available and custom analysis tools (FoundationMedicine, Inc.,
Cambridge, MA, http://www.foundationmedicine.com) were
used in combination to analyze the data and characterize
genomic alterations.

Actionability Classification
The genomic alterations detected were further divided into
two main classes of actionability: genomic alterations that
predict sensitivity or resistance to approved or standard the-
rapies and genomic alterations that are inclusion or exclusion
criteria for specific experimental therapies in National Cancer
Institute-registered clinical trials.

RESULTS

A total of 28 patient samples were analyzed, including tumors
from 10 male and 18 female patients with a mean age of 55.9
years (range:23–75years) (Table1).Ofthese,10hadundergone
an attempted curative hepatic resection operation and 18
underwent only a biopsy procedure (16 liver, 1 lymphnode, and
1 lung biopsies). Histology analysis showed 18 of the tumors to
be intermediate histologic grade 2 and 10 to be high histologic
grade 3.Thirteen of the 28 cases were confined to the liver and
without vascular invasion (or pathologic stage I), fivewere stage
II tumors (confined to the liverwithvascular invasion), fivewere
stage III tumors (localmetastasis), and fivewere stage IV tumors
with the tumor disseminated beyond the liver. Immunohisto-
chemical workup of the ICCwas available for review in 19 cases
(68%) (Table 2). All 19 cases expressed cytokeratin 7 (CK7), and
6 expressed CK19, whereas only 3 expressed CK20. Of the 16
ICCs stained for the CDX2 marker, 5 were immunopositive.
Immunostains to rule out nonhepatic primary tumors including
TTF1 for non-small cell lung cancer; ER, PR, HER2, mammoglo-
bin, and GCDFP for breast cancer; prostate-specific antigen for
prostate cancer; synaptophysin and chromogrannin for neuro-
endocrine carcinoma; and calretinin for mesothelioma were
uniformly negative in all cases when performed. AFP and
HEPAR1 immunostaining to rule out primary hepatocellular
carcinoma were used in three cases, and all were negative.

A total of 81 genomic alterations were identified in 35
geneswith an average of 2.9 alterations per tumor (range: 1–9
alterations) (Fig. 1, supplemental online Table 1). The most
common alterations were identified in ARID1A (36%), IDH1/2
(36%), TP53 (36%), andMCL1 (21%, all amplifications). In this
study, nine (35%) of the ICCs featured mutations in IDH1 and
one (4%) harbored a mutation in IDH2. Twenty cases (71%)
harboredat leastonepotentially actionable alteration,with an
average of 1.07 actionable alterations per patient including
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FGFR2 (14%), KRAS (11%), PTEN (11%), CDKN2A (7%), ERBB3
(7%),MET (7%), NRAS (7%), CDKN2A (7%), CDK6 (7%), BRCA1
(4%), BRCA2 (4%), NF1 (4%), PIK3CA (4%), PTCH1 (4%), and
TSC1 (4%) (supplemental online Table 1). Of the three KRAS
mutations identified in this study (12%), therewere two G12D
mutations and one G12C mutation. The cell-cycle regulation
pathway genes CDKN2A and CDK6were each altered in 7% of
the ICCs in this study. Four gene fusions involving protein
kinases were identified, including three fusions between
FGFR2andBICC1,KIAA1598, orTACC3andone fusionbetween
the kinase NTRK1 and RABGAP1L. Two of the three FGFR2
fusions (Figs. 2, 3) and the one NTRK1 fusion were novel
discoveries. Neither the type nor the frequency of gene
alteration was associated with patient age or gender. Two of
the FGFR2 fusions (67%) occurred in female patients and one
(33%) occurred in a male. No information was available with
regard to whether patients included in this ICC study also
suffered from inflammatory bowel disease or with regard to
therapy-specific clinical outcome.

The FGFR2-BICC1 fusionwas identified in a grade 2, stage II
ICC froma liver biopsy in a 75-year-oldman (case 2).This FGFR2

fusionhasbeenreportedpreviously in cholangiocarcinoma[10].
This tumoralso harboredamutation in IDH1.The second FGFR2
fusion was a novel FGFR2-KIAA1598 fusion identified as the
only mutation in a liver resection specimen of a moderately
differentiatedstage III ICC (case27) treatedwithmultiple rounds
of chemotherapy, from a 23-year-old female patient. The third
FGFR2 fusion was a novel FGFR2-TACC3 fusion in a pulmonary
metastasis froma grade3 ICC arising in the liver of a 44-year-old
woman. Finally, a third novel fusion, RABGAP1L-NTRK1, was
identified in the ICC from a 62-year-old woman on liver biopsy.

Two (7%) of the ICCs featured alterations in the mismatch
repair genes MSH2 and MSH6. Case 18 is a liver biopsy of
a grade 2, stage II ICC in an 83-year-old male patient with
a P1087fs*5 MSH6 mutation associated with additional mu-
tations inEPHB1,EPHA7,CDH1,PIK3CA, andARID1A, alongwith
anamplificationofMCL1.Case21isahigh-gradeadvancedstage
ICC diagnosed on a lymph node biopsy from a 46-year-old
female patient with anMSH2 homozygous deletion.This tumor
also featuredmutations in INHBA, BRCA2,TSC2, PTCH1, ERBB3,
TP53, and ARID1A. The high number of genomic alterations in
these two cases are consistent with a hypermutator genotype
associated with mismatch repair-deficient tumors.

DISCUSSION

This study identified multiple alterations in FGFR2, including
threegene fusions, and is thesecondreportofFGFR2 fusions in
primary hepatic cholangiocarcinoma. Amplifications and gain-
of-function mutations in FGFR genes have been reported in
several cancer types and linked to tumor growth, invasion, and
angiogenesis [12,13].FGFR2amplificationas seen incase7has
been reported in several cancer types, most frequently in
breast and gastric carcinomas [14, 15]. FGFR2 has been shown
tobeexpressed incholangiocarcinoma, leading toactivationof
theMEK1/2 pathway [16]. Amplifications of FGFR2 have been
uniformly linked to FGFR2 protein overexpression [14–16]. In
a recent study using whole-exome and whole-transcriptome
sequencing, FGFR2 fusions were identified in two of four
cholangiocarcinomas sequenced (50%) [12]. In both of these
cases, an FGFR2-BICC1 fusion was identified [12]. A similar
BICC1-FGFR2 fusionwas identified in case 19 of this series.The
FGFR2-BICC1 fusion results in truncationof the39UTRofFGFR2
and likely results in an upregulation of the FGFR2 protein.The
FGFR2-KIAA1598 fusion seen in case 27 of this study results in
truncation of the 39UTR of FGFR2 and may also result in
upregulation of the FGFR2 protein; however, this rearrange-
ment (Figs. 2, 3) has not been reported in cholangiocarcinoma
orothercancers, andthe functional consequencesareuncertain
at this time. The FGFR2-TACC3 fusion found in case 28 of this
study is also the first ICC found to harbor this alteration;
however, it was recently reported that 3% of glioblastomas
feature chromosomal rearrangements that fuse the tyrosine
kinase coding domains of FGFR1 or FGFR3 in frame to the
transforming acidic coiled-coil coding domains of TACC1 or
TACC3, respectively [17]. Regorafenib, which inhibits cellular
kinases including FGFR2, has been approved for treatment of
some metastatic colorectal cancer patients [18], and clinical
trials of multiple FGFR inhibitors are currently under way [19].
Finally, the RABGAP1L-NTRK1 fusion detected in case 2 of this
series has not been reported previously (based on database
searches of PubMed and COSMIC in January 2013), and NTRK1

Table 1. Clinical features of 28 cases of intrahepatic

cholangiocarcinoma

Case
no.

Patient
age

Depth of
sequencing
coverage Sex

Tumor
grade

Tumor
stage

1 64 1,329 F 2 1

2 68 1,348 F 2 1

3 59 793 M 2 1

4 54 351 F 2 2

5 58 1,078 F 2 3

6 59 382 M 2 2

7 47 288 F 2 4

8 48 1,242 F 2 1

9 50 980 M 2 4

10 46 564 M 3 4

11 56 1,370 F 3 2

12 58 1,434 F 2 1

13 49 1,047 F 3 1

14 69 1,318 M 3 1

15 64 174 F 3 2

16 54 1,132 F 2 2

17 50 1,062 F 2 3

18 83 1,273 M 2 3

19 75 1,511 M 2 1

20 76 1,417 F 3 1

21 46 1,447 M 3 1

22 71 1,099 M 2 2

23 65 1,675 M 3 1

24 66 1,184 F 2 4

25 NA 710 F 2 1

26 62 1,086 F 2 1

27 23 1,771 F 2 3

28 44 1,627 F 3 4

Abbreviation: NA, not available.
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alterations have not been analyzed or studied in cholangiocar-
cinoma. NTRK1 has been recently considered as a potential
target forneuroblastomaandmetastatic thyroidcancer [20,21].
Of potential interest is the recent report of a non-small cell lung
cancer patient whose tumor featured anMPRIP-NTRK1 fusion
and who responded to the kinase inhibitor crizotinib [22].

MET amplification has rarely been described in ICC but has
been associatedwith adverse clinical outcome [23–25]. In this
study, MET amplification of greater than six copies per cell
was found in two cases (7%). MET amplification may predict
sensitivity to MET inhibitors and has been linked to acquired
resistance to EGFRandERBB2 inhibitors [26]. In this study, 12%
of the cases featured a mutation or splicing modification of
PTEN, a tumor suppressor that negatively regulates the PI3K/
Akt/mTOR pathway [27]. PTEN mutations are rare in ICC (as
shown in the COSMIC database in July 2012), although loss of
PTEN expression has been associated with increased invasion,
advanced tumor stage, and shorter survival [28]. Loss of PTEN
maypredict sensitivity to inhibitors of PI3K [27], and themTOR
inhibitors temsirolimus and everolimus have been approved
for use in some tumor types. Inhibitors of PI3K and Akt are
currently in clinical trials in solid tumors, alone or in com-
bination with other therapies.

IDH1 and IDH2 are highly homologous and have similar
functions, and mutation hot spots in both genes are conserved
[29]. Alterations in IDH1 and IDH2 have been reported pre-
viously in cartilagenous tumors, gliomas, and leukemias [29].
Preclinical evidence now suggests that IDH1 and IDH2 alter-
ations are actionable [30]. Almost all (99%) of the somatic
mutations found in IDH1 are found at codon R132; this codon is
functionally conserved and aligns with R172 of IDH2 [30]. In this
study, eight (89%) of the IDH1 mutations were at codon 132,
with one mutation (11%) at another locus (G97D). A hetero-
zygous mutation at IDH1 codon R132 alters the activity of the
IDH1 enzyme, resulting in a decrease in antioxidant activity in
the cell [31–34]. The mutant enzyme promotes the reduction
of a-ketoglutarate to 2-hydroxyglutarate, with the coincident
conversion of NADPH to NADP1 [30]. Accumulation of d-2-
hydroxyglutarate, a potential oncometabolite, has been associ-
ated with cancers that possess mutations in the IDH genes
[32–35]. Mutations at codon 132 have been identified most
frequently in gliomas, acute myeloid leukemia, colon cancer,
prostate cancer, and chondrosarcomas (as shown in the COSMIC
database in June 2012) [31–33].

IDH1 mutations have been identified in 9% (38 of 436) of
biliary tract tumors analyzed in the COSMIC database (in May

Table 2. Selected immunohistochemical staining results

Case no. CK AE1, AE3 CK7 CK19 CK20 CDX2 CAM, 5.2 TTF1 Synaptophysin HePAR1 ER, GCDFP, Mammoglobin HER2

1 1 2 2 2 2

2 1 1 2 2 2 2

3 1 1 2 2

4 1 2 1 2

5 1 1 2 2 2

6

7

8

9 1 Weak 2 2 2 2

10

11

12 1 1 1 1 2 2 2

13 1 1 1 2

14

15 1 1 1 2 2 2 2 2 2

16 1 1

17 1 1 2 1 ER1/2, PR2, GCDFP2 2

18 1 Weak 1 2

19 1 1 2 2 2

20 1 Weak 2

21

22

23 1 1 Weak 2 2

24 1 2 1 2 2

25

26

27 1 Weak 2

28

Abbreviations:1, positive;2, negative.
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2013).Recently, IDH1and IDH2mutationswere identified in34
of 326 ICCs (10%) and associated with longer overall survival
for the disease in multivariate analysis [35]. IDH1 mutations
have been identified in 20% of intrahepatic cholangiocarcino-
mas, and mutation status correlated with increased IDH1
activity [32]. IDH2 amino acid R172 is a proposed substrate
binding site and represents one of two genetic hot spots for
cancer mutations in this gene [36]. A majority of somatic IDH2
mutations cluster to twomutation hot spots, R140 andR172, of
841 reported mutations: Mutations at R140 represent 69.9%
(588 of 841), and mutations at R172 represent 29.4% (247 of
841) (as shown in the COSMIC database in April 2012). IDH2
mutations have been found in hematopoietic and lymphoid
tissue (6%, 730 of 12,303), bone tumors (4%, 18 of 405), tumors
of the central nervous system(2%,90of 5,033), and skin tumors
(2%, 3 of 127) (as shown in the COSMIC database in December
2012). There are no reports of IDH2 mutations in biliary tract
cancers or other gastrointestinal tumor types in COSMIC (as of
May 2013). However, the IDH2R172Wmutation found in case 1
of this study was also identified in one cholangiocarcinoma
of 62 total cases in a previously published study [37]. No
therapies targeting this alteration are currently approved,
although therapies targeting the altered metabolic pathway
resulting from IDHmutations are currently in development.

Loss of the chromosomal region containing CDKN2A and
CDKN2B (9p21) has been reported in primary sclerosing
cholangitis-associated ICC [38]. Up to 25% of biliary tract
tumors harbor CDKN2A mutations (as shown in the COSMIC
database inNovember2012).Tumorswith lossof theCDKN2A/

CDKN2B locus may be sensitive to Cdk4/6 inhibitors, and
clinical trials of these agents are currently under way for
a variety of solid tumors. Of additional interest is the ob-
servation that, given the relatively frequent 21% rate ofMCL1
focal gene amplification in the ICC cohort, CDK inhibitors may
function by reducing MCL1 protein levels as their main
mechanism of action [39].

Thirty-eight percent of the ICCs sequenced in this study had
mutations in the ARID1A gene. ARID1A encodes the AT-rich
interactive domain-containing protein 1A, also known as
BAF250a, a member of the SWI/SNF chromatin remodeling
complex. ARID1A is believed to function as a tumor suppressor
[40]. ARID1A mutations have been reported in endometrial
cancer (50%, 2 of 4), head and neck squamous cell carcinoma
(50%, 3 of 6), ovarian cancer (34%, 97of 282), skin squamous and
basal cell carcinoma (29%, 2 of 7), gastric cancer (11%, 11of 101),
colorectal cancer (9%, 12 of 131), prostate cancer (9%, 2 of 23),
pancreatic cancer (8%, 15of 178), anda small percentageof lung,
breast, and kidney carcinomas and gliomas (as shown in the
COSMIC database in April 2012) [41]. Mutations span the length
of the ARID1A gene and include point mutations and small
deletionsandinsertions.TherearenoreportsofARID1Amutation
in cholangiocarcinoma (as shown in the COSMIC database in
April 2012), and there are no reports of ARID1A mutation in
cholangiocarcinoma in the literature. Presently, there are no
targeted therapies approved that target ARID1Amutations.

A variety of “one-off” single gene mutation studies have
looked at ICC and concluded that TP53 and KRAS are the most
frequently mutated genes found in this tumor type [42, 43].

Figure 1. Tile plot of genomic alterations in 28 cases of intrahepatic cholangiocarcinoma.
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Activating KRAS mutations have been observed in 20%–50%
of cholangiocarcinomas (as shown in the COSMIC database
in November 2012) [44, 45] and are associated with early
recurrence and poor overall survival in ICC [46]. Some in-
vestigators have also identified subsets of both extrahepatic
cholangiocarcinoma and ICC that appear to be driven by BRAF
mutations [47–49]. However, this study did not find any BRAF
mutations intheseriesof28ICCs,afindingalsoreportedbyothers
[50].TP53 alterations have been reported in 39% (232 of 596) of
biliarytractcancersandspecifically in41%(106of259)ofbileduct
carcinomas (as shown in the COSMIC database in June 2012).
Inactivation of TP53, through mutation, deletion, or LOH, has
been observed in 10%–61% of cholangiocarcinomas [51]. In this
study of ICC only, the TP53mutation frequency was 36%.

In this study, “actionable” genomic alterations have been
defined as those linked to a drug that is approved for the
tumor type in question or another tumor type but that tar-
gets the identified genomic alteration or pathway or that is
mechanistically linked to an agent in an active registered

clinical trial. Currently, there are no approved drugs for the
treatment of ICC. It should also be noted that some actionable
gene alterations actually are negative selectors that suggest
lackof benefit of use of the specific drugwhen the alteration is
present. In this approach, practicing oncologists are given
information that can guide therapy selection for their patients
in an efficient and straightforward manner.

CONCLUSION
WhenICCwascomprehensivelygenomicallyprofiledwithanext-
generation sequencing-based diagnostic assay, two thirds of
patients harbored potentially actionable genomic alterations
that have the potential to influence andpersonalize therapy and
guide the selection of targeted therapies approved or in clinical
trials. Given the limited treatment options and the poor
prognosis of patients with ICC and the diversity of actionable
alterations identified in this study, comprehensive genomic
profilinghas thepotential tomaximize the identification of new
treatment paradigms and to meet an unmet clinical need.

Figure 2. Diagram of FGFR2 gene fusions in three cases of intrahepatic cholangiocarcinoma.
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