Abstract
The x-ray absorption fine structure (XAFS) zinc K-edge steps for intact stages I,II and V,VI Xenopus laevis oocytes demonstrate that the zinc concentration is about 3 and 1 mM, respectively. However, the chi(k) function for the early stage oocytes differs markedly from that for the late one. Analysis of the XAFS data for stage I,II oocytes indicates that zinc is bound to 2.0 +/- 0.5 sulfur atoms at an average coordination distance of 2.29 +/- 0.02 angstroms and 2.0 +/- 0.5 nitrogen or oxygen (N/O) atoms at 2.02 +/- 0.02 angstroms. In marked contrast, in stage V,VI oocytes, zinc is bound to 4.1 +/- 0.4 N/O atoms at an average distance of 1.98 +/- 0.01 angstroms. Our previous studies demonstrated that 90% of the zinc in stage VI oocytes is sequestered within yolk platelets, associated with a single molecule, lipovitellin, the proteolytically processed product of vitellogenin. XAFS analysis of yolk platelets, lipovitellin, and vitellogenin demonstrates that zinc is bound to 4.0 +/- 0.5 N/O ligands at an average distance of 1.98 +/- 0.01 angstroms in each case, identical to that of stage V,VI oocytes. The higher shell contributions in the Fourier transforms indicate that two of the N/O zinc ligands are His in both stage V,VI and I,II oocytes. The results show that in stage I,II oocytes, there is a high concentration of a zinc protein whose zinc coordination site likely is composed of (His)2(Cys)2, such as, e.g., TFIIIA. As the oocytes develop, the predominant zinc species becomes one that exhibits the (His)2(N/0)2 zinc site found in lipovitellin. Hence, the ligands to the zinc atoms in intact oocytes and the changes that take place as a function of oogenesis and after their fertilization, during embryogenesis, now can be examined and explored.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banaszak L., Sharrock W., Timmins P. Structure and function of a lipoprotein: lipovitellin. Annu Rev Biophys Biophys Chem. 1991;20:221–246. doi: 10.1146/annurev.bb.20.060191.001253. [DOI] [PubMed] [Google Scholar]
- Bunker G., Stern E. A., Blankenship R. E., Parson W. W. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers. Biophys J. 1982 Feb;37(2):539–551. doi: 10.1016/S0006-3495(82)84699-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
- Falchuk K. H., Montorzi M., Vallee B. L. Zinc uptake and distribution in Xenopus laevis oocytes and embryos. Biochemistry. 1995 Dec 19;34(50):16524–16531. doi: 10.1021/bi00050a037. [DOI] [PubMed] [Google Scholar]
- Hanas J. S., Hazuda D. J., Bogenhagen D. F., Wu F. Y., Wu C. W. Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem. 1983 Dec 10;258(23):14120–14125. [PubMed] [Google Scholar]
- Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montorzi M., Falchuk K. H., Vallee B. L. Vitellogenin and lipovitellin: zinc proteins of Xenopus laevis oocytes. Biochemistry. 1995 Aug 29;34(34):10851–10858. doi: 10.1021/bi00034a018. [DOI] [PubMed] [Google Scholar]
- Montorzi M., Falchuk K. H., Vallee B. L. Xenopus laevis vitellogenin is a zinc protein. Biochem Biophys Res Commun. 1994 May 16;200(3):1407–1413. doi: 10.1006/bbrc.1994.1607. [DOI] [PubMed] [Google Scholar]
- Nomizu T., Falchuk K. H., Vallee B. L. Zinc, iron, and copper contents of Xenopus laevis oocytes and embryos. Mol Reprod Dev. 1993 Dec;36(4):419–423. doi: 10.1002/mrd.1080360403. [DOI] [PubMed] [Google Scholar]
- Papageorgiou A. C., Acharya K. R., Shapiro R., Passalacqua E. F., Brehm R. D., Tranter H. S. Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure. 1995 Aug 15;3(8):769–779. doi: 10.1016/s0969-2126(01)00212-x. [DOI] [PubMed] [Google Scholar]
- Soler D., Nomizu T., Brown W. E., Shibata Y., Auld D. S. Matrilysin: expression, purification, and characterization. J Protein Chem. 1995 Oct;14(7):511–520. doi: 10.1007/BF01886877. [DOI] [PubMed] [Google Scholar]
- Springman E. B., Angleton E. L., Birkedal-Hansen H., Van Wart H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):364–368. doi: 10.1073/pnas.87.1.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stifani S., Nimpf J., Schneider W. J. Vitellogenesis in Xenopus laevis and chicken: cognate ligands and oocyte receptors. The binding site for vitellogenin is located on lipovitellin I. J Biol Chem. 1990 Jan 15;265(2):882–888. [PubMed] [Google Scholar]
- Vallee B. L., Auld D. S. Functional zinc-binding motifs in enzymes and DNA-binding proteins. Faraday Discuss. 1992;(93):47–65. doi: 10.1039/fd9929300047. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Auld D. S. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry. 1993 Jul 6;32(26):6493–6500. doi: 10.1021/bi00077a001. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Falchuk K. H. The biochemical basis of zinc physiology. Physiol Rev. 1993 Jan;73(1):79–118. doi: 10.1152/physrev.1993.73.1.79. [DOI] [PubMed] [Google Scholar]
- Wallace R. A., Jared D. W. Estrogen induces lipophosphoprotein in serum of male Xenopus laevis. Science. 1968 Apr 5;160(3823):91–92. doi: 10.1126/science.160.3823.91. [DOI] [PubMed] [Google Scholar]
- Wallace R. A., Opresko L., Wiley H. S., Selman K. The oocyte as an endocytic cell. Ciba Found Symp. 1983;98:228–248. doi: 10.1002/9780470720790.ch13. [DOI] [PubMed] [Google Scholar]
- Yusko S. C., Roth T. F. Binding to specific receptors on oocyte plasma membranes by serum phosvitin-lipovitellin. J Supramol Struct. 1976;4(1):89–97. doi: 10.1002/jss.400040109. [DOI] [PubMed] [Google Scholar]
- Zhang K., Auld D. S. XAFS studies of carboxypeptidase A: detection of a structural alteration in the zinc coordination sphere coupled to the catalytically important alkaline pKa. Biochemistry. 1993 Dec 21;32(50):13844–13851. doi: 10.1021/bi00213a013. [DOI] [PubMed] [Google Scholar]
- Zhang K., Chance B., Auld D. S., Larsen K. S., Vallee B. L. X-ray absorption fine structure study of the active site of zinc and cobalt carboxypeptidase A in their solution and crystalline forms. Biochemistry. 1992 Feb 4;31(4):1159–1168. doi: 10.1021/bi00119a027. [DOI] [PubMed] [Google Scholar]