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Abstract
Puberty is a critical period of development during which the reemergence of gonadotropin
releasing hormone secretion from the hypothalamus triggers a cascade of hormone-dependent
processes. Maturation of specific brain regions including the prefrontal cortex occurs during this
window, but the complex mechanisms underlying these dynamic changes are not well understood.
Particularly, the potential involvement of epigenetics in this programming has been under-
examined. The epigenome is known to guide earlier stages of development, and it is similarly
poised to regulate vital pubertal-driven brain maturation. Further, as epigenetic machinery is
highly environmentally responsive, its involvement may also lend this period of growth to greater
vulnerability to external insults, resulting in reprogramming and increased disease risk.
Importantly, neuropsychiatric diseases commonly present in individuals during or immediately
following puberty, and environmental perturbations including stress may precipitate disease onset
by disrupting the normal trajectory of pubertal brain development via epigenetic mechanisms. In
this review, we discuss epigenetic processes involved in pubertal brain maturation, the potential
points of derailment, and the importance of future studies for understanding this dynamic
developmental window and gaining a better understanding of neuropsychiatric disease risk.

Introduction
The brain undergoes critical organizational changes during the pubertal window, when
reemergence of gondadotropin releasing hormone (GnRH) triggers a cascade of hormone-
dependent processes. While previous reports have primarily focused on the classic role of
hormones in driving neural and behavioral maturation during puberty, epigenetic
mechanisms may also play an important role in guiding pubertal brain development. Further,
epigenetic machinery is highly responsive to the environment and therefore may lend to this
period of growth a greater vulnerability to external insults. As epidemiological studies
demonstrate, individuals who experience early life adversity prior to and during puberty are
at increased risk for psychiatric disease, especially affective disorders (Heim et al., 2010;
Kendler and Eaves, 1986; Kendler and Gardner, 2011; Kendler et al., 1993; Stein et al.,
1996; Wise et al., 2001).

The epigenome has been implicated in development from its earliest phase, as epigenetic
stability is globally perturbed when gametes fuse, allowing the newly formed zygote to
reacquire totipotency (reviewed in (Cantone and Fisher, 2013)). Disruption of the normal
epigenetic environment during early development has serious consequences, and epigenetic
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dysfunction is a significant factor in precipitating human genetic disorders (as reviewed in
(Berdasco and Esteller, 2013)). The epigenome is similarly poised during puberty to both
regulate development and to potentially affect disease risk, though these regulatory
mechanisms of pubertal development are largely understudied. However, recent evidence
linking polycomb group protein-driven transcriptional silencing to the timing of pubertal
onset in female rodents offers some insight into the relationship between the epigenome and
puberty (Lomniczi et al., 2013). In this review, we focus on the proposed role of epigenetic
mechanisms in driving pubertal brain development, both under normal conditions and in the
face of external perturbations.

Maturation of the nervous system during puberty
Following a period of relative quiescence during childhood, massive brain reorganization
and maturation occurs during puberty. Typical development of adolescent brain structure
and activity has been examined in humans, where puberty is associated with a peak and
subsequent decline in cortical grey matter and a continual, though sexually dimorphic,
increase in cortical white matter volume, in both the frontal and parietal lobes (Giedd et al.,
1999; Perrin et al., 2008; Pfefferbaum et al., 1994). Task-dependent brain activity also
changes during adolescence. For example, improved performance on executive function
tasks measuring working memory and response inhibition is associated with increased
activity in the prefrontal and parietal cortices (Adleman et al., 2002; Kwon et al., 2002; Luna
et al., 2001; Rubia et al., 2000). The development of important limbic brain areas, including
the prefrontal cortex, hippocampus, and amygdala, has been demonstrated in animal models
as well (Isgor et al., 2004; Lee et al., 2003; Matsuoka et al., 2010; Scherf et al., 2013).

Differences in pubertal brain development between males and females highlight the role of
gonadal hormones during this window. Though the sex-specific programming of neural
maturation is widespread, the majority of studies examining sex differences during puberty
focus on the neural circuitry controlling the activation of reproductive behaviors. Evidence
in rats suggests that new cells are added in a sex-dependent manner to brain regions that
control reproductive behavior, with more cells being added to the male sexually dimorphic
nucleus of the preoptic area and medial amygdala and more cells being added to the female
anteroventral periventricular nucleus of the hypothalamus (Ahmed et al., 2008). These sex
differences in the number of newly added cells directly correspond to sex differences in
adult volume, suggesting that the effects programmed during puberty are long lasting.
Gonadectomy prior to puberty eliminates such sex differences, indicating that gonadal
hormones are key in driving the addition of new cells during puberty that sustain these
sexual dimorphisms in adulthood. Studies in sheep have similarly described sex-specific
changes in the morphology of specific limbic system brain nuclei during puberty (Nuruddin
et al., 2013). Following GnRH release, both male and female sheep show reduced amygdala
volume, although this loss is more substantial in females. These changes are dependent upon
GnRH action at its receptor, as pharmacological blockade of the hypothalamic-pituitary-
gonadal axis via a GnRH agonist results in a larger amygdala volume in both males and
females. Together, these data suggest that aspects of normal brain development are
dependent upon intact gonadal hormone levels, and represent an important organizational
effect of the gonadal hormone surge during puberty.

While it is clear that processes initiated or guided by gonadal hormone action are integral to
pubertal maturation, sexually dimorphic physiology and behavior may also originate
independent of gonadal hormone levels. Investigation of the role of the sex chromosome
complement (XX versus XY) independent of the hormonal milieu has been achieved with
the use of the “four core” genotype mice, a line of mice where the testes determining factor
gene, Sry, has been transposed onto an autosome, producing gonadal females (XX or XY-
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Sry, with ovaries) and males (XY or XX+Sry, with testes) (De Vries et al., 2002). Studies in
these mice have demonstrated a partial dissociation between the role of sex chromosomes
and the action of gonadal hormones in brain maturation and associated behaviors. Sex
chromosomes contribute directly to the development of sex differences in the arginine
vasopressin (AVP) system, social exploration, and reproductive behavior in adults, as
indicated by both male and female XY mice being more masculine than XX mice (De Vries
et al., 2002). Gonadal hormones primarily mediate other sexual dimorphisms, including
cortical thickness and progesterone receptor expression, as mice with testes, irrespective of
sex chromosome complement, are more masculine on these measures than mice with ovaries
(Markham et al., 2003; Wagner et al., 2004). In contrast, behaviors such as intruder-directed
aggression and maternal pup retrieval are determined by the interaction of both sex
chromosome complement and gonadal hormone levels, as females but not males with XX
differ from females with XY complement (Gatewood, 2006).

The complex processes guiding both sex-dependent and -independent pubertal maturation
require precise chromatin regulation, and therefore suggest underlying epigenetic regulation.
Modifications to the epigenome, by affecting gene expression without altering DNA
sequence, mediate long-lasting changes in gene transcription and may serve as the link
between environmental influences and gene transcription (Jessen and Auger, 2011). The
most common epigenetic modifications include methylation of cytosines within CpG islands
and histone modifications, chiefly the acetylation or methylation of core histone proteins
(McCarthy et al., 2009; Meaney and Ferguson-Smith, 2010). Additionally, small noncoding
RNAs, including microRNAs (miRs), are increasingly identified as important epigenetic
modulators of neurodevelopment, largely due to their vast post-transcriptional regulation of
protein-coding genes (Morgan and Bale, 2012).

Studies focused on the epigenetic control of normal pubertal brain maturation are limited;
however, one notable example recently linked pubertal onset in females to methylation-
driven epigenetic silencing (Lomniczi et al., 2013). The initiation of puberty in females is
associated with specific changes in gene transcription, including increased gene expression
of kisspeptin (kiss1) in the medial basal hypothalamus. Kiss1 neurons play many important
roles in reproductive endocrinology, including the direct innervation and stimulation of
GnRH neurons (Oakley et al., 2009). Lomniczi et al. demonstrated that increased promoter
methylation and decreased expression of two polycomb group proteins leads to disinhibition
of kiss1 expression and onset of estrous cyclicity, signaling pubertal onset. Further, chronic
pharmacological inhibition of DNA methylation prior to puberty onset results in a pubertal
delay. Upstream of DNA methylation regulation, disruption of histone deacetylation has
been similarly shown to induce pubertal failure (Ojeda et al., 2010). Further evidence of the
epigenetic control of pubertal onset was offered in the regulation of the GnRH gene itself,
where distinct changes in methylation of the GnRH promoter were demonstrated across
puberty in the rhesus monkey (Kurian and Terasawa, 2013). Additional insight into the
epigenetic regulation of pubertal brain maturation can be inferred by exploring the role of
epigenetic machinery in processes integral to pubertal development—gonadal hormone
activity and the establishment of sex differences.

DNA Methylation
Much of the sex-specific brain programming during puberty depends upon the availability of
gonadal hormone receptors, and, importantly, several studies suggest that the DNA
methylation status of gonadal hormone receptors may influence their expression. Increased
methylation has been associated with decreased expression of the estrogen receptor alpha
(ERα), estrogen receptor beta (ERβ), and the progesterone receptor (Prewitt and Wilson,
2007; Westberry et al., 2011; 2010). The developmental time course of methylation of these
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genes has been examined in the rat. While there do not appear to be changes in methylation
of either ERβ or progesterone receptor from birth through adulthood in the preoptic area or
medial basal hypothalamus, areas of high receptor expression critical for the production of
male and female sexual behavior, ER methylation increases over time, suggesting that its
regulation is important in the processes of early neurodevelopment (Schwarz et al., 2010).
The methylation status of ERα also increases during early development in the cortex, with
significantly more methylation at postnatal day (PN) 18 and 25 compared to PN 2 and ERα
mRNA levels that negatively correlate with methylation (Prewitt and Wilson, 2007;
Westberry et al., 2010). Further, data suggest that ERα methylation is initiated by DNA
methyltransferase (DNMT) 3a, the known de novo methylation enzyme, and maintained by
DNMT1, the maintenance enzyme (Westberry et al., 2010). DNMT3A levels peak at PN 10
and fall back to low expression by PN 25, while DNMT 1 levels increase concomitantly and
remain high in adulthood. A similar increased methylation and reduced expression of ERβ
has been reported throughout the cortex during the natural progression of reduced
circulating hormones in aging (Westberry et al., 2011). This increased ERβ methylation was
also associated with increased cortical DNMT 1 and 3α expression, again suggesting a
mechanism whereby local methylation levels are interrelated with gonadal status.

Additionally, changes in DNA methylation may drive sex differences in hormone receptor
expression and the programming of related behaviors. As early as PN 1, females have
increased methylation of ERα compared to males, suggesting that sex differences in the
processes governed by this receptor, such as programming reproductive behaviors, are
epigenetically driven. Disruption of local DNA methylation stability has been used to
examine sex differences in important pubertal behaviors, such as social play (Forbes-
Lorman et al., 2012; Kurian et al., 2008). The sexually dimorphic organization of the
amygdala influences many social behaviors into adulthood (Forbes-Lorman et al., 2012).
Specifically, the expression of AVP in the amygdala is typically higher in males, and it is
linked to many social behaviors displayed predominantly in males, especially juvenile social
play. Transiently reduced expression of the methyl binding protein MeCP2 at PN 1-3
eliminated the sex differences in AVP expression and in juvenile social play behaviors
(Kurian et al., 2008). Similarly, gonadectomized males showed significant alterations in
methylation patterns and gene expression in the bed nucleus of the stria terminalis (BNST),
another sexually dimorphic brain region programmed during puberty, with castrated rats
having decreased methylation and increased expression of ERα and increased methylation
and reduced expression of AVP compared to intact males (Auger et al., 2011). These effects
were reversed by testosterone replacement, supporting a possible role for gonadal hormones
to regulate gene expression through epigenetic mechanisms.

It should be noted that while the classic dogma for the relationship between DNA
methylation and gene expression is one of increasing methylation resulting in decreased
expression, there is now growing evidence supporting a more complex relationship
(reviewed in (McCarthy and Nugent, 2013)). For example, methylation status may be
indicative of past, not future, gene expression and therefore not be predictive. Additionally,
the association of methylation status with gene repression may vary with the location of
methylation along the gene. Further, research has shown that methylation, via MeCP2, can
attract transcriptional activators such as CREB1 and therefore increase gene expression
(Chahrour et al., 2008). Thus, interpretation of methylation data should be carefully
undertaken with the caveat of our yet incomplete understanding of the full effects of
methylation.
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Histone acetylation
Histone acetylation is an important epigenetic modification critical to all gene transcription,
with specific histone marks playing a role in early development and likely contributing to
pubertal maturation as well. There is a sex difference in the medial preoptic area in the
acetylation of histones associated with promoters of ERα and aromatase genes and in the
binding of histone deacetylase (HDAC) 2 and 4 to their promoters at PN 1-3 (Matsuda et al.,
2011). HDAC binding is increased in males compared to females, indicating that males have
lower acetylation of these promoters. The increased HDAC binding in males is key to
programming male sexual behavior, and global HDAC inhibition in neonatal rats results in a
disruption of adult behavior. Another brain region, the BNST, which is larger in volume and
contains more cells in males than in females, is dependent on testosterone exposure during
early neonatal life (Murray et al., 2009). Treatment with the HDAC inhibitor, valproic acid,
on PN 1 significantly reduced both the volume and cell number in the BNST of males and
testosterone-treated females, thereby eliminating the sex difference in the size of this brain
region. In addition, this reversal in morphology was linked with a reversal in reproductive
behaviors associated with the BNST. These results demonstrate that histone acetylation
during early postnatal life plays a critical role in brain masculinization, and provides a
potential mechanism by which the sexually dimorphic brain organization during puberty
may be similarly regulated by gonadal hormone-mediated changes in histone marks.

microRNAs
Appropriate regulation of gene expression results from a controlled balance between
transcriptional and post-transcriptional mechanisms. miRs are small non-coding RNAs that
regulate posttranscriptional gene expression by affecting the stability or translational
efficiency of specific mRNA targets (Bartel, 2004). An individual miR can directly target
more than a hundred different mRNA targets. In fact, one genome-wide bioinformatics
study annotated more than 45,000 conserved miR binding sites in the 3’ UTR of 60% of
human genes (Friedman et al., 2008). Together, these characteristics indicate that this mode
of regulation can enact far-reaching programmatic effects and should be viewed as a major
component of an integrated gene expression regulatory mechanism (Baek et al., 2008;
Selbach et al., 2008).

Initial studies characterizing the impact of gonadal steroids, including dihydrotestosterone,
progesterone, and estradiol on miR expression patterns have generally involved the analyses
of steady-state mature miR levels, often in hormone-responsive tumor samples (Klinge,
2012; Kuokkanen et al., 2010; Waltering et al., 2010). More recently, studies have
demonstrated that the miR environment of the brain is responsive to gonadal hormones and/
or sex during windows of dynamic hormonal change, including the perinatal window of
brain masculinization and menopause (Morgan and Bale, 2011; Rao et al., 2013). In
agreement with these studies, we have recently examined sex differences in miR expression
patterns in the PN 28 prefrontal cortex, a brain region undergoing sex-biased development
during puberty, and found remarkable sex-specific patterns of expression here (Figure 1).
Unbiased hierarchical clustering of the expression patterns of 249 of the most abundant
miRs completely segregated male and female samples into distinct clusters. These findings
support the likely importance of these epigenetic mediators in the sexually dimorphic
development of the brain during the peripubertal period.

The adolescent brain epigenome: poised to respond to environmental
perturbations

In addition to guiding normal pubertal brain maturation, the epigenome may shift the
trajectory of nervous system development following environmental challenge during the
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pubertal period. Alterations in epigenetic machinery following external perturbations have
been well demonstrated during earlier stages of development. For example, in typically
developing rat litters, neonatal males receive more maternal grooming than females (Moore,
1984; Moore and Morelli, 1979). This behavior has since been associated with increased
ERα methylation (Kurian et al., 2010; Moore, 1984; Moore and Morelli, 1979). Further,
simulated maternal grooming can masculinize female ER methylation and expression
patterns in PN10 rats, and these grooming-induced changes in offspring methylation have
been associated with juvenile social play behavior (Edelmann and Auger, 2011; Edelmann et
al., 2013; Kurian et al., 2010). Recent studies characterizing developmental susceptibility to
external perturbations during puberty itself similarly support involvement of epigenetic
mechanisms.

Studies investigating long-term changes in the brain and in behavior from environmental
exposures during puberty have focused on adverse stimuli commonly encountered during
adolescence, including cannabis, alcohol, and/or chronic stress. Extensive links between
substance use during adolescence and adult behavioral dysfunction, including an increased
likelihood of alcohol or drug dependence, have been drawn in human and animal studies
(DeWit et al., 2000; Hall and Lynskey, 2005). Here too, the induction of long-term
outcomes suggests involvement of the epigenome. Adolescent male rats exposed to Δ(9)-
tetrahydrocannabinol every third day from PN 28-49 showed enhanced heroin self-
administration and associated dysregulation of the proenkephalin system in the nucleus
accumbens in adulthood (Tomasiewicz et al., 2012). This brief Δ(9)-tetrahydrocannabinol
exposure produced long-term changes in the pattern of normal H3K9 dimethylation
associated with gene expression and behavioral reprogramming. Similarly, adolescent
alcohol exposure evoked long-term histone modifications and related transcriptional
changes, where male rats exhibit upregulated histone acetyl transferase activity in the
prefrontal cortex, an increased amount of acetylated histone H3 and H4, and increased
H3K4 dimethylation in the promoter regions of genes involved in reward signaling,
including cFos, Cdk5, and FosB (Pascual et al., 2012). In addition, it is important to note
that stimuli typically associated with positive outcomes, such as physical exercise, also
affect the developmental trajectory of the adolescent brain through epigenetic mechanisms.
In fact, one week of voluntary wheel running in adolescent male mice produced increased
acetylation of histone H3 and decreased DNMTs and HDACs in the hippocampus and
cerebellum (Abel and Rissman, 2013).

Chronic stress during adolescence may similarly exploit epigenetic mechanisms to elicit
adult neurobehavioral deficits. Tran et al. described heightened visceral pain behaviors
resembling irritable bowel syndrome following chronic water avoidance stress in pubertal
rodents, associating behavioral changes with increased glucocorticoid receptor methylation
and reduced corticotropin-releasing factor methylation in the amygdala (Tran et al., 2013).
Niwa et al. characterized a mouse model investigating the interaction of the DISC1
mutation, a genetic risk factor for schizophrenia, with 3 weeks of social isolation stress
during puberty (Niwa et al., 2013). Stressed mice with a dominant-negative DISC1 showed
adult behavioral deficits across a variety of dimensions, including pre-pulse inhibition,
forced swim behavior, and locomotor activity. The gene × environment interaction also
produced hypermethylation of the tyrosine hydroxylase gene in mesocortical dopaminergic
projection cells. Interestingly, both the behavioral and epigenetic deficits elicited by social
isolation stress in DISC1 mice are reversed by chronic blockade of glucocorticoid receptors.

Importantly, long-term neurobehavioral changes often occur in a sex-specific fashion,
underscoring a potential interaction of epigenetic-driven maturation with known hormonal
changes during puberty. Male and female rats selectivity bred for resilience or susceptibility
to the forced swim test and subsequently exposed to a mixed modality chronic stress
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paradigm display differential effects on behavior in the forced swim and sucrose preference
based on both sex and lineage (Harrell et al., 2013). Chronic intermittent restraint stress
during puberty in rats similarly elicits a sex-specific effect, with stressed females, but not
males, exhibiting a long-term blunting of neurogenesis in the dentate gyrus (Barha et al.,
2010). These data characterize puberty as a period of considerable sex-specific vulnerability
to stress, with lasting impacts on the maturing neural systems and consequences for adult
behavior via epigenetic mechanisms.

Neuropsychiatric disease symptom onset often occurs during or immediately following
puberty. Thus, a more thorough understanding of epigenetic mechanisms involved in this
maturational window may provide novel insight into disease risk factors. Dysregulation of
stress neurocircuitry is one of the most common endophenotypes across neuropsychiatric
disease, with both hyper- and hypo-reactivity of the hypothalamic-pituitary-adrenal (HPA)
axis being reported across disorders (Arborelius et al., 1999; Corbett et al., 2009;
Moghaddam, 2002; Nestler et al., 2002; Walker et al., 2008). Maturation of the adult stress
response has been examined in rodents (Foilb et al., 2011; Goldman et al., 1973; Romeo et
al., 2006; 2004a; 2004b; Vázquez and Akil, 1993). Differential control at many levels of the
HPA axis, including neural activation of the paraventricular nucleus, glucocorticoid-
dependent negative feedback, and baseline corticotropin-releasing factor expression, have
been associated with the rapid change in stress responsivity, suggesting that puberty
stimulates a wholesale change in the regulation of the HPA axis (Goldman et al., 1973; Lui
et al., 2012; Romeo et al., 2005; 2007; Viau et al., 2005). Gonadal hormone levels also
impact stress reactivity differently in adult and prepubertal animals, highlighting further that
processes critical to the organization of stress neurocircuitry likely involve epigenetic
mechanisms (Carey et al., 1995; Handa et al., 1994; McCormick et al., 2002; Redei et al.,
1994; Romeo et al., 2004b; 2004a; Viau and Meaney, 1996).

Conclusion
Dynamic processes of brain maturation occur during puberty, and epigenetic mechanisms
are clearly involved in regulating this sex-specific development (Figure 2). Epigenetic
machinery is poised to exert programmatic control over brain development during puberty
and is environmentally responsive, likely guiding maturation under both normal and adverse
conditions. Therefore, further examination into the specific role of epigenetics in regulating
pubertal brain maturation may help elucidate aspects of this unique window in brain
development and novel molecular targets vulnerable in neuropsychiatric disease risk.
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Highlights

• Puberty is a critical period of brain development

• Puberty is a time of greater risk for neuropsychiatric disease

• Epigenectic mechanisms are involved in normal maturational processes

• Therefore, epigenetic mechanisms are a likely target for environmental
perturbation

• This review discusses epigenetic processes in pubertal brain maturation
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Figure 1. Robust sex differences in miRNA expression patterns in prepubertal male and female
prefrontal cortex at PN 28
Analyses of the miRNA environment as analyzed by miRNA Taqman qRT-PCR Array of
239 most abundant rodent miRNAs (ABI) on micropunches from PN 28 PFC C57:129 F1
hybrid mice was compared by Pearson Correlational Hierarchical Clustering. Yellow color
indicates increased levels compared to average male expression. Blue indicates reduced
levels compared to average male expression. All data are normalized to control miRs sno135
and sno202, N=6.
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Figure 2. Epigenetic mechanisms are broadly involved in pubertal-driven brain maturation
Schematic summarizing the role of the epigenome in the development of the brain, both
under normal circumstances and in the face of external perturbations. Research has shown
that the development a wide variety of brain regions involves epigenetic mechanisms. The
diagram was modified from the mouse brain atlas of Paxinos and Watson (Paxinos and
Watson, 2007). AVP – arginine vasopressin; BNST – bed nucleus of the stria terminalis; ER
– estrogen receptor alpha; GnRH – gonadotropin releasing hormone; PFC – prefrontal
cortex. (1Abel & Rissman, 2013, 2Auger et al, 2011, 3Kurian & Terasawa, 2013, 4Lomniczi
et al 2013, 5Pascual et al, 2012, 6Tran et al, 2013, 7Westberry et al, 2010)
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