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Abstract
Label fusion is a multi-atlas segmentation approach that explicitly maintains and exploits the
entire training dataset, rather than a parametric summary of it. Recent empirical evidence suggests
that label fusion can achieve significantly better segmentation accuracy over classical parametric
atlas methods that utilize a single coordinate frame. However, this performance gain typically
comes at an increased computational cost due to the many pairwise registrations between the
novel image and training images. In this work, we present a modified label fusion method that
approximates these pairwise warps by first pre-registering the training images via a diffeomorphic
groupwise registration algorithm. The novel image is then only registered once, to the template
image that represents the average training subject. The pairwise spatial correspondences between
the novel image and training images are then computed via concatenation of appropriate
transformations. Our experiments on cardiac MR data suggest that this strategy for nonparametric
segmentation dramatically improves computational efficiency, while producing segmentation
results that are statistically indistinguishable from those obtained with regular label fusion. These
results suggest that the key benefit of label fusion approaches is the underlying nonparametric
inference algorithm, and not the multiple pairwise registrations.
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1 Introduction
Image segmentation is a fundamental problem in medical image analysis. Automatic
segmentation methods often require a priori knowledge in the form of training images that
have been manually segmented by an expert. A classical strategy is to summarize the
training data in a probabilistic atlas [1–6], which is used as a prior model in subsequent
segmentation.

An alternative approach, called label fusion, manipulates the training dataset in its entirety
[7–9]: each manual label map is transferred over to the novel subject’s coordinates via
pairwise registrations between the novel image and training images. These propagated labels
are then fused into a single segmentation estimate – a step that can be viewed as
probabilistic inference based on a nonparametric model of anatomical variability [10].
Several studies have demonstrated that label fusion outperforms the single-atlas approach
when the anatomical variability is too high to be accurately captured by mean statistics [10–
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12]. Two possible causes for performance differences between the two methods are
commonly hypothesized. First, the nonparametric model captures inter-subject variability
more accurately. Second, the multiple pairwise registrations provide robustness against
inevitable small registration errors. This performance improvement however comes at a
significant computational cost. In contrast, a single registration step is required to align a
parametric atlas to a novel image.

In this paper, we present a modified label fusion method that co-registers the training images
into an unbiased coordinate frame using a diffeomorphic transformation model. To segment
a novel image, a single pairwise registration is performed with the template that represents
the average training subject. This transformation is then concatenated with the individual
transforms of the training subjects to the average space obtained in the groupwise
registration to compute pairwise warps between each training image and the novel image.
By performing a priori groupwise registration, the proposed approach dramatically reduces
the computational burden compared to a typical label fusion implementation that requires
many individual pairwise registrations during the segmentation phase.

Groupwise registration has previously been used in the context of label fusion [13, 14] to
reduce the size of the employed training set by identifying training images most similar to
the novel scan. In contrast, we propose to use the entire training set but reduce
computational burden by relying on a single coordinate system. Using cardiac MR data, we
demonstrate that the proposed method achieves comparable segmentation accuracy at a
fraction of the computational cost of regular label fusion. Our experiments further suggest
that when state-of-the-art registration procedures are used, the nonparametric inference
approach, and not the multiple pairwise registrations, is at the core of the superior
performance of label fusion algorithms.

The paper is structured as follows. We begin by discussing label fusion segmentation
methods in Section 2. We continue by describing the registration approaches we employ in
this work in Section 3, in particular the algorithm we use to perform groupwise registration
of the training images to an average space. We then present our results in Section 4 and
conclude with a discussion of their implications in Section 5.

2 Label Fusion
Label fusion can be interpreted as an inference algorithm based on a nonparametric
probabilistic model [10]. In this framework, the spatial transformations that map training
image coordinates to the test image are assumed to be known. Here, we use a variant of label
fusion, called local label fusion, that combines the propagated labels, encoded as
probabilistic priors, in a weighted fashion. The weights vary spatially and depend on the
local intensity differences between the novel image and corresponding training image.

Let {In, Ln} denote the set of N training images and corresponding label maps, i.e., manual
segmentations (n = 1, … , N). Let I denote the novel image to be segmented and

 denote the spatial transformation that maps the coordinates of the novel image
to the nth training image frame. Once the transformations {ψn} are computed, segmentation
reduces to voxel-level averaging:

(1)
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Similar to [10], the weight term  encodes the
local intensity similarity between the two images and the vote term

, where  denotes the signed Euclidean
distance transform of the warped label map, represents the propagated label prior from the
nth training subject.

A special case of this model that can be derived with σ → ∞ is “majority voting”, where the
segmentation at each voxel is simply the most frequent training label [7, 9]. Since this
approach ignores local intensity information, it effectively thresholds the probabilistic atlas
computed from propagated label maps.

3 Registration
Any label fusion segmentation scheme relies on the spatial transformations {ψn} that map
the novel image coordinates to each training image. In this work, we compare two different
methods to estimate these transformations.

Pairwise registration
The standard approach is to apply pairwise registration between each training image and the
novel image. We employ an efficient, Demons-based diffeomorphic method to perform
pairwise registration [15]. The algorithm parametrizes the spatial diffeomorphism with a
stationary velocity field , via a temporal differential equation ∂φ(x, t)/∂t = v(φ(x,
t)) with φ(x, 0) = x. The registration warp φ(x) is the solution of the PDE at t = 1; φ(x, 1) =
exp(v)(x). Given the velocity field v, the corresponding φ can be efficiently computed via
the scaling and squaring method, and the inverse can be obtained as φ−1 = exp(−v) [15]. The
algorithm efficiently seeks a spatially smooth transformation that minimizes the mean
squared error between the two images.

Groupwise registration
The alternative strategy we explore here involves performing groupwise registration on the
training data. Similar to prior work [16, 17], we build on a pairwise registration tool, namely
the diffeomorphic Demons algorithm, to perform groupwise alignment. The algorithm
iterates between computing the template T, which represents the average image, and
performing pairwise registrations between the template and the individual training images.

To perform groupwise registration, it is necessary to define a constraint to avoid drift of the
average template and guarantee an unbiased average coordinate system. When working with
the stationary velocity field parametrization, one way to achieve this goal is to constrain the
average velocity field at each voxel to be zero:

(2)

At each iteration of our implementation, we first register the current template to each of the
training images, which produces a velocity field vn for each training image In. We then
adjust each velocity field

(3)
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where  is the common component of the velocity fields.

This guarantees that the average velocity field across the training images is zero.
Furthermore, since exp(v – u) ≈ exp(v ○ exp(−u) for a small u and any v [20], the overall
correspondences across the images remain approximately intact after the normalization of
Eq. (3).

Once all images have been registered to the current estimate of the template, we update the
template as a weighted average of the warped images [16, 21]:

(4)

where ∣ · ∣ denotes the matrix determinant, ▽ denotes the Jacobian matrix with respect to the

spatial coordinates, and . The Jacobian terms ensure a
probabilistically consistent model [21, 22].

To summarize, each iteration of the groupwise registration algorithm consists of the
following three steps:

1. Pairwise registrations between the current template T and individual images In
using the diffeomorphic Demons registration algorithm [15].

2. Normalization of each resulting velocity field as in Eq. (3).

3. Update of the template as in Eq. (4).

To initialize the template image, we perform affine registration between all pairs of images.
We then choose the image that has the smallest average deformation magnitude, meaning it
is the least biased, as the initial template. To make sure the initial template is truly unbiased,
i.e., its coordinate frame satisfies Eq. (2), we apply the inverse of the average velocity field
to the “least biased” image. This warped image is then used as the template T in the first
iteration.

During segmentation, we align a novel image with the group of co-registered training
images by simply performing a pairwise registration with the final template T. This yields a
spatial correspondence to all the individual training images via the atlas coordinate system.
The spatial mapping ψn from the novel image coordinates to the nth training image can
therefore be obtained by concatenating the inverse of the transformation from the atlas to the
novel image with the transformation from the atlas to the nth training image.

4 Experiments
To evaluate the proposed method, we automatically segment the left atrium of the heart in
magnetic resonance angiography (MRA) images. This is a particularly challenging
segmentation problem because of the high anatomical variability of the left atrium across
subjects. We used a set of 16 electro-cardiogram gated (0.2 mmol/kg) Gadolinium-DTPA
contrast-enhanced cardiac MRA images (CIDA sequence, TR=4.3ms, TE=2.0ms, θ=40°, in-
plane resolution varying from 0.51mm to 0.68mm, slice thickness varying from 1.2mm to
1.7mm, ±80 kHz bandwidth, atrial diastolic ECG timing to counteract considerable volume
changes of the left atrium). The left atrium was manually segmented in each image by an
expert.
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We implemented label fusion using two registration strategies: (1) computing individual
pairwise registrations between all training images and the test subject (“pairwise”
registration), and (2) obtaining these transformations via groupwise pre-registration of the
training set (“groupwise” registration), as described in the previous section. For each of
these methods, we segmented the left atrium using both local label fusion (LF) and majority
voting (MV) algorithms. In addition, we implemented the standard parametric EM-
segmentation algorithm (EM) [5, 6] as a benchmark. The EM algorithm used the groupwise
registered training data to compute a probabilistic spatial prior in the atlas coordinates.

In our experiments, we varied the number of training subjects from 1 to 13, and for each
such number we sampled 10 different training sets from the full image set. In each case, we
randomly chose 3 test subjects that were not part of the training set, yielding 30
segmentations per number of training subjects. We used the Dice score [23] and the mean
Hausdorff distance [24], to quantify the agreement between an automatic and corresponding
manual segmentation. The Dice score ranges from 0 to 1 and measures volumetric overlap,
while the Hausdorff distance is a measure of the average physical distance between the
boundaries of two regions.

Fig. 1 shows the average Dice and Hausdorff measures obtained with all five methods for
different sizes of the training set. Unsurprisingly, all methods tend to benefit from a larger
training set, yet with diminishing returns for higher numbers. We further observe that local
label fusion consistently outperforms both majority voting and the traditional parametric
EM-segmentation approach. Moreover, the “groupwise” and “pairwise” registration
strategies yield comparable accuracy for local label fusion. In the case of majority voting,
the segmentation quality using the “pairwise” strategy yields only slightly better results. Fig.
2 provides a direct comparison between “groupwise” and “pairwise” variants of each metod,
by reporting the average of the difference between the individual-level Dice and Hausdorff
measures computed for each test subject. These results suggest that computing all the
pairwise registrations between the training images and the test image offers little, if any,
improvement in segmentation accuracy over using the groupwise pre-registration approach.
Fig. 3 shows example segmentation results on an image slice to illustrate the qualitative
differences between the methods.

The computation times for each approach on a modern 12-core machine are shown in Table
1. Each iteration of the construction of the groupwise atlas involves N non-rigid registrations
(6 min. each), normalizing the velocity fields (7 min.) and computing the updated average
template (2.5 min.). We observed that the algorithm converged to a stable template image
after 4 such iterations. Although these computations are expensive, they are done offline,
prior to the segmentation of a new subject. Local label fusion that uses the groupwise atlas
requires bringing the atlas to the coordinate frame of the test subject via a single registration
(6 min.). Finally, in local label fusion using pairwise registrations, the subject-specific
nonparametric atlas is built for each new test subject by performing N registrations (6 min.
each).

5 Conclusion
We presented a novel strategy that dramatically improves the computational efficiency of
label fusion, while having minimal effect on segmentation quality. In this approach, the
training data is pre-registered into a common coordinate system, similar to single-atlas
segmentation methods. The novel image is then aligned to this space, which enables the
computation of pairwise warps between each training image and the novel image via
concatenation of individual transformations. The training images and label maps are then
propagated to the coordinates of the new subject to perform nonparametric label fusion
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segmentation. Our experimental results also provide insight into these segmentation methods
by suggesting that, when a sufficiently accurate diffeomorphic registration procedure is
used, the improved segmentation quality of label fusion is likely due to the nonparametric
inference strategy and not to multiple pairwise registrations between the training data and
novel image.

Performing label fusion segmentation by pre-registering the training data removes a layer of
robustness since the result hinges on a single registration between the average atlas template
and the new subject. In practice, catastrophic failures in this registration should be easy to
detect and recover from automatically, for instance by choosing a different initialization. We
also found that these occur in only approximately 1% of the cases in our data. Further
investigation of this question, along with experiments on larger and more varied datasets are
interesting future directions of research.
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Fig. 1.
Comparison of left atrium segmentation results for different methods showing (a) average
Dice overlap scores and (b) mean Hausdorff distances between automatic and expert manual
segmentations for increasing numbers of training subjects.
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Fig. 2.
Average matched pairwise differences between (a) Dice overlap scores and (b) mean
Hausdorff distances resulting from different methods.
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Fig. 3.
Example segmentation results for one image slice: (a) groupwise and (b) pairwise local label
fusion, (c) groupwise and (d) pairwise majority voting, and (e) parametric EM-
segmentation.
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Table 1

Computation times per test subject for N training subjects (in minutes).

Method Atlas Construction Registration to Test Subject Segmentation

Groupwise LF / MV (6N + 7 + 2.5) × 4 6 1

Pairwise LF / MV 0 6N 1

Groupwise EM (6N + 7 + 2.5) × 4 6 6
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