
Antioxidant gene therapy against neuronal cell death

Juliana Navarro-Yepes1,2,5, Laura Zavala-Flores1,2, Anandhan Annadurai1,2, Fang Wang3,
Maciej Skotak3, Namas Chandra3, Ming Li4, Aglaia Pappa7, Daniel Martinez-Fong6, Luz
Maria Del Razo5, Betzabet Quintanilla-Vega5, and Rodrigo Franco1,2,☞

1Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583 2School of Veterinary
Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
3Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln,
NE 68583 4Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68583
5Department of Toxicology, CINVESTAV–IPN, Mexico City, Mexico 6Department of Physiology,
Biophysics and Neurosciences, CINVESTAV–IPN, Mexico City, Mexico 7Department of Molecular
Biology and Genetics, Democritus University of Thrace, University Campus, Dragana,
Alexandroupolis

Abstract
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative
disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and
traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and
nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations
in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative
disorders, which lead to the activation/modulation of cell death mechanisms that include
apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to
selectively target oxidative stress and redox imbalance might represent important therapeutic
approaches against neurological disorders. This work reviews the evidence demonstrating the
ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in
neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat
inherited and acquired disorders offer many unique advantages over conventional therapeutic
approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene
delivery techniques for antioxidant gene therapy.
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1. Introduction
Oxidative stress is a cellular condition induced by the de-regulated production of reactive
species of oxygen (ROS) and nitrogen (RNS), which are highly reactive molecules
generated by several biochemical and physiological processes of cellular metabolism under
both normal and pathological conditions. The delicate balance between the production and
elimination of ROS/RNS (redox homeostasis) determines the normal function of cells.
However, when cells are unable to maintain redox homeostasis via the detoxification of
these reactive species produced and/or repair the damage produced, oxidative stress prevails.
During oxidative stress, many cellular functions are disturbed by the reaction of reactive
species with cellular components such as amino acids, carbohydrates, DNA, RNA, lipids
and proteins. ROS are produced upon incomplete reduction of oxygen (O2) by action of
housekeeping enzymes and/or formed during the exposure to X-ray, γ or UV irradiation.
RNS are generated under normal and pathological conditions by catalytic and non-catalytic
reactions (Cooke et al., 2003; Olivares-Corichi et al., 2005; Stadtman et al., 2003; Tanaka et
al., 2007; Yin et al., 2009).

Oxidative stress contributes to the etiology of metabolic disorders (Shibata et al., 2010) and
neurodegenerative diseases (Patten et al., 2010), and it has also been established to have an
important role in the acceleration of pre-existing conditions such as cell invasiveness in
cancer (Shinohara et al., 2010). On the other hand, ROS/RNS are essential mediators of
cellular processes such as redox signaling, immunological defense mechanism and protein
folding. Over the years, the role of ROS and RNS as signaling molecules has been
extensively documented. The key issue is the concentration at which these reactive species
are present within the cell.

Considering the important role of oxidative stress in neuronal cell death (Franklin, 2011)
and the growing knowledge about the protective role that antioxidant systems play, recent
efforts have been directed to develop an efficient antioxidant approach to counteract the
oxidative stress-induced neuronal cell death that is a hallmark in neurological diseases.
Therefore, in this review we will discuss the advances in antioxidant gene therapy for
neurodegenerative diseases as well as in brain ischemia and traumatic brain injury.

2. Oxidative stress and generation of ROS/RNS
Within the cell, there are several organelles that have the ability to produce ROS such as
peroxisomes (Schönfeld et al., 2009), the endoplasmic reticulum (Liu et al., 2004),
autophagosomes/lysosomes (Kubota et al., 2010), endosomes (Li et al., 2011b) and the
nucleus (Spencer et al., 2011). Notably, it has been amply demonstrated that one of the main
sources of ROS is the mitochondria (Murphy, 2009). O2

•− is produced by the one-electron
reduction of O2 through the complex I (Grivennikova et al., 2006) and complex III (Chen et
al., 2003) of the electron transport chain (ETC) and released to the mitochondrial matrix by
complex I and to both the mitochondrial matrix and the inner membrane space (IMS) by
complex III (Muller et al., 2004). A second important source of ROS production is the
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family (Nox enzymes).
This family of enzymes catalyzes the production of O2

•− from O2 and NADPH, and was
originally described in polymorphonuclear neutrophils to provide host defense against
bacteria via a rapid respiratory burst of O2

•−. However, distinct Nox enzymes have also been
reported in distinct brain regions (Infanger et al., 2006).

When O2
•− suffers natural or enzymatic dismutation, hydrogen peroxide (H2O2) is arisen.

The enzymatic generation of H2O2 is catalyzed by O2
•− dismutases (SODs). H2O2 is thought

to diffuse across membranes. In addition, it has been demonstrated that the diffusion of
H2O2 is facilitated by members of the aquaporin family (Bienert et al., 2007; Bienert et al.,
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2006). H2O2 has a half-life of 1 millisecond, which allows it to react with several molecules
or metals to produce the hydroxyl radical (OH•) by Fenton reaction (Christine C, 1995;
Nappi et al., 1998; Reth, 2002).

Nitric oxide (NO•) is formed from L-arginine by the enzyme nitric oxide synthase (NOS)
and is a small hydrophobic molecule that freely diffuses across membranes (Miersch et al.,
2008). NO• has been recognized to act as a paracrine signaling molecule playing an
important role as second messenger in processes as diverse as cell survival (Patel et al.,
2010), proliferation (Magalhães et al., 2006), apoptosis (Wei et al., 2000) and neuronal
differentiation (Ciani et al., 2004). O2

•− reacts three times faster with NO• than with
MnSOD leading to the production of the most oxidant specie peroxynitrite (ONOO−), which
is able to cross membranes through the anion channel in the anionic form (ONOO−) and by
passive diffusion in its protonated form, peroxynitrous acid (ONOOH) (Denicola et al.,
1998). Three NOS genes have been described, all of which are found in distinct brain
regions. Endothelial (eNOS) and neuronal NOS (nNOS) are classically calcium (Ca2+)/
calmodulin-dependent and generate nanomolar concentrations of NO•, while inducible NOS
(iNOS) can produce micromolar levels of NO• (Brown, 2010).

Myeloperoxidases (MPOs) produce hypochlorous acid (HOCl) from H2O2 and chloride
anion (Cl−) using heme as a cofactor. MPOs also oxidize tyrosine to tyrosyl radical using
H2O2 as an oxidizing agent. Until recently, phagocytic cells were thought to be the only
cellular sources of MPOs. However, recent studies demonstrate that several cell types
including neuronal cells, express MPOs under certain pathological conditions (Green et al.,
2004; van der Veen et al., 2009). Cyclooxygenases (COXs) are also known to generate ROS
as a byproduct of the metabolism of arachidonic acid. COXs metabolize arachidonic to
prostaglandin G2 (PGG2) utilizing two O2 molecules and producing peroxyl radicals. COXs
also possess a heme-containing active site that provides peroxidase activity, converting
PGG2 to prostaglandin H2 (PGH2) by removing O2, which might be a source of oxygen
radicals. In the presence of H2O2, the peroxide activity of COXs may oxidize various co-
substrates such as NADH and glutathione (GSH), which could reduce O2 to •O2

− (Im et al.,
2006). Several studies have demonstrated COX-immunoreactivity in neuronal populations
from different regions, where COX-2 is found in postsynaptic cell bodies and dendritic
spines (Mancuso et al., 2006).

An increasing amount of evidence suggests that oxidative/nitrosative stress is linked to the
pathophysiology of multiple human diseases. However, definitive evidence for this
association has been controversial because of shortcomings found in methods available to
assess oxidative stress in vivo. Measuring oxidative stress can be difficult because the
biological half-life of free radicals and other reactive species is too short for direct detection.
Therefore, evidence has to rely on indirect measurements. These indirect measurements are
based on byproducts of oxidative damage to lipids, proteins and DNA, which provide an
extensive array of potential biomarkers (Bast et al., 2013; Blumberg, 2004; Dalle-Donne et
al., 2006; Halliwell, 2011). Lipid peroxidation generates mainly α,β-unsaturated reactive
aldehydes, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), 2-propenal
(acrolein) and isoprostanes. (Dalle-Donne et al., 2006; Devasagayam et al., 2003). It is
important to mention that lipid hydroperoxides and aldehydes can also be absorbed from the
diet, which can confound measurements of MDA and HNE in plasma or urinary samples
(Dalle-Donne et al., 2006). The determination of isoprostanes is considered now the best
available biomarker of lipid peroxidation, because of their stability (Dalle-Donne et al.,
2006; Halliwell, 2011; Halliwell et al., 2004).

Protein damage by oxidative stress has been mostly determined by the formation of carbonyl
compounds in vitro and in vivo. Protein carbonyls are chemically stable, which makes them
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suitable for postmortem samples analysis. However, carbonyls are not specific as markers of
oxidative damage because bound aldehydes and glycated protein are also measured. (Dalle-
Donne et al., 2006; Luo et al., 2009; Suzuki et al., 2010). Determination of 3-nitroyrosine
(3-NT) is also widely used as an index of oxidative protein damage. However, its specificity
is debated because nitration can occur independently of peroxynitrite exposure (Dalle-
Donne et al., 2006; Duncan, 2003; Halliwell et al., 2004; Tsikas et al., 2005).

Oxidative DNA damage byproducts are also important markers assessed to evaluate
oxidative stress in vivo. OH• generates a wide range of base and sugar modifications in
DNA. However, the initial products of free radical attack undergo transformation into stable
end products, whose abundance depends on reaction conditions and more importantly, none
of these modifications can identify the location of the oxidative damage is located. 8-
hydroxy-2’-deoxyguanosine (8OHdG) is commonly measured as an index of oxidative DNA
damage. However, artifactual oxidative damage to DNA has been shown to occur during
isolation, preparation and analysis of samples. To date, there is no agreement on basal levels
of 8OHdG in cellular DNA, even when standard extraction procedures have been used.
(Collins et al., 2004; Dalle-Donne et al., 2006; Gedik et al., 2005; Halliwell et al., 2004;
Kryston et al., 2011).

3. Oxidative stress and neuronal cell death
3.1. Neurodegenerative diseases

Neurodegenerative diseases are defined as hereditary and sporadic conditions that are
characterized by progressive nervous system dysfunction. These disorders are often
associated with atrophy of the affected central or peripheral structures of the nervous system
and include: Alzheimer's Disease (AD) and other dementias, Parkinson's Disease (PD),
Huntington's Disease (HD), Multiple Sclerosis, Amyotrophic Lateral Sclerosis (ALS or Lou
Gehrig's Disease), Prion diseases and others. Such cell death can be induced by exogenous
factors such as neurotoxicants or mutations in key genes. During neuronal cell death, diverse
mechanisms are involved. Solid evidence has demonstrated that oxidative stress plays a
central role in the initiation of neuronal damage in neurodegeneration (Table 1).

3.1.1. Alzheimer’s Disease (AD)—An estimated of 35 million people worldwide have
been diagnosed with AD, wich make it the most common neurodegenerative dementia. It is
characterized by the impairment of behavioral and cognitive functions leading to death
within 3 to 9 years after diagnosis. The principal risk factor for AD is age as its incidence
doubles every 5 years after 65 years of age. Among the characteristics found in brains of AD
patients are senile plaques, which contain amyloid-β peptide (Aβ) derived from the amyloid
precursor protein (APP). Established genetic causes of AD include dominant mutations of
genes encoding APP and presenilin 1 (PSEN1) and PSEN2. PSEN1 and PSEN2 mutations
affect concentrations of Aβ1–42 because presenilin proteins form part of γ secretases, which
cleave APP to produce Aβ. Potential risk genes for AD include apolipoprotein E (ApoE),
which affects Aβ aggregation and clearance. Neurofibrillary tangles are also found in
postmortem brains of AD patients containing the pathologically aggregated tau protein
(Mena et al., 1995). Several post-translational modifications in tau have been reported such
as ubiquitination, glycation and phosphorylation, among others. Tau mutations result in
tauopathies, such as corticobasal degeneration and frontotemporal dementias, but not AD
(Ballard et al., 2011; Holtzman et al., 2011; Querfurth et al., 2010; Selkoe, 2011). Post-
mortem human studies demonstrate the accumulation of lipid peroxidation products in
multiple brain regions and in cerebrospinal fluid (CSF) of AD subjects. Protein oxidation
byproducts such as carbonyls and 3-nitrotyrosine are also found increased in the frontal and
parietal lobes and in the hippocampus of AD and subjects with mild cognitive-impairment
(MCI). Finally, oxidative modifications in nucleic acid bases are increased in AD and MCI
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brain samples (Good et al., 1996; Pratico, 2008). Several studies have indicated the presence
of oxidative stress markers in the brain of most transgenic AD mouse models, suggesting
that oxidative stress is an early event in the AD development that could promote the amyloid
cascade by increasing Aβ synthesis and aggregation (reviewed in (Belkacemi et al., 2012).

The amyloid cascade hypothesis suggests that the deposition of Aβ triggers neuronal
dysfunction and death in the brain (Figure 1). Using in vivo imaging of a fluorescent
indicator of oxidative stress in a transgenic mouse model, Xie et al., (2013) demonstrated
that Aβ plaque formation precede and lead to oxidative stress in surrounding neurites, which
propagates over time and leads to oxidation and degeneration of neuronal soma. These
results implicate Aβ as the mediator of oxidative stress and subsequent neurodegeneration
(Xie et al., 2013). It is important to state that amyloid-independent mechanisms have also
been proposed to contribute to AD (Karran et al., 2011; Pimplikar et al., 2010). APP is an
integral membrane protein expressed in many tissues and concentrated in the synapses of
neurons. Its primary function is not known, though it has been implicated as a regulator of
synapse formation, neuronal plasticity and iron export. Amyloidogenic processing is
initiated by a β-secretase, the beta-site amyloid precursor protein–cleaving enzyme 1
(BACE-1), releasing a shortened sAPP. The C99 fragment is a γ-secretase substrate,
generating Aβ and the amyloid precursor protein intracellular domain (AICD). Soluble Aβ is
prone to aggregation. In a triple transgenic mouse model of AD (3xTg-AD) with human
transgenes APP (SWE [swedish mutation]), PSEN1 (M146V) or PSEN2 (N141I), and Tau
(P301L), an impaired oxidative phosphorylation, increased oxidative state and GSH
depletion was reported to precede the onset of cognitive defects (Belkacemi et al., 2012;
Ghosh et al., 2012; Rhein et al., 2009). Moreover, alterations in the glutathione redox state,
an increase of GSSG together with a decrease of GSH/GSSG ratio, and an increase of
mixed-disulfide (Pr-SSG) has been reported in brain tissues and blood samples at different
disease stages in a double mutant AD transgenic mouse model (B6. Cg-Tg) carrying the
APPswe and exon 9 deletion of the PSEN1 gene, suggesting that formation of Pr-SSG may
be an early event, preceding amyloid plaque appearance (Zhang et al., 2012a).

Aβ interacts with several metal ions affecting its solubility and leading to fibrillization and
cellular toxicity (Benilova et al., 2012; O'Brien et al., 2011). Elevated levels of labile copper
(Cu+2) that correlated with oxidative stress were found in AD brains (James et al., 2012).
The morphology of Aβ aggregates is modified in a concentration-dependent manner by
metal ions as iron (Fe+2), Cu+2 and zinc (Zn+2). Once Aβ is bound to metal ions such as
Fe+2 and Cu+2, the Aβ-metal complexes can mediate the production of H2O2 and OH• (Su et
al., 2008). It has been suggested that AD pathogenesis may be influenced by early life
exposures to toxic metals such as lead, which are related to oxidative damage as well (Wu et
al., 2008a; Wu et al., 2008b).

Mitochondrial dysfunction is a hallmark observed in AD and has been related to the
accumulation of Aβ within mitochondria. The Aβ is transported into mitochondria via the
translocase of the outer membrane (TOM) complex and localized at the mitochondrial
cristae (Hansson Petersen CA, 2008). Aβ inhibits mitochondrial enzymes in the brain and in
isolated mitochondria such as cytochrome oxidase (complex IV) and the key Krebs-cycle
enzymes (α-ketoglutarate and pyruvate dehydrogenase) impairing ETC, ATP production,
oxygen consumption, and mitochondrial membrane potential. Dysfunctional mitochondria
produce ROS and as a consequence, mtDNA oxidative damage. Conversely, current
evidence shows that mitochondria-derived ROS are sufficient to trigger increased Aβ
production both in vitro and in vivo, and thereby initiate a vicious cycle further impairing
mitochondrial function (Leuner et al., 2012). In the mitochondria, Aβ also interacts with the
17-β-hydroxysteroid dehydrogenase X (HSD17B10) also known as Aβ peptide-binding
alcohol dehydrogenase (ABAD), an enzyme that catalyzes the oxidation of a wide variety of
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fatty acids, alcohols, and steroids, exacerbating neuronal cell death by mitochondrial
dysfunction and oxidative stress (Yao et al., 2011).

The receptor for advanced glycation end products (RAGE) has also been proposed to
mediate Aβ's pro-oxidant effects (Yan et al., 1996). In addition, perturbations in neuronal
Ca2+ homeostasis induced by Aβ have the potential to trigger mitochondrial dysfunction and
ROS formation (Bezprozvanny et al., 2008). Aβ has a critical methionine residue at position
35, which is thought to be associated with Aβ peptide toxicity. Oxidation of Met35 produces
methionine sulfoxide or methionine sulfone via irreversible oxidation. However,
contradictory reports exist regarding the role of Met35 residue in Aβ toxicity and oxidative
stress (Butterfield et al., 2010; Butterfield et al., 2007; Maiti et al., 2010). MPOs have been
found increased in AD brains (Green et al., 2004), and the overexpression of the MPO-463G
allele in astrocytes increases lipid peroxidation in a transgenic mouse model of AD (Maki et
al., 2009). COX-2 inhibition is reported to improve the memory and synaptic plasticity in
AD models (Jang et al., 2005; Kotilinek et al., 2008).

Increased levels of nitrated proteins are found in AD brains (Smith et al., 1997). Aβ induces
an increase in iNOS expression and NO•/ONOO− generation in glial cells (Akama et al.,
1998; Akama et al., 2000; Combs et al., 2001; Xie et al., 2002). However, contradictory
results exist regarding the effect of iNOS knockout in AD transgenic mouse models (Colton
et al., 2006; Wilcock et al., 2008). Similarly, microglial cells from ApoE epsilon 4 allele
(ApoE4), a risk factor in AD, produce higher levels of NO• (Brown et al., 2002; Colton et
al., 2002; Ramassamy et al., 1999). In contrast, Aβ inhibits the activity of nNOS and eNOS
in neuronal-like cells (Venturini et al., 2002).

3.1.2. Parkinson’s Disease (PD)—PD is a neurodegenerative disorder characterized by
the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc).
The accumulation of α-synuclein is a crucial step in the pathogenesis of PD and a key
constituent of intraneuronal proteinaceous inclusions known as Lewy bodies. There is no
current treatment to stop neuronal cell death and/or to cure PD. Current evidence supports a
role for mitochondrial dysfunction, oxidative stress, and abnormal protein accumulation as
early triggers of neuronal death in PD pathogenesis. Existing therapies available only delay
the onset of PD and/or ameliorate motor symptoms by addressing dopamine deficit (Levy et
al., 2009; Yao et al., 2009). A fraction of PD occurrence is related to mutations in genes
such as those of α-synuclein (SNCA), DJ-1 (PARK7), PTEN-induced putative kinase 1
(PINK1), leucine rich repeat kinase 2 (LRRK2) and parkin (PARK2). However, 90% of PD
cases occur in a sporadic (idiopathic) form without a defined genetic basis. The major risk
factor identified for PD is aging as its occurrence increases exponentially from ages 65 to
90. Epidemiological evidence shows an increase in the risk of developing PD upon the
exposure to environmental toxicants such as pesticides, metals, polychlorinated biphenyls,
as well as early life inflammatory processes (Gao et al., 2011a). Thus, it is now being
considered that PD arises from the convergence of genetic susceptibility, environmental
exposures, and aging.

Oxidative damage to lipids, proteins and DNA is found in post-mortem PD brains (Alam et
al., 1997a; Alam et al., 1997b; Dexter et al., 1991; Dexter et al., 1989; Dexter et al., 1994;
Floor et al., 1998; Hirsch et al., 1991; Jenner et al., 1992; Perry et al., 1982; Riederer et al.,
1989; Sian et al., 1994; Yoritaka et al., 1996; Zhang et al., 1999). SNpc dopaminergic cells
have high levels of basal oxidative stress compared to other dopaminergic neuronal
populations (Guzman et al., 2010). A decrease in the activity of the mitochondrial ETC is
found in the SNpc of patients with PD (Henchcliffe et al., 2008; Schapira, 2008; Schapira et
al., 1989) suggesting that oxidative stress is linked to mitochondrial dysfunction (Figure 2).
Environmental pesticides such as paraquat and rotenone have been proposed to mediate
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mitochondrial ROS generation via complex I and III (Castello et al., 2007; Drechsel et al.,
2009; Sherer et al., 2003; Sherer et al., 2007).

PD-associated genes have also been shown to modulate or induce oxidative stress in
dopaminergic cells. α-Synuclein is a 140 amino acid brain protein mainly localized in pre-
synaptic terminals, and gene multiplications or point mutations are associated with familial
PD. Oxidative stress promotes α-synuclein oligomerization and aggregation (Giasson et al.,
2000; Meloni et al., 2011). Accumulation of α-synuclein has also been suggested to trigger
mitochondrial oxidative stress (Devi et al., 2008) and alterations in Ca2+ permeability
(Furukawa et al., 2006; Goldberg et al., 2012). Extracellular α-synuclein also triggers
microglia activation and Nox-mediated ROS formation (Zhang et al., 2005), which in turn
increase α-synuclein aggregation (Cristovao et al., 2012). It has been proposed that α-
synuclein exerts protective effects (Hashimoto et al., 2002), while the A53P mutant α-
synuclein sensitizes cells upon oxidative damage (Ko et al., 2000). DJ-1 oxidation induces
its mitochondrial translocation (Canet-Aviles et al., 2004), and DJ-1 knockdown or mutants
render cells more susceptible to parkinsonian toxins and oxidative stress (Kim et al., 2005;
Taira et al., 2004). In addition, DJ-1 has been reported to regulate GSH levels (Liu et al.,
2008). Interestingly, DJ-1 seems to be primarily expressed in astrocytes (Bandopadhyay et
al., 2004). PINK1 protein is a serine/threonine kinase localized in the mitochondria and the
cytosol. Loss of PINK1 has been shown to induce mitochondrial dysfunction, oxidative
stress and mitochondrial turnover via mitophagy (Dagda et al., 2009; Gandhi et al., 2009;
Gegg et al., 2009; Heeman et al., 2011; Liu et al., 2011; Morais et al., 2009). Parkin
deficiency induces mitochondrial dysfunction and oxidative stress (Palacino et al., 2004), as
well as an increase in monoamine oxidase (MAO) expression (Jiang et al., 2012). On the
other hand, Parkin protects cells against dopamine toxicity (Jiang et al., 2004). LRKK2 also
protects against oxidative stress (Liou et al., 2008). However, gain-of-function of LRRK2
mutations disturb mitochondrial dynamics leading to increased ROS formation (Niu et al.,
2012).

Metal-induced ROS generation has been postulated to contribute to oxidative damage in PD.
However, controversy still exists regarding the occurrence of alterations in the levels of Fe+2

or Cu+2 in PD brains (Mariani et al., 2012). Metal ions accelerate the oligomerization/
aggregation of α-synuclein, being Cu+2 the one that induces it faster (Paik et al., 1999; Rasia
et al., 2005; Rose et al., 2011; Uversky et al., 2001; Wang et al., 2010b; Wright et al., 2009).
α-synuclein-Cu2+ complexes have been shown to induce ROS accumulation and dopamine
oxidation (Meloni et al., 2011; Wang et al., 2010a). The accumulation of Mn+2 in basal
ganglia structures is associated with the neurodegenerative disorder commonly referred to as
manganism, a condition that shares many similarities with PD, which is also linked to
increased oxidative damage (Milatovic et al., 2011). However, Mn+2-induced parkinsonism
does not seem to involve degeneration of the nigrostriatal dopaminergic system (Guilarte,
2010).

In the brain, Fe+2 is most abundant in areas rich in dopaminergic neurons. Increased Fe+2

deposition and increased free Fe+2 concentrations have been found in the SNpc of PD
brains, which may lead to increased generation of •OH via Fenton and Haber-Weiss
reactions (Sian-Hulsmann et al., 2011). Autopsy studies found an increased total Fe+2

content in the SNpc of PD patients compared to age-matched controls but other studies did
not confirm these findings. Fe+2 content in the SNpc seems to be primarily affected in
advanced PD patients suggesting that it is not involved in early disease development.
Alterations in Fe+2 distribution are also found in PD. Contrary to normal subjects, where
more Fe+2 is deposited in the SN pars reticulata, in PD Fe+2 is deposited abundantly in the
SNpc containing pigmented neurons (Sian-Hulsmann et al., 2011). Together with paraquat,
Fe+2 enhances dopaminergic neurodegeneration (Peng et al., 2007). Low levels of ferritin in
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the SNpc of PD patients and incidental Lewy body disease cases were reported.
Overexpression of ferritin decreases oxidative stress and neuronal cell death induced by
parkinsonian mimetics (Kaur et al., 2010; Lee et al., 2010; Shi et al., 2010). Neuromelanin
pigmented neurons in SNpc are preferentially lost in PD, and Fe+2 accumulation in the SNpc
is deposited within neuromelanin granules. A specific haplotype of the divalent metal
transporter 1 (DMT1/SLC11A2) gene was found to occur at greater frequencies in PD
patients suggesting that alterations in DMT1 function may contribute to PD (Dusek et al.,
2012), whereas 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
dopaminergic cell death was associated with an increase in DMT1 and transferrin receptor
levels (Kalivendi et al., 2003; Salazar et al., 2008). The levels of Fe+2 “handling” proteins
such as ceruloplasmin have also been reported altered in PD (Hochstrasser et al., 2005; Jin et
al., 2011). In the presence of Fe+2, α-synuclein induces OH• formation (Turnbull et al.,
2001), whereas in other studies, oxidative damage induced by Fe+2 was exacerbated
primarily by mutant, but not wild type (WT) α-synuclein (Chew et al., 2011; Martin et al.,
2003; Ostrerova-Golts et al., 2000).

Oxidative stress in PD is also associated with the pro-oxidant properties of dopamine.
Mutant α-synuclein down-regulates the vesicular monoamine transporter (VMAT2)
augmenting the cytosolic dopamine levels (Lotharius et al., 2002a; Lotharius et al., 2002b),
which is either metabolized by monoamineoxidase to generate H2O2, or auto-oxidized in the
presence of Fe+2 generating O2

•−, H2O2 and dopamine-quinone species (DAQ) (Abou-
Sleiman et al., 2006). α-synuclein also interacts with the dopamine transporter (DAT),
although its effects in dopamine uptake and toxicity are unclear (Lee et al., 2001; Wersinger
et al., 2003). Furthermore, dopaminergic cell death induced by rotenone and paraquat has
been proposed to depend on dopamine oxidation (Kang et al., 2009; Liu et al., 2005).
Plasma membrane NADPH- oxidases, mainly Nox1, also mediate ROS generation in
dopaminergic and microglial cells upon MPP+, rotenone or paraquat treatment (Cristovao et
al., 2009; Gao et al., 2003; Gao et al., 2011b; Goldberg et al., 2012; Wu et al., 2003; Wu et
al., 2005). MPOs and COX-2 have also been shown to participate in MPTP-induced
oxidative stress and neurotoxicity (Choi et al., 2005; Teismann et al., 2003; Wang et al.,
2005).

RNS also play an important role in oxidative stress. Both NO• and ONOO− have been
shown to participate in 6-OHDA, MPP+/MPTP and rotenone toxicity, which are prevented
by inhibition/knockout of NO• synthases (Ara et al., 1998; Broom et al., 2011; Dehmer et
al., 2000; Hantraye et al., 1996; He et al., 2003; LaVoie et al., 1999; Liberatore et al., 1999;
Park et al., 2002; Przedborski et al., 1996; Schulz et al., 1995; Watabe et al., 2008). Tyrosine
nitration promotes α-synuclein oligomerization and aggregation (Giasson et al., 2000;
Hodara et al., 2004; Paxinou et al., 2001; Souza et al., 2000), and exposure to parkinsonian
mimetics has been shown to mediate α-synuclein nitration (Przedborski et al., 2001).
Interestingly, transgenic mice overexpressing α-synuclein Y39C mutant variant show age-
dependent progressive neuronal degeneration (Zhou et al., 2008). Inhibition of Parkin’s
ubiquitin E3 ligase activity by S-nitros(yl)ation has also been found in PD brains, (Chung et
al., 2004).

3.1.3. Huntington’s Disease (HD)—HD is a genetic autosomal dominant
neurodegenerative disorder caused by highly polymorphic CAG trinucleotide repeat
expansion in the exon-1 of the huntingtin (Htt) gene (IT15), yielding proteins containing
polyglutamine repeats that become misfolded aggregates and resist degradation. Alleles of
Htt harboring between 36–40 CAGs may or may not develop HD symptoms. However,
individuals with alleles containing more than 40 CAG repeats will develop symptoms. HD
neuropathological changes are predominantly detected in the striatum, although marked
alterations are also observed in other areas of the brain such as cerebellar cortex, thalamus
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and cerebellum (Finkbeiner, 2011; Oliveira, 2010; Zuccato et al., 2010). Several biomarkers
of oxidative stress including lipid peroxidation, nucleic acid and protein oxidation
byproducts, are increased in HD brains (Browne et al., 2006; Browne et al., 1997; Chen et
al., 2007; Hersch et al., 2006; Klepac et al., 2007; Polidori et al., 1999; Sorolla et al., 2008;
Sorolla et al., 2010). However, there are some studies that have failed to detect any sign of
oxidative damage in HD brains (Alam et al., 2000). Despite its ubiquitous expression,
mutant HTT (mtHtt) selectively affects medium spiny striatal neurons, and oxidative stress
together with mitochondrial dysfunction have been implicated in the pathology of HD (Bano
et al., 2011). Oxidative DNA damage has been reported in the caudate, parietal cortex, and
peripherally in the serum and leukocytes of patients diagnosed with HD (Long et al., 2012;
Weir et al., 2011).

Transgenic mice expressing exon 1 of the human Htt gene with an expanded CAG repeat
develop a progressive neurologic disorder and present increased levels of oxidative DNA-
damage (Bogdanov et al., 2001). Striatal cells expressing mtHtt show higher basal levels of
mitochondrial-generated ROS and mitochondrial DNA damage (Siddiqui et al., 2012).
Impaired respiratory chain complexes and tricarboxylic acid cycle enzyme activities have
also been found in the brain of HD patients (Costa et al., 2012; Mochel et al., 2011;
Shirendeb et al., 2011). Succinate dehydrogenase (SDH) or complex II subunits Fp (FAD)
and Ip (iron–sulphur cluster) are found reduced in HD brains and in striatal neurons
overexpressing the N-terminal fragment of mtHtt (Figure 3). Accordingly, the
administration of inhibitors such as malonate and 3-nitropropionic acid (3-NP) induces both
the biochemical and clinical alterations in vivo that resemble those in HD. The iron–sulphur
containing dehydratase, aconitase, is one of the most affected tricarboxylic acid cycle
enzymes in HD (Costa et al., 2012). 3-NP toxicity is enhanced by dopamine (Benchoua et
al., 2008; Charvin et al., 2005). In addition, 3-NP induces a decrease in ATP levels and the
activation of N-methyl-d-aspartate (NMDA) receptors, which mediate ROS formation (Liot
et al., 2009). Although mitochondrial dysfunction has been largely proposed as a major
mechanism for ROS formation, a recent report demonstrates that aggregation of a
polyglutamine Htt fragment directly causes ROS formation (Hands et al., 2011). mtHtt itself
is oxidized in cysteine residues proximal to the N-terminal domain promoting
oligomerization and delayed clearance (Fox et al., 2011). Interestingly, antioxidants seem to
exert a deleterious effect in polyglutamine models by inhibition of autophagy (Underwood
et al., 2010).

3.1.4. Amyotrophic Lateral Sclerosis (ALS)—ALS is characterized by the progressive
degeneration of motor neurons in the motor cortex and lower motor neurons connecting the
spinal cord and brain stem to muscle fibers. ALS typically develops between 50 and 60
years of age as a relentless progressive neuromuscular failure leading to muscle denervation
and atrophy. Only ~10% of ALS cases have a clear inherited genetic component, while the
majority of ALS cases are sporadic with no family history of disease, and the gene-
environmental factors involved remain poorly defined. Approximately 10–20% of familial
ALS cases are caused by a variety of dominant mutations in the copper-zinc SOD
(CuZnSOD) gene (SOD1). Over 110 mutations in 153 amino acids spread throughout all
five exons as well as a small number in untranslated regions of SOD1 have been described
to date. Other mutations leading to ALS include genes such as the “fused in sarcoma/
translated in liposarcoma” (FUS/TLS), the TAR DNA-binding protein (TDP-43), the
charged multivesicular body protein 2B (CHMP2B), the vesicle-associated membrane
protein (synaptobrevin-associated protein) B (VAPB), and angiogenin. Increased oxidative
stress biomarkers are found in ALS postmortem tissues, such as brain and spinal cord as
well as in cerebrospinal fluid (Abe et al., 1997; Beal et al., 1997; Bogdanov et al., 2000;
Ferrante et al., 1997a; Ihara et al., 2005; Shaw et al., 1995{Abe, 1995 #431; Shibata et al.,
2001; Simpson et al., 2004; Smith et al., 1998), and in vivo models (Andrus et al., 1998;
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Casoni et al., 2005; Ferrante et al., 1997b; Liu et al., 1998; Poon et al., 2005). In fact, recent
studies suggest that SOD1 could be pathogenic in sporadic ALS through non-heritable
modifications, such as posttranslational modifications including hyperoxidation of wild type
SOD1. Hyperoxidized SOD1 recapitulates mutant SOD1-like properties (Guareschi et al.,
2012). However, it is now widely accepted that loss of SOD1 dismutase activity is not
sufficient to cause ALS and that mutant SOD1 promotes release of toxic factors. This is
demonstrated by two specific findings: 1) SOD1 knockout does not develop ALS, and 2)
some ALS related mutations such as G75R and G93R do not alter dismutase activity (Barber
et al., 2010).

SOD1 mutants induce Nox-dependent ROS production in microglia and neuronal death.
More specifically both Nox2 and Nox1 knockdown increase survival in SOD1 mutant
transgenic mice (Li et al., 2011b). Dysregulation of proteins involved in Fe+2 influx and
sensing of intracellular Fe+2, with a concomitant accumulation of Fe+2 iron in ventral motor
neurons and increased mitochondrial Fe+2 load in neurons and glial cells, have been shown
in mouse overexpressing human SOD1 (G37R) mutant. Similarly, aberrant coordination of
Cu2+ by mutant SOD1 has also been demonstrated to mediate oxidative stress (Kishigami et
al., 2010).

3.2. Brain Ischemia and Excitotoxicity
It is estimated that every year 15 million people suffer from an acute cerebrovascular stroke,
taking the life of 5.5 million and accounting for 5 million permanently disabled patients.
Ischemic stroke is characterized by a significant reduction in regional cerebral blood flow
causing deprivation of O2 and glucose resulting in brain damage. Focal ischemia is a
reduction in the blood flow to a very specific brain region (for example, middle cerebral
artery embolic occlusion is a frequently used experimental model), whereas global ischemia
occurs when cerebral blood flow (CBF) is reduced throughout most parts of the brain (like it
takes place in cardiac arrest). There are significant differences in the mode of cell death
between global and focal cerebral ischemia. Brief periods of global cerebral ischemia cause
delayed neuronal death with distinct morphological features characteristic of apoptosis,
though the apoptotic machinery might contribute significantly to cell death progression. In
focal cerebral ischemia, most of cells in the ischemic core undergo necrosis, while cell death
within the ischemic penumbra region is considered to be largely dependent on the activation
of apoptotic signaling (Chen et al., 2011; Nakka et al., 2008; Niizuma et al., 2009).

During reperfusion, when O2 is replenished, pro-oxidant enzymes and mitochondria utilize
O2 as a substrate to generate ROS (Figure 4). Multiple markers of oxidative damage are
increased immediately after ischemic stroke, and remain elevated for several days (Seet et
al., 2011). Mitochondria have been reported to act as major sources of ROS in ischemia and
the inhibition of the mitochondrial complex I inhibits both hypoxic- (ischemic) and
reperfusion-mediated oxidative damage (Niatsetskaya et al., 2012). Current data provide
evidence suggesting Nox2 as the most important NADPH oxidase mediating cerebral injury
(Kahles et al., 2013; Lu et al., 2012). Nox2 has also been shown to contribute to ischemic/
reperfusion injury in hippocampal cells in vitro, and neuronal cell death and microglial
activation in vivo (Chen et al., 2009a; Kahles et al., 2013). Nox1 contributes to ischemic
injury in mice (Kahles et al., 2010). However, a comparative study between Nox1, 2 and 4
demonstrated that Nox4 is the major contributor to oxidative damage and neuronal cell death
after both transient and permanent ischemia (Kleinschnitz et al., 2010). Interestingly, neither
the knockout of Nox2 nor the inhibition of Nox activity prevents perinatal brain injury in
newborn mice (Doverhag et al., 2008).

Ischemia/reperfusion injury depletes energy stores impairing ATP-dependent processes.
Malfunction of the Na+/K+-ATPase leads to disruption of ionic gradients of potassium (K+),
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sodium (Na+), chloride (Cl−), and calcium (Ca+2). These alterations in ionic homeostasis
induce plasma membrane depolarization, Ca+2-dependent exocytosis, and reversal of
excitatory amino acid uptake. The release of excitatory amino acids (glutamate) and the
activation of ionotropic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors promote Ca+2 overload and cell death progression by a variety of
signaling mechanisms involving mitochondrial dysfunction (Figure 4). ROS formation upon
ischemic conditions (O2-glucose deprivation) has been shown to be specific for neuronal
populations in CA1 region of the hippocampus, and this was associated with NMDA
receptor and NOS activation (Fekete et al., 2008). In cortical neurons, glutamate
excitotoxicity and ROS formation are also mediated by Nox4 (Ha et al., 2010).

3.3. Traumatic Brain Injury (TBI)
TBI is a pathological condition resulting from occupational activity (sports or accidents) in
civil population and is the leading cause of death and disability for people under the age of
45. The annual burden associated with TBI is estimated at over $60 billion dollars. In the
United States, it has been estimated that more than 1.7 million individuals annually suffer a
TBI event that results in the development of complex neurological deficits caused by both
primary and secondary injuries. Primary injury events encompass the mechanical damage
that occurs at the time of trauma as a result of shearing, tearing or stretching, while the
secondary injury develops progressively as a result from chronic biochemical, metabolic and
cellular effects. Secondary injury is associated with progressive development of a number of
neurological deficits. Brain traumatic insults are classified as: 1) focal, caused by direct
impact with solid object with subsequent pathologies developing locally in the vicinity of
the site of impact, or 2) diffuse, caused by forces acting inside the entire volume of brain
parenchyma and resulting from head acceleration-deceleration. An emerging field of
research are military brain injuries, in particular blast-induced TBI, whose pathobiology has
characteristics not seen in other types of TBI (Cernak et al., 2010; Tyler, 2012).

Glutamate excitotoxicity and ischemia have been shown to participate in oxidative stress
upon TBI (Figure 4). Direct tissue damage and impaired regulation of CBF and metabolism
lead to ATP depletion, ionic gradient homeostasis and release of excitatory
neurotransmitters (Cheng et al., 2012). Oxidative stress is known to play an important role in
the pathology of TBI (Ansari et al., 2008; Tyurin et al., 2000), and both mitochondria and
Nox enzymes have been reported to mediate ROS formation (Singh et al., 2006). A biphasic
generation of ROS by Nox2 has been reported in TBI in vivo models (Zhang et al., 2012b).
In addition, iNOS inhibition reduces neuronal damage induced by brain contusion (Gahm et
al., 2006).

Characterization of oxidative stress in blast TBI models is a relatively unexplored area of
research. Recently, Abdul-Muneer and colleagues performed an extensive characterization
of ROS/NOS in the rat model of primary blast mild TBI (Abdul-Muneer et al., 2013). They
found that after exposure to a moderate intensity (130 kPa peak overpressure) single blast,
the oxidative damage of the cerebrovascular barrier interface (the blood–brain barrier, BBB)
was manifested by induction of Nox1 and inducible nitric oxide synthase (iNOS), and
corresponding elevated levels of the signatures of oxidative and nitrosative damage, 4-
hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT). Similarly, the effects of blast
exposure with moderate intensity (120 kPa) in rats resulted in reduced neurological function
immediately following exposure to blast. Quantitative immunostaining revealed the
temporal course of brain oxidative and nitrosative stress following the injury. An increase in
the levels of 4-HNE and 3-NT were observed at 3 hours, and returned to base levels at 24 hr
post exposure (Readnower et al., 2010).
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4. Gene delivery approaches to target the Central Nervous System
Gene therapy is the process of delivering genes to cells. Most gene therapy studies employ
viral vectors because they are highly efficient and can support lifetime protein expression in
the brain (Figure 5). Virions can carry and protect viral genetic information, and can be
designed to possess determinants on their surface to specify which cells to infect,
minimizing immunostimulatory potential within the host. An ideal therapeutic viral vector
will: 1) show specific tropism and highly efficient transduction of target tissues with
minimal off-target transduction; 2) express the transgene for a length of time and at a level
as to exert maximal therapeutic impact; and 3) show minimal side effects such as vector
related pathologies or host immune responses (Manfredsson et al., 2012).

Viral vectors such as adenovirus, lentivirus (LV) and adeno-associated viral (AAV) have
been designed for gene transfer (Figure 5). Adenoviruses display a rather promiscuous
tropism and have significant immunological issues, thus, they have not been employed
clinically for neurological diseases (Manfredsson et al., 2012). LV vectors have excellent
safety and efficacy in rodent and primate models of neurodegenerative diseases. However,
because they insert their genetic material into the host genome they present an oncogenic
risk. Major advantages of LV vectors are their ability to transduce non-dividing cells
including differentiated neurons, and that large genes can be inserted and permanently
incorporated into the host cell (Dreyer, 2011).

Recombinant AAV (rAAV) are non-pathogenic, have low immunogenicity and high
efficiency transducing brain cells. rAAV can in fact support transgene expression in post-
mitotic cells for the lifetime of an individual. One of the major limitations of rAAV vectors
is that they only support a genomic/gene carrying capacity of ~6 kb. AAVs can integrate
into the host genome with lower frequency than LV. AAV safely integrate at the AAVS1
site found at chromosome 19q13.4 qtr mapped to the first exon of the myosin binding
subunit 85 of protein phosphatase 1. However, rAAV vectors have the potential to lose their
site-specific integration and can instead integrate randomly introducing point mutations
(Manfredsson et al., 2012). Recombinant AAV vectors form stable episomal concatemers,
and in postmitotic cells, episomal AAV genomes can provide long-term (>1 yr) transgene
expression. AAV vectors have been used in animal models and clinical trials showing more
specificity at transducing certain brain areas compared to LV (Ramaswamy et al., 2012).
Twelve different serotypes of AAV have been discovered with distinct affinities for
different cell types depending on the proteins displayed on the surface of their capsids that
recognize different cell-surface receptors. Cells in the brain are transduced by AAV
serotypes 1, 2 and 4–9. Most studies in the brain have been carried out with AAV-2 and 5.
While AAV5 conveys a more wide-spread infection of neurons and astrocytes, AAV2 is
more neuronal-specific. AAV2 transduces neurons by binding to the heparan sulfate
proteoglycan receptor and using bFGF (basic Fibroblast Growth Factor) receptor as a co-
receptor. Distinct rAAV have been created in which the genome of the AAV2 serotype is
packaged in the capsid protein of other AAV serotypes that better bind to receptors on
neurons, glia and ependymal cells (Manfredsson et al., 2012). Interestingly, AAV9 has been
shown to produce global expression in the brain and spinal cord neurons after a peripheral,
systemic route of administration to neonatal mice, while in adult mice the transduction is
mainly observed in glial cells, which reduces its use as a therapeutic alternative in aging-
related diseases (Dayton et al., 2012).

The design, production, and efficiency of viral vectors have been improved remarkably,
leading to safer transduction, long-term and robust transgene expression. Most clinical
vector-based gene-therapy trials have shown success regarding vector safety. However,
clinical efficacy attributed to the gene transfer has been lacking in many cases. Despite a
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number of successful phase I therapy clinical trials, only few have reached phase II. One
potential reason is that experimental therapeutics is often not applied until later stages of the
disease, when it can no longer provide a benefit. Other reasons might be associated with the
lack of a clear understanding of the underlying molecular mechanisms associated with
neuronal cell death and the neuropathology of specific neurological diseases, including the
lack of animal models that fully recapitulate the etiology of the disease states, and not with
our current ability to efficiently and safely deliver gene targeting (Manfredsson et al., 2010).

An increased focus in gene-therapy research has been directed to the development of clinical
regulatable vectors (on/off switches), tissue specific (tyrosine hydroxylase promoter for
catecholaminergic cells), or conditional promoters (hypoxia [HRE] or antioxidant response
elements [ARE]) in order to address safety concerns, tissue specificity and responsiveness to
appropriate local factors that are related to disease. To date, none of the vectors in clinical
use have any direct way to reverse or control their transgene product in the event continued
protein expression should become problematic (Manfredsson et al., 2012).

Viruses offer excellent gene expression efficiency. However, non-viral gene therapy offers
the potential to target specific cells, being less immunogenic and non-integrating into the
host genome. Delivery agents utilized in non-viral gene therapy include complexes
consisting of DNA/RNA and carriers such as cationic agents, modified silica nanoparticles,
cationic lipids and peptides, polymeric micelles and receptor targeting peptides or proteins
(Figure 5). Similar to viral therapy, tissue-specific promoters have been used to direct non-
viral transgene expression to neurons following gene delivery to the brain (Rogers et al.,
2012). Non-viral delivery systems can target specific cell populations by the incorporation
of receptor binding agents, ligands (glycosylated molecules), peptides, proteins or
antibodies. The pathway followed by receptor mediated gene delivery is known to involve
endocytosis, endosomal escape and nuclear entry prior to transcription. Although the BBB
precludes the entry of therapeutic molecules from the circulation to the brain, the use of
endogenous receptor-mediated transport systems or retrograde machinery that viruses
“hijack”, allows the delivery of non-viral agents across the BBB and their delivery to
neurons (Rogers et al., 2012).

Exosomes are extracellular vesicles produced constitutively by most cell types that contain
mRNAs and non-coding micro RNAs (miRNAs) as well as proteins, and are naturally used
as a mechanism of horizontal gene transfer. Exosomes have been re-engineered for targeted
gene therapy. Because they are comprised of non-synthetic and non-viral components,
exosomes are in principle ideal vectors for gene therapy delivery. The small size and
flexibility of exosomes allows them to cross biological membranes, while the RNA and
protein cargo is protected from degradation by their bi-lipid structure (Figure 5). A recent
study demonstrated the ability of modified systemic intravenous delivery of murine
exosomes to deliver short interfering RNA (siRNA) in the brain with the aid of a rabies
virus glycoprotein peptide, without major effects in peripheral organs or adverse immune
responses (Alvarez-Erviti et al., 2011; Lee et al., 2012b).

4.1. Current strategies used for gene therapy in neurological diseases
Major advances in gene-therapy research for neurological disorders have been achieved in
recent years. By overexpressing pro-survival growth factors or targeting endogenous mutant
or wild type genes associated with disease pathogenesis (Figure 5), different research groups
have demonstrated the feasibility of gene-therapy approaches against neurological diseases.
We next summarize the research in this area in order to highlight some examples and routes
of administration.
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4.1.1. Growth factors—One of the major successful areas of research in gene therapy has
been the use of pro-survival growth factors. Gene delivery of Brain-Derived Neurotrophic
Factor (BDNF) using a LV vector decreases learning and memory impairment in AD animal
models (Nagahara et al., 2009). Similarly, AAV2/1 delivery of basic Fibroblast Growth
Factor (bFGF) restores hippocampal functions in an APP+PSEN1 bigenic mice model of
AD (Kiyota et al., 2011). Nerve growth factor (NGF) is known to enhance the function and
survival of basal forebrain cholinergic neurons that are vulnerable in AD. A clinical trial is
ongoing using AAV2-mediated overexpression of NGF for the treatment of AD (Mandel,
2010).

Anterograde transport of AAV vectors from the putamen to the substantia nigra is widely
used as therapeutic approach in PD. LV delivery of Glial-cell-line-Derived Neurotrophic
Factor (GDNF) prevents nigrostriatal degeneration induced by MPTP (Kordower et al.,
2000). An AAV2 vector encoding human Neurturin (NTN) injected into the striatum and/or
substantia nigra decreased neurodegeneration in primate and rodent models of PD (Gasmi et
al., 2007; Kordower et al., 2006). Preliminary data disclosed from ongoing clinical trials
using bilateral intraputaminal AAV2-NTN injection, reports significant improvement in
patients at 18 months post-administration, but NTN expression does not seem to reach the
substantia nigra (Bartus et al., 2011; Berry et al., 2011; Marks et al., 2010).

Similarly, the overexpression of BDNF using AAV reduces motor impairment and neuronal
damage induced by quinolinic acid as a model for HD (Kells et al., 2008). The adenoviral
delivery of Ciliary Neurotrophic Factor (CNTF) also reduces neuronal damage induced by
3-NP (Mittoux et al., 2002). However, opposite effects have been observed when LV or
AAV have been used to deliver CNTF to HD transgenic mice (Denovan-Wright et al., 2008;
Zala et al., 2004). AAV delivery of GDNF protects rats against 3-NP toxicity and also
reduces degeneration in the N171-82Q transgenic mouse model of HD (McBride et al.,
2003; McBride et al., 2006). AAV2-NRTN also exerts protective effects against 3-NP in the
N171-82Q transgenic mouse model (Ramaswamy et al., 2012).

The rapid disease progression of ALS is a major concern for therapeutic intervention.
Different injection pathways have been used to deliver transgenes to spinal motor neurons
including peripheral delivery via intramuscular or intraneural routes of administration, or
systemic delivery via intravascular or intrathecal administration (Federici et al., 2012).
Injection of an AAV2 vector encoding human Insulin Growth Factor-1 (IGF-1) into the
ventral gray matter in the lumbar region slows disease onset and increases the survival of
SOD1G93A mice (Lepore et al., 2007). Viral vector delivery of IGF-1 or Vascular
Endothelial Growth Factor (VEGF) to the CNS through bilateral injection into the deep
cerebellar nuclei also significantly improves lifespan in SOD1G93A mice (Dodge et al.,
2008); these results were confirmed in presymptomatic SOD1G93A rats (Franz et al., 2009).
AAV4-mediated delivery of IGF-1 or VEGF into the ventricular system and spinal cord
central canal delays motor decline and death in SOD1G93A mice (Dodge et al., 2010).
Intramuscular delivery of IGF, GDNF or VEGF using viral vectors delays the disease
progression in SOD1G93A mice (Azzouz et al., 2004; Kaspar et al., 2003; Wang et al.,
2002). AAV-mediated delivery of the Cytokine Granulocyte-colony Stimulating Factor (G-
CSF) to the spinal cord improves the motor function and also delays the disease progression
in SOD1G93A mice (Henriques et al., 2011).

Direct vector administration into the cerebrospinal fluid within the ventricular or
perivascular systems, or into the brain parenchyma via the striatum has been used in stroke
animal models (Gabriel et al., 2007). Gene therapy studies using viral delivery of bFGF-2
have also demonstrated a protective effect of this approach against cerebral stroke (Leker et
al., 2007; Watanabe et al., 2004). A number of studies also report that viral delivery of
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GDNF protects against brain ischemia (Hermann et al., 2001; Iwai et al., 2001; Tsai et al.,
2000; Zhang et al., 2002). AAV-VEGF transduction prior to cerebral ischemia also exerts a
protective effect (Bellomo et al., 2003; Shen et al., 2006).

Non-viral gene therapy has also been explored to mediate transgene overexpression of
growth factors. Cationic carriers conjugated to neurotensin can carry DNA plasmids into
dopaminergic neurons (Hernandez-Baltazar et al., 2012) and have been used as a potential
therapeutic approach in PD (Gonzalez-Barrios et al., 2006; Martinez-Fong et al., 2012). Use
of transferring receptor (TrfR) antibodies conjugated to immunoliposomes, have been
proven to be a viable route to deliver DNA plasmid encoding GDNF encapsulated in
pegylated liposomes to reverse TH depletion in vivo and to protect against experimental PD
(Zhang et al., 2009; Zhang et al., 2004). Liposome-mediated NGF cDNA transfer also
increases the number of surviving cholinergic neurons in a TBI model (Zou et al., 1999).

4.1.2. Targeting of endogenous/mutant genes—Neurodegenerative diseases are in
many cases associated with specific gene mutations. In these cases, the modification of
endogenous levels of wild type or mutant genes might represent a more direct approach for
gene therapy. LV-delivered of siRNA against BACE1 (APP beta secretase 1) decreases
amyloid plaque levels and neurodegeneration in APP transgenic mice (Singer et al., 2005).
Overexpression of ApoE2, whose allele is associated with a decreased risk for developing
AD, reduces Aβ burden in transgenic mice models of AD (Dodart et al., 2005). Viral
delivery of parkin to the substantia nigra protects against α-synuclein mediated
neurodegeneration (Lo Bianco et al., 2004; Yamada et al., 2005), while effective knockdown
of α-synuclein in rats using viral delivery of shRNA ameliorates motor dysfunction in rats
overexpressing human α-synuclein (Khodr et al., 2011). AAV2 encoding a rotenone-
insensitive genetic variant of the mitochondrial complex I NADH–quinone oxidoreductase
(NDI1) has also been shown to protect against MPTP toxicity (Barber-Singh et al., 2009).

The identification of the huntingtin gene allows for the identification carriers well before
symptom onset. Because neuronal dysfunction precedes cell death in HD, genetic testing
and disease state evaluation could allow early therapeutic intervention to be initiated prior to
onset of symptoms to prevent neuronal cell death (Ramaswamy et al., 2012). Normal
huntingtin protein deletion is lethal and thus, RNA interference approaches to treat HD
should preferably target knockdown of mHtt. A number of studies using siRNA, shRNA or
miRNA to down-regulate the production of the mHtt protein have shown effectiveness in
transgenic HD mouse models (Ramaswamy et al., 2012). Similar to HD, familial ALS arises
through a toxic gain-of-function of mutant SOD1. Knockdown of mutant SOD1 via viral
vectors leads to increase lifespan in the G93ASOD1 ALS mice (Federici et al., 2012; Ralph
et al., 2005; Raoul et al., 2005).

4.1.3. Other genetic targets—Aβ deposition and inflammation are major components in
AD pathology. LV-mediated expression of the lysosomal cysteine protease cathepsin B in
APP transgenic mice reduced preexisting Aβ deposits (Mueller-Steiner et al., 2006). LV-
mediated overexpression of neprilysin (NEP), the dominant Aβ peptide-degrading enzyme
in the brain, also reduces Aβ peptide levels and ameliorates neurodegeneration in AD mouse
models (El-Amouri et al., 2008; Marr et al., 2003; Spencer et al., 2008). AAV2/1 delivery of
anti-inflammatory interleukin-10 was shown to ameliorate cognitive dysfunction in an APP
+PSEN1 bigenic mice model of AD (Kiyota et al., 2012).

Dopamine deficiency is the hallmark feature in PD and gene therapy studies have aimed to
correct this by overexpression of enzymes involved in dopamine synthesis. An AAV2 vector
encoding human aromatic-l-amino decarboxylase (AADC), the enzyme responsible for
dopamine synthesis, reduces motor deficits in MPTP-treated primates and these results have

Navarro-Yepes et al. Page 15

Pharmacol Ther. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



led to a phase I clinical trial (Bankiewicz et al., 2006; Christine et al., 2009; Muramatsu et
al., 2010). Because the restoration of AADC still requires L-dopa supplementation, other
approaches have aimed to transduce enzymes involved in its synthesis. Triple transduction
of TH, AADC and GTP cyclohydrolase 1 (GCH1) in rats using AAV vectors reduces 6-
OHDA-induced neurodegeneration (Shen et al., 2000). A LV that delivers GCH1, TH and
AADC in patients with PD is currently in use (Azzouz et al., 2002). Another explored
strategy is increasing the expression of glutamic acid decarboxylase (GAD) (that mediates
GABA synthesis) to inhibit the synchronous oscillatory activity of the globus pallidus and
subthalamic nucleus observed in PD patients. AAV2-GAD decreases neurodegeneration
induced by 6-OHDA and MPTP (Emborg et al., 2007; Lee et al., 2005; Luo et al., 2002).
These results led to phase I/II trials in PD patients that demonstrated a significant
improvement of PD patients (Kaplitt et al., 2007; LeWitt et al., 2011). Importantly, the
safety and tolerability analysis of unilateral subthalamic injection of the AAV2-GAD65/67
in 12 patients reported no adverse effects related to the procedure and no change in the
patients’ immunity against AAV or GAD were reported after 12 months.

Neuronal cell death in neurodegenerative diseases and upon brain ischemia and TBI insults
is mediated by apoptotic signaling. Delivery of anti-apoptotic Bcl-2 or Bcl-xl proteins using
rAAV also reduces degeneration in transgenic ALS mice (Azzouz et al., 2000; Yamashita et
al., 2002). In TBI, gene therapy research uses different routes of delivery. Extravascular
delivery of viral vectors via direct injection into the injured brain conveys precise focus
positioning. However, the area transfected is limited, repeated injections are not allowed,
and the injected volume has to be minimized to prevent extrusion and distortion of the
surrounding brain tissues. In contrast, intraventricular injection of gene vectors has a smaller
invasion area and wider tissue distribution through the cerebrospinal fluid circulation.
Intravascular delivery is more acceptable in clinical use, but delivered viral vectors do not
permeate the BBB. A recombinant adenovirus vector expressing Bcl-2 has also been used as
a therapeutic approach in a TBI experimental model (Yang et al., 2006). Similarly, AAV
delivery of the anti-apoptotic protein Bcl-w improves the neuronal function in cerebral
ischemia (Sun et al., 2003)

5. Catalytic antioxidant defenses against neuronal cell death
Cells have evolved intrinsic antioxidant mechanisms to maintain a tight homeostatic control
of the ROS/RNS generated under physiological conditions, and to detoxify their excessive
accumulation in pathological conditions. Under physiological conditions a balance exists
among the activities of enzymatic antioxidant defenses, the intracellular levels of non-
enzymatic antioxidants, and the production of ROS/RNS as signaling molecules essential for
proper cellular function. In addition to their ability to scavenge ROS/RNS, antioxidants
systems modulate cell signaling pathways by redox dependent mechanisms (Figure 6).

Based on the evidence highlighted above regarding the role of oxidative stress in neuronal
cell death associated with a number of neurological diseases (neurodegeneration, brain
ischemia and TBI), a number of clinical trials have aimed at using antioxidant
supplementation in the diet as therapeutic approach. However, the clinical trial results so far
have been mostly negative. Indeed, most antioxidants tested have been chosen based on their
easy availability rather than because they have proved to be the best antioxidant candidates.
Not only their efficiency to scavenge ROS/RNS, but many other factors such as
absorbability, metabolism, ability to penetrate the BBB and distribution should also be
considered to identify potential antioxidant candidates. Other possibility for the lack of
benefit of antioxidants might be that the clinical trials have not lasted long enough or have
not started early enough to prevent disease progression, our failure to understand their basic
mechanisms of action in relationship to human diseases, and to conduct preclinical studies to
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identify concentration and time parameters relevant to the clinical setting of each pathology.
In addition, it is clear that multiple pathogenetic factors other than ROS/RNS participate in
neuronal cell death in distinct neurological disorders suggesting that an integrated approach
might prove to be more successful (Giustarini et al., 2009; Kamat et al., 2008; Shen et al.,
2010).

Another possibility that has not been taken into account is that experimental evidence
demonstrates that ROS/RNS formation, oxidative stress and redox signaling involved in
neuronal cell death show a high degree of selectivity regarding the ROS/RNS implicated and
their subcellular compartmentalization. With the technological advance in the design of viral
vectors leading to safer transduction as well as selective, long-term and robust transgene
expression, together with the progress in using gene therapy in clinical trials, we consider
that the targeted expression of specific catalytic antioxidants might be a more selective
therapeutic approach to counteract oxidative stress, compared to dietary supplementation of
non-selective antioxidants. We next summarize the in vivo experimental evidence
demonstrating the potential of selective regulation of endogenous catalytic antioxidant
enzymes to counteract oxidative damage and neuronal cell death.

5.1. Superoxide dismutases (SODs)
The most important cellular defense against O2

•− are SODs. In mammals, there are three
isoforms specifically compartmentalized, which catalyze the dismutation of O2

•− to O2 and
H2O2 by cycling of the transition metal ion at the active site: MnSOD (SOD2) localized in
the mitochondrial matrix (Sutton et al., 2003), CuZnSOD or SOD1 in the IMS,
peroxysomes, nucleus or cytosol (Okado-Matsumoto et al., 2001), and the extracellular SOD
(EcSOD or SOD3) anchored to the cells’ surface through an heparin-binding domain
(Hjalmarsson et al., 1987). MnSOD contains one manganese atom at the active site
(Bakthavatchalu et al., 2011), while CuZnSOD and EcSOD contain a metal cluster of copper
and zinc atoms (Crapo et al., 1992; Oshikawa et al., 2010).

Genetic ablation of one copy of the MnSOD allele SOD2(+/−) in mutant human APP
(hAPP) transgenic mice exacerbates the Aβ burden and significantly increases the levels of
phosphorylated tau and oxidative stress (Esposito et al., 2006; Lee et al., 2012a; Li et al.,
2004; Melov et al., 2007). Conversely, the overexpression of MnSOD in hAPP mice reduces
oxidative stress and amyloid deposition (Dumont et al., 2009). Similar to MnSOD,
CuZnSOD deficiency in hAPP accelerates the Aβ oligomerization, memory impairment and
oxidative damage (Murakami et al., 2011).

In experimental PD models, the overexpression of CuZnSOD (Barkats et al., 2006;
Przedborski et al., 1992) or MnSOD (Klivenyi et al., 1998) has been shown to decrease
MPTP toxicity, while MnSOD or CuZnSOD deficiencies increase it (Andreassen et al.,
2001; Zhang et al., 2000). However, contradictory results also report that overexpression of
MnSOD or CuZnSOD does not prevent MPP+ or rotenone toxicity (Rodriguez-Rocha et al.,
2013; Sanchez-Ramos et al., 1997). Adenoviral-mediated overexpression of MnSOD but not
CuZnSOD protects against paraquat toxicity suggesting a specific role for mitochondrial
ROS formation (Rodriguez-Rocha et al., 2013).

Ischemic brain damage and TBI, as well as 3-NP/malonate (HD models)-induced oxidative
stress are also exacerbated in SOD2(+/−) mice (Andreassen et al., 2001; Fujimura et al.,
1999; Kim et al., 2002a; Kim et al., 2002b; Lewen et al., 2001; Mehta et al., 2011;
Murakami et al., 1998; Noshita et al., 2001), while in transgenic mice overexpressing
MnSOD or CuZnSOD, mitochondrial dysfunction induced by TBI is reduced (Xiong et al.,
2005). In contrast, while MnSOD deficiency decreases the lifespan of G93ASOD1 (pseudo-
wildtype) ALS mice, it had no effect on H46R/H48QSOD1 (metal-deficient) mice,
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suggesting that different mechanisms other than mitochondrial O2
•− formation mediate ALS

caused by mutations in SOD1 (Andreassen et al., 2000; Muller et al., 2008).

5.2. Catalase
Catalase enzymatically decomposes H2O2 to H2O and O2 and is primarily localized in the
peroxisomes. It contains four porphyrin heme (iron) groups that allow the enzyme to react
with H2O2. A reduction in Aβ levels and oxidative stress is found in hAPP mice
overexpressing catalase targeted to the mitochondria, using the first 25 amino acids of the
ornithine transcarbamylase leader sequence (Mao et al., 2012). Similarly, mitocatalase also
decreases MPTP-induced mitochondrial ROS accumulation and dopaminergic cell death
(Perier et al., 2010). We have not been able to observe any effects of adenoviral-mediated
overexpression of catalase or mitocatalase on MPP+-induced toxicity in human
neuroblastoma cells (unpublished data).

5.3. Enzymes involved in GSH recycling and synthesis
Glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) is the most abundant non-protein thiol
in mammalian cells acting as a major reducing agent and antioxidant defense maintaining a
tight control of the redox status. GSH synthesis is initiated by the generation of γ-
glutamylcysteine from glutamate and cysteine via glutamate-cysteine ligase (GCL), with the
subsequent addition of glycine by the activity of GSH synthetase (GS) (Franco et al., 2009,
2012; Jones, 2006; Meister, 1995; Schafer et al., 2001; Sies, 1999). GCL is a heterodimer
composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM), and knockout of
GCLM decreases the survival of G93ASOD1 ALS mice (Vargas et al., 2011).

Brain GSH concentration is approximately 2–3 mM. The cysteine availability is rate limiting
for the synthesis of GSH. In neurons, cysteine uptake is mediated primarily by the Na+-
dependent excitatory amino acid transporter (EAAT), also known as system XAG

− (Aoyama
et al., 2008; Dringen et al., 2003). EAAT3 (or EAAC1) can transport cysteine at a rate
comparable to that of glutamate. Extracellular cysteine is unstable and has neurotoxic effects
mediated by oxidative stress (Janaky et al., 2000). However, the CSF cysteine concentration
is much higher than in plasma. A major extracellular source for cysteine is the dipeptide
cystine. Cystine uptake occurs by a Na+-independent heteroexchange mechanism
denominated Xc

−, which is found in immature neurons, astrocytes, microglia, retinal Muller
and Bergmann glial cells (Lewerenz et al., 2012). An inter-relationship exists between
astrocytes and neurons where neurons rely on extracellular cysteine provided by GSH efflux
from astrocytes via GAP junction hemichannels, multidrug resistance protein transporters or
EAAT1 (GLAST) (Fernandez-Fernandez et al., 2012; Minich et al., 2006; Rana et al., 2006;
Stridh et al., 2010; Stridh et al., 2008). Interestingly, while mice deficient in Xc

− system
have no alterations in brain GSH content, EAAT3-deficient mice have reduced GSH levels
(Aoyama et al., 2006; Aoyama et al., 2008). EAAT3 knockout mice are more susceptible to
ischemia-induced oxidative stress (Li et al., 2011a).

GSH reductase (GR), which reduces glutathione disulfide (GSSG) back to GSH, requires
reduced NADPH) as the electron donor reductant, and glucose-6-phosphate dehydrogenase
(G6PD) is indispensable for the regeneration of NADPH from NADP+(Ho et al., 2007).
Mice overexpressing G6PD are more resistant to MPTP-induced PD-like neurodegeneration
(Mejias et al., 2006).

5.4. Glutathione peroxidases (Gpx)
Gpx are selenoproteins that reduce peroxides. Gpx isozymes are encoded by different genes
and vary in their cellular location and substrate specificity. While GPx1, found primarily in
the cytoplasm, preferably scavenges H2O2, Gpx4 hydrolyses lipid hydroperoxides and can
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be found in both cytosolic and mitochondrial compartments. Gpx1 transgenic mice and LV-
mediated expression of Gpx1 in nigral dopaminergic neurons in vivo significantly protect
against 6-OHDA toxicity, but these results could not be reproduced in vitro using adenoviral
vectors (Barkats et al., 2002; Bensadoun et al., 1998; Ridet et al., 2006). MPTP toxicity is
increased in mice deficient in Gpx1 (Klivenyi et al., 2000; Zhang et al., 2000). Malonate-
induced striatal cell loss is also decrease in transgenic Gpx1 mice (Zeevalk et al., 1997). A
number of studies from independent research groups demonstrate that Gpx1 knockout
exacerbates, while Gpx1 overexpression protects against ischemic injury (Crack et al., 2006;
Keller et al., 2000; Sheldon et al., 2008; Taylor et al., 2005; Weisbrot-Lefkowitz et al., 1998;
Wong et al., 2008), and increases the survival of G93A SOD1 mice (Cudkowicz et al.,
2002). Contradictory results exist regarding the protective effect of Gpx1 overexpression in
TBI (Potts et al., 2009; Tsuru-Aoyagi et al., 2009). Gpx4 deficiency increases lipid
peroxidation and Aβ levels in hAPP mice (Chen et al., 2008).

5.5. Peroxiredoxins (Prxs)
Prxs are ubiquitous thiol peroxidases comprising up to 1% of soluble cellular proteins that
scavenge peroxides in cells (Figure 6). The catalysis of H2O2 is initiated by the reaction of
their active site cysteine residue with H2O2, and recent studies have demonstrated that the
reaction rate for Prxs with H2O2 is comparable to that of catalase (Cox et al., 2010; Hall et
al., 2009). Mammals have six Prxs, with Prx1, 2 and 6 found in the cytoplasm, Prx4 in the
ER, Prx3 in the mitochondria, and Prx5 in various compartments within the cell, including
peroxisomes and mitochondria. Prx3 transgenic mice are resistant to oxidative damage and
mitochondrial dysfunction induced by paraquat in hAPP mice (Chen et al., 2012).
Transgenic mice overexpressing Prx2 showed reduced neuronal injury and oxidative stress
induced by ischemia (Gan et al., 2012). LV-mediated over-expression of Prxs2 protects
against 6-OHDA toxicity in vivo. In addition, a comparable degree of protection was
observed in vitro by overexpression of Prx1 and Prx4 (Chen et al., 2012).

5.6. Thioredoxins (Trxs)
Trxs are thiol-redox proteins with a conserved Cys-Gly-Pro-Cys catalytic site that reduce or
bind to proteins modifying their function. The Trx redox system depends on thiol-disulfide
exchange reactions at the active site. Thioredoxin reductase (TrxR), a homodimeric
selenium containing flavoprotein, transfers reducing equivalents from NADPH to Trxs
reducing them. While the Trx1/TrxR1 system is localized in the cytoplasm, the Trx2/TrxR2
system is mitochondrial. In addition, Trxs provide reducing equivalents for the peroxide
scavenging activity of Prxs (see section above). Trx1 has also been shown to reduce and
activate a number of transcription factors. Overexpression of Trx1 decreases the neuronal
cell apoptosis induced by ischemia (Takagi et al., 1999; Zhou et al., 2009).

5.7. Glutaredoxins (Grxs)
Glutathionylation is a reversible post-translational oxidative modification observed upon
oxidative stress involving the formation of a mixed disulfide bond between GSH and protein
cysteines. Grxs are oxidoreductases that utilize the reducing power of GSH to catalyze
protein deglutathionylation. However, Grxs can induce both glutahionylation/
deglutathionylation depending on the GSH/GSSG ratio and the presence of thiyl radicals
(GS•). Grx1 is localized in the cytosol and intermembrane space, whereas mitochondrial
Grx2 is localized in the matrix (Beer et al., 2004; Mieyal et al., 2008). In vivo down-
regulation of Grx1 using anti-sense oligonucleotides exacerbates the impairment of complex
I by MPTP, while in vitro adenoviral delivery of Grx1 protects against paraquat and 6-
OHDA toxicity (Kenchappa et al., 2003; Rodriguez-Rocha et al., 2012). Grx2
overexpression protects against MPP+-induced toxicity (Karunakaran et al., 2007).
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5.8. Methionine sulfoxide reductases (Msrs)
Methionine (Met) is one of the most vulnerable amino acid residues to oxidation. The
addition of an oxygen atom oxidizes Met to methionine sulfoxide (MetSO), and its further
oxidation leads to methionine sulfone (MetSO2) formation. Two different stereoisomers of
MetSO, L-Met-S-SO and L-Met-R-SO are found at physiological conditions and they are
reverted by Msrs. In humans, there are two different Msrs, MsrA and MsrB. MsrA is
specific to the S-stereoisomer, and human MsrA is localized in the mitochondria, whereas
MsrB reduces the R- stereoisomer. Mammals have three MsrB proteins. MsrB1 is a
selenoprotein that contains selenium (Se) in the catalytic cysteine residue. MsrB1 is
primarily located in the cytosol and nucleus, while MsrB2 is located in the mitochondria.
MsrB3A is located in the ER and MsrB3B is targeted to the mitochondria (Lee et al., 2011).
In AD a high percentage of Aβ aggregates contain MetSO at position 35, and the oxidation
of Met(35) to Met(35)SO decreases the extent of Aβ aggregation and toxicity, whereas the
oxidation of Met(35) to MetSO2 yields a toxicity similar to that of unoxidized Aβ. In
MsrA(−/−) mice, the toxicity between native Aβ and Aβ-Met(35)SO is similar suggesting
that the lower toxicity of Aβ-Met(35)SO might be a result of MsrA-mediated reduction
(Moskovitz et al., 2011).

5.9. Heme-oxygenase (HO)
HO is a microsomal enzyme that catalyzes the first rate-limiting step in the heme
degradation playing an important role in Fe2+ recycling. HO cleaves the carbon bridge of
heme, yielding equimolar quantities of carbon monoxide (CO), Fe2+ and biliverdin. HO
activity results in decreased oxidative stress by removal of heme, a potent pro-oxidant.
Although Fe2+ can give rise to •OH radicals, simultaneous up-regulation of ferritin and
cytosolic Fe2+ efflux protect cells from oxidative stress. Biliverdin and bilirubin are also
potent antioxidants, capable of attenuating oxidative injury by scavenging peroxyl radicals
(Jozkowicz et al., 2007). HO-1 is an inducible isoform in response to stress, whereas HO-2
is a constitutive isoform that is expressed under homeostatic conditions. HO-1 transgenic
mice are protected against cerebral ischemia (Hung et al., 2008). Adenoviral-mediated
overexpression of HO-1 also reduces oxidative brain injury induced by cerebral ischemia
(Chao et al., 2013), and dopaminergic cell death triggered by MPTP (Hung et al., 2008).
However, another study reports that HO-1 deficiency does not affect MPTP toxicity
(Innamorato et al., 2010). HO-2 knockout mice exhibit increased neuronal loss after TBI
insult (Chang et al., 2003).

5.10. Transcriptional regulation of antioxidant defenses
Oxidative stress activates the transcription of a variety of antioxidant genes through cis-
acting sequences known as antioxidant response elements (ARE) or electrophile-responsive
elements (EpRE). Nuclear factor (erythroid-derived 2)-like 1 (Nrf1) and 2 (Nrf2), members
of the Cap-N-Collar family of transcription factors bind ARE. Nrf2 regulates the expression
of antioxidant proteins and proteins that mediate GSH synthesis or recycling. Nrf2 is kept in
a cytosolic complex with the kelch-like ECH-associated protein 1 (Keap1), where it is
subjected to proteasomal degradation. Oxidants or electrophiles induce a conformational
change in Keap1 that allow the translocation of Nrf2 to the nucleus (Brigelius-Flohe et al.,
2011). Accordingly, in vivo activation of Nrf2 has been linked to the protective effects of
triterpenoids (MPTP-PD model) (Kaidery et al., 2013), sulforaphane (MPTP-PD model and
TBI) (Hong et al., 2010; Jazwa et al., 2011), histone deacetylase inhibitors, and carbon
monoxide (brain ischemia) (Wang et al., 2011; Wang et al., 2012). Nrf2 deficiency
exacerbates dopaminergic degeneration induced by α-synuclein (Lastres-Becker et al.,
2012), MPTP (Burton et al., 2006; Innamorato et al., 2010; Rojo et al., 2010), 6-OHDA
(Burton et al., 2006), as well as 3-NP/malonate-induced striatal cell loss (Calkins et al.,

Navarro-Yepes et al. Page 20

Pharmacol Ther. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2005), ischemic injury (Shah et al., 2007; Shih et al., 2005), and neuronal cell death in TBI
(Hong et al., 2010; Jin et al., 2009). Interestingly, the selective overexpression of Nrf2 in
astrocytes protects against MPTP-induced toxicity (Chen et al., 2009b) and increases
survival of G93ASOD1 ALS mice (Vargas et al., 2008). Viral-mediated delivery of Nrf2
also improves cognitive function but not Aβ burden in an APP/PS1 AD mouse model
(Kanninen et al., 2009).

6. Conclusions and Perspectives
Oxidative stress has been largely reported to trigger and/or regulate neuronal cell death in a
number of neurological disorders such as neurodegenerative disorders, brain ischemia and
TBI (Franklin, 2011). A large number of studies have reported the beneficial effects of
antioxidant approaches on counteracting oxidative stress-induced neuronal cell death in
different experimental models. However, clinical trials aimed at using antioxidant
supplementation in diet as a therapeutic approach have been largely unsuccessful. Indeed,
many factors can explain the lack of success of such clinical interventions including: 1)
intrinsic characteristics of the antioxidant studied (absorption, metabolism, ability to
penetrate the BBB, and distribution); 2) caveats in the design of clinical trials (duration,
concentration and time of intervention); 3) a gap in our understanding of their basic
mechanisms of action in relationship to human disease progression; and 4) the existence of
multiple pathogenic factors other than ROS/RNS contributing to neuronal cell death
(Giustarini et al., 2009; Kamat et al., 2008; Shen et al., 2010). However, with the advances
in the design of viral vectors leading to safer transduction as well as selectivity, long-term
and robust transgene expression, and the recent successes in recent gene therapy clinical
trials, we consider that the targeted expression of specific catalytic antioxidants might be a
more selective therapeutic approach to counteract oxidative stress. This is also supported by
experimental evidence demonstrating that the ROS/RNS formation and redox signaling
involved in neuronal death on neurodegenerative disorders, as well as the subcellular
compartmentalization of oxidative stress, is specific and different to each neurological
diseases. The experimental evidence supporting a role for oxidative stress in neuronal cell
loss/damage associated with neurological diseases is strong. However, it is necessary to
carefully consider the biomarkers of oxidative stress and methods employed for their
evaluation in the clinic. Attention to confounding factors must be taken to objectively
measure and evaluate biomarkers of oxidative stress as indicators of normal biological
processes, pathogenic processes, or responses to therapeutic intervention.

We have summarized here the in vivo experimental evidence demonstrating the potential for
selective regulation of endogenous catalytic antioxidant enzymes to counteract the oxidative
damage and neuronal cell death observed in neurodegeneration and ischemia/TBI insults.
We have included in this discussion both experimental studies in vivo using viral expression
vectors and transgenic/knockout models. However, we need to consider that the
experimental evidence gathered using transgenic/knockout animals has to be corroborated
using viral delivery approaches. Long-term modification of gene expression might induce
compensatory mechanisms during development that could not be observed during transgene
overexpression in adulthood. The experimental work reviewed here aims to encourage
future experimentation in this are with the potential to be translated in the design of clinical
trials. The question now is…what are we waiting for?
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Abbreviations

ΔΨm mitochondrial membrane potential

3-NP 3-nitropropionic acid

6-OHDA 6-hydroxydopamine

AADC Aromatic-l-amino decarboxylase

AAV Adeno-associated virus

Aβ amyloid-β peptide

AD Alzheimer's disease

AICD amyloid precursor protein intracellular domain

ALS Amyotrophic Lateral Sclerosis

APP Amyloid precursor protein

ARE Antioxidant Response Element

ApoE apolipoprotein E

BDNF Brain-derived eurotrophic factor

BBB blood-brain barrier

CBF Cerebral blood flow

CNTF Ciliary neurotrophic factor

COX Cyclooxygenases

CSF Cerebrospinal fluid

CuZnSOD Copper-zinc superoxide dismutase

DMT1 divalent metal transporter 1

EpRE Electrophile-responsive elements

EAAT Excitatory amino acid transporter

EcSOD Extracellular superoxide dismutase

ETC Electron transport chain

bFGF Fibroblast Growth Factor

G-CSF Granulocyte-colony stimulating factor

G6PD Glucose-6-phosphate dehydrogenase

GAD Glutamic acid decarboxylase

GDNF Glial-cell-line-derived neurotrophic factor

GCL Glutamate-cystein ligase

GCLC Glutamate-cystein ligase catalytic subunit

GCLM Glutamate-cystein ligase modifier subunit

GSH Glutathione

GSSG Glutathione disulfide

GR Glutathione reductase
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Gpx Glutathione peroxidases

Grx Glutaredoxin

GCH-1 GTP cyclohydrolase-1

HD Huntington’s disease

HO Heme-oxygenase

IMS Inner membrane space

IGF-1 Insulin growth factor 1

LRRK2 Leucine rich repeat kinase 2

LV Lentivirus

MetSO Methionine sulfoxide

mtHtt mutant Huntingtin

Msrs MetSO reductases

MnSOD Manganese superoxide dismutase

MPOs Myeloperoxidases

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NADPH Nicotinamide adenine dinucleotide phosphate

NGF Nerve growth factor

Nox NADPH oxidase

•NO Nitric oxide, (e) endotelial, (i) inducible, (n) neuronal

NOS Nitric oxide synthase

O2 Oxygen

O2
•− Superoxide anion

•OH Hydroxyl radical

ONOO− Peroxynitrite

ONOOH peroxynitrous acid

PD Parkinson's disease

Prx Peroxiredoxin

PSEN presenilin

RAGE Receptor for advanced glycation end products

RNS Reactive nitrogen species

ROS Reactive oxygen species

SNpc Substantia nigra pars compacta

SODs Superoxide dismutases

TBI Traumatic brain injury

TH Tyrosine hydroxylase

TOM translocase of the outer membrane
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Trx Thioredoxin

TrxR Thioredoxin reductase

VEGF Vascular endothelial growth factor

VMAT2 Vesicular monoamine transporter
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Figure 1. Oxidative stress in AD
The amyloid cascade hypothesis suggests that deposition of Aβ triggers neuronal
dysfunction and death in the brain. APP is an integral membrane protein concentrated in the
synapses of neurons. (1) Amyloidogenic processing is initiated by β-secretase beta-site
amyloid precursor protein–cleaving enzyme 1 (BACE-1), releasing a shortened sAPP. The
C99 fragment is a γ-secretase substrate, generating Aβ and AICD. PSEN1 and PSEN2
mutations affect concentrations of Aβ1–42 because presenilin proteins form part of γ
secretase, which cleaves APP to produce Aβ. (2) Soluble Aβ is prone to aggregation. In
addition, Aβ interacts with several metal ions affecting its solubility and leading to
fibrillization and cellular toxicity. The Aβ-metal complex triggers ROS production. (3)
Activation of glial cells has also been proposed to contribute to ROS formation via MPO.
(4) In addition, accumulation of extracellular levels of the exicitatory amino acid glutamate
leads to perturbations in neuronal Ca2+ homeostasis that have the potential to trigger
mitochondrial dysfunction and ROS formation. (5) The RAGE has also been proposed to
mediate Aβ's pro-oxidant effects. (6) Aβ has been shown to be transported into mitochondria
via the outer membrane (TOM) complex and localized at the mitochondrial cristae. (7) In
the mitochondria, Aβ inhibits mitochondrial cytochrome oxidase (complex IV) and the key
Krebs-cycle enzymes (α-ketoglutarate and pyruvate dehydrogenase) impairing ETC, ATP
production, oxygen consumption, and mitochondrial membrane potential. Dysfunctional
mitochondria produce ROS and mtDNA oxidative damage. Conversely, mitochondrial ROS
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also trigger increased Aβ production. (8) Aβ induces an increase in iNOS expression and
NO• ONOO− generation in glial cells, whereas it inhibits the activity of nNOS and eNOS in
neuronal-like cells.
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Figure 2. Oxidative stress in PD
(1) A fraction of PD cases are related to mutations in genes such as those encoding α-
synuclein, DJ-1, PINK1, LRRK2 and parkin. Most of these gene products have been found
to interact with mitochondrial components to different extent and under pathological
conditions, impair its function leading to ROS formation (see text for further details). (2)
Oxidative stress in PD is linked primarily to mitochondrial dysfunction. Decreased activity
of mitochondrial complex I is found in the SNpc of PD patients. (3) Metal ions accelerate α-
synuclein oligomerization / aggregation, Cu2+ being the one that induces it faster. (4)
Mutant α-synuclein and environmental toxins impair VMAT2 augmenting cytosolic
dopamine, which dopamine is metabolized by MAO or auto-oxidized generating ROS and
DAQ. (5) DAQs are highly reactive products which can inactivate proteins by reacting with
protein thiols. (6) Increased iron deposition and free iron concentration have been found in
the SNpc of PD brains, which leads to increased generation of •OH via Fenton and Haber-
Weiss reactions. Low levels of ferritin in PD patients have been reported. Alterations in
DMT1 function and transferrin receptors have also been proposed to contribute to PD. (7)
RNS also play an important role in PD. Parkinsonian mimetics have been shown to mediate
NO• and ONOO− generation as well as nitration of α-synuclein that promotes its
oligomerization and aggregation. (8) Environmental toxins have also been shown to induce
oxidative damage through Nox and MPO activation in glial cells.
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Figure 3.
HD is caused by highly polymorphic CAG trinucleotide repeat expansions in the exon-1 of
the Htt gene, yielding proteins containing polyglutamine repeats that become misfolded
aggregates and resist degradation. (1) Levels of SDH or complex II subunits Fp (FAD) and
Ip (iron–sulphur cluster) are found reduced in HD brains and in striatal neurons
overexpressing the N-terminal fragment of mtHtt. Accordingly, complex II inhibitors such
as malonate and 3-NP induce both biochemical and clinical alterations in vivo that resemble
those in HD. (2) 3-NP induces a decrease in ATP levels, a reduction in the uptake of the
excitatory amino acid glutamate and the activation of NMDA receptors, which mediate ROS
formation. (3) A recent report demonstrates that aggregation of polyglutamine Htt fragments
directly causes ROS formation. (4) 3-NP toxicity is enhanced by dopamine, which mediates
and exacerbates ROS production.
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Figure 4. Oxidative stress during Brain Ischemia, Excitotoxicity and Traumatic Brain Injury
(TBI)
TBI produces a direct tissue damage and impaired regulation of cerebral blood flow (CBF)
causing deprivation of O2 and glucose resulting in brain damage by Ischemia. Ischemic
injury is mediated by depletion in energy stores impairing ATP-dependent processes.
Malfunction of the Na+/K+-ATPase leads to the disruption of ionic gradients of K+, Na+,
Cl−, and Ca+2. This leads to plasma membrane depolarization, reversal of excitatory amino
acid uptake and Ca+2-dependent exocytosis. The presynaptic cell releases excitatory amino
acid (glutamate) that activates NMDA and AMPA receptors, which permit Ca+2 entry/
overload in the postsynaptic cell, which is partially buffered by mitochondrial 2Na+/Ca2+

exchanger. Mitochondrial Ca+2 overload leads to a loss of mitochondrial membrane
potential (ΔΨm) and an increase in ROS generation. Energy failure caused by mitochondrial
dysfunction leads to a metabolic switch towards anaerobic metabolism leading to increased
lactate production. The elevated cytosolic Ca+2 levels also activate nNOS and increases
•NO. During reperfusion, when O2 is replenished, pro-oxidant enzymes, such as Nox, and
mitochondria utilize O2 as a substrate to generate additional ROS. Inflammation also
contributes to oxidative damage and release of excitatory amino acids.
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Figure 5. Target delivery of therapeutic genes in neuronal populations
Adenovirus, lentivirus (LV) and adeno-associated viral (AAV) have been used as viral
vectors for gene transfer. Viral vectors carrying therapeutic genes (1) can be bonded to cell
surface receptors to selectively allow entry of DNA into neurons by receptor-mediated
endocytosis, which then becomes encapsulated in endosomes, from which they must escape
to inject the corresponding new gene into the nucleus to promote the expression of the
therapeutic protein of interest. In addition (2), viruses can inject the viral RNA, which by
reverse transcription produces a dsDNA that could be integrated in host genome. Although
viruses offer excellent gene expression efficiency, non-viral gene therapy offers the potential
to target specific cells, being less immunogenic and non-integrating into the host genome.
An example are exosomes that have been re-engineered for targeted gene therapy, their
small size and flexibility allows them to cross biological membranes, while the “cargo” is
protected from degradation by their bi-lipid structure. Major advances in gene-therapy
research for neurological disorders have been achieved in recent years by overexpressing
pro-survival growth factors or targeting endogenous mutant or wild type genes associated
with disease pathogenesis.
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Figure 6. Catalytic antioxidant systems
Cells have intrinsic antioxidant mechanisms to maintain a tight homeostatic control of ROS/
RNS generated under physiological conditions, and also detoxify their excessive
accumulation in pathological conditions. SODs dismutate O2

•− to O2 and H2O2. (1) MnSOD
is localized in the mitochondrial matrix, CuZnSOD in the IMS, peroxysomes, nucleous or
cytosol, and EcSOD in the extracellular space (2). (3) Catalase catalyzes the decomposition
of H2O2 to water and oxygen and is primarily localized in the peroxisomes. (4) Gpx are
selenoproteins that reduce peroxides using GSH as substrate. Gpx isozymes encoded by
different genes vary in their cellular location and substrate specificity. For example, Gpx1
preferably scavenges H2O2, whileGpx4 hydrolyses lipid hydroperoxides. GR, which reduces
GSSG back to GSH, requires NADPH as electron donor reductant, and G6PD is
indispensable for the regeneration of NADPH from NADP+ in then cytosol. (5) Prxs are
ubiquitous thiol peroxidases that scavenge peroxides. Catalysis of H2O2 is mediated by the
reaction of their active site cysteine residue with H2O2 with a rate comparabale to that of
catalases. The catalytic activity of Prxs requires reducing equivalents provided by the Trx/
TrxR system. (6) In addition, Trxs can directly bind to proteins modifying their function.
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Table 1

Clinical and experimental (in vivo) findings linking oxidative stress to neurological diseases.

Disease Model Findings Reference

Alzheimer’s disease (AD)

Human postmortem brain
tissues

Increase 3-NT in neurofibrillary tangles (NFTs) of
postmortem brain tissues with respect to control cases
lacking NFTs, where nitrotyrosine was not detected.

Good et al., 1996

Increased 3-NT in neurons of brain tissues. 3-NT was
undetectable in the cerebral cortex of age-matched
control brains. The distribution is essentially identical to
that of free carbonyls.

Smith et al., 1997

Iron has been found accumulated in the hippocampus
and cerebral cortex, colocalizing with AD lesions. RNA-
bound iron plays a pivotal role in RNA oxidation. The
cytoplasm of hippocampal neurons showed significantly
higher redox activity and Fe2+ staining than age-matched
controls and only AD rRNA contains 8-
hydroxyguanosine in reverse transcriptase-PCR.

Su et al., 2008;
Honda et al., 2005

Elevated levels of labile Cu2+ that correlated with
oxidative damage were found in AD brains in
postmortem cortical tissue when compared with non-
demented elderly controls.

James et al., 2012

High Cu2+ concentrations are found within Aβ plaques;
Aβ binds Cu2+ in AD tissue, and Aβ: Cu2+ complexes
form a catalytic source of H2O2 that could enhance the
production of •OH.

Su et al., 2008

In vivo models

In vivo imaging using the fluorescent redox sensor
roGFP in the APP/PS1 transgenic mice identifed
susceptible neurons by their increased redox potential.
The oxidative stress was most prevalent in neurites near
plaques and propagated to cell bodies.

Xie et al., 2013

An oxidized redox state (NADPH/FAD), lower NADH
regenerating capacity, lower GSH levels, and excessive
ROS were found in 3xTg-AD compared with non-Tg
neurons.

Ghosh et al., 2012

Using triple transgenic AD mice a massive dysregulation
of mitochondrial proteins mainly related to complexes I
and IV of the oxidative phosphorylation system
(OXPHOS) were found. These mitochondrial defects
were associated with an increase of O2

•−, as well as
cytosolic ROS levels.

Rhein et al., 2009

Alterations in the GSH/GSSG redox state and an
increase of mixed-disulfide (Pr-SSG) were found in both
brain tissues and blood samples of a double mutant AD
transgenic mouse model.

Kahles et al., 2013

Developmental exposure to Pb altered the levels,
characteristics, and intracellular distribution of Aβ
staining and plaques in the cortex of aged monkeys.
These effects were accompanied by higher levels of
oxidative damage to DNA.

Wu et al., 2008

Parkinson’s Disease (PD) Human postmortem brain
tissues

A significant increase in protein carbonyl levels was
found in brain areas associated with PD

Alam et al.,
1997a; Floor and
Wetzel 1998

An increase in 8-hydroxyguanine (8-OHdG) was found
in the SNpc of PD brain.

Alam et al., 1997b
Zhang et al., 1999

Increased levels of malondialdehyde (MDA; an
intermediate in the lipid peroxidation process) were
found in PD SNpc compared with other brain regions
and control tissue.

Dexter et al.,
1989; Yoritaka et
al., 1996
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Disease Model Findings Reference

Deficiency in the activity of the ETC in the substantia
nigra of patients with PD.

Schapira et al.,
1989, 2008

Extensive and widespread accumulations of nitrated a-
synuclein in the inclusions of PD, dementia with Lewy
bodies and the Lewy body variant of AD.

Giasson et al.,
2000; Hodara et
al., 2004

Mitochondria of SNpc from PD subjects showed a
significant accumulation of α-synuclein, which was
associated with impairment in complex I activity and
increased oxidative stress.

Devi et al., 2008

Postmortem analysis of PD brain tissues showed a
considerable increase in total Fe, Zn, and Al content
when compared with control tissues, with significantly
lower GSH levels.

Uversky et al.,
2001; Hirsch et
al., 1991; Dexter
et al., 1989, 1991;
Riederer et al.,
1989

Parkin is S-nitrosylated in vivo in a mouse model of PD,
and in brains of patients with PD and diffuse Lewy body
disease.

Chung et al., 2004

GSH levels were reduced in the PD SNpc (40%
compared to control subjects).

Sian et al., 1994;
Jenner et al., 1992;
Dexter et al.,
1994; Perry et al.,
1982

In vivo models

Mitochondrial oxidative stress was found increased in
dopaminergic neurons within the SNpc compared to
those of the ventral tegmental area (VTA), which are
much less affected in PD.

Guzman et al.,
2010

The loss of PINK1 impairs mitochondrial fission, which
causes defective assembly of the ETC complexes,
leading to oxidative stress and abnormal bioenergetics.

Liu et el., 2011;
Morais et al., 2009

A reduction in respiratory capacity of striatal
mitochondria isolated from parkin −/− mice. Parkin −/−
mice also exhibited decreased levels of proteins involved
in protection from oxidative stress, serum antioxidant
capacity and increased protein and lipid peroxidation.

Palacino et al.,
2004

Huntington’s Disease (HD)

Human postmortem brain
tissues

HD patients had higher levels of lipid peroxidation in
plasma levels and lower levels of GSH compared to age
and sex-matched controls.

Klepac et al., 2007

An Increase in protein-carbonyls was found in human
brain postmortem samples obtained from striatum and
cortex of patients with HD when compared to samples of
age- and sex-matched controls. Carbonylated proteins
found included enzymes involved in the glycolytic
pathway and mitochondrial proteins related to ATP
production. Oxidation resulted in decreased catalytic
activity, in agreement with energy deficiency observed
in HD.

Sorolla et al.,
2008, 2010

A signifcant increase in 8-OHdG in mtDNA was found
in the parietal cortex of HD patients as compared to
controls.

Polidori et al.,
1999

Serum 8-OHdG levels were markedly elevated in HD. Hersch et al., 2006

Leukocyte 8-OHdG and plasma MDA were elevated,
and the activities of Cu/Zn-SOD and Gpx were reduced
in 16 HD patients when compared to 36 age- and gender-
matched controls.

Chen et al., 2007

In vivo models

mtHtt is oxidized in cysteine residues proximal to the N-
terminal domain promoting oligomerization and delayed
clearance.

Fox et al., 2011

Increased concentrations of 8-OHdG were found in the
urine, plasma and striatal microdialysates of HD mice.

Bogdanov et al.,
2001
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Disease Model Findings Reference

Increased concentrations of 8-OHdG were also observed
in isolated brain DNA at 12 and 14 weeks of age.
Immunocytochemistry showed increased 8-OHdG
staining in late stages of the illness.

Amyotrophic Lateral
Sclerosis (ALS)

Human Patients samples

Derivatization analysis of oxidized carbonyl compounds
performed on immunoprecipitated SOD1 identified a
hyper-oxidized SOD1 that recapitulates mutant SOD1-
like properties and damages mitochondria by forming a
toxic complex with Bcl-2.

Guareschi et al.,
2012

The mean protein carbonyl level in the lumbar spinal
cord from patients with sporadic motor neuron disease
was increased by 119% (p < 0.02) when compared to
normal control subjects and by 88% (p < 0.04) compared
to the neurological disease control subjects.

Shaw et al., 1995

Protein carbonyl and OH8dG levels were increased in
sporadic ALS but not in autosomal dominant familial
ALS patients.

Ferrante et al.,
1997a

Immunoreactivity for 3-NT was detected in motor
neurons of ALS but was not or was only minimally
found in those of controls. The staining was also
localized in the axons of motor neurons of ALS, but was
not found in the corresponding controls.

Abe et al., 1995,
1997; Beal et al.,
1997

4-HNE was elevated in the cerebrospinal fluid (CSF) of
a patient with sporadic amyotrophic lateral sclerosis
(sALS) compared with that of most patients with other
neurological diseases

Smith et al., 1998;
Simpson et al.,
2004

8-OHdG levels were significantly elevated in plasma,
urine, and cerebrospinal fluid (CSF) from subjects with
ALS when compared to controls. Plasma and urine 8-
OHdG levels increased significantly with time in the
ALS group only. The rate of increase in urine 8-OHdG
levels with time was significantly correlated with disease
severity.

Bogdanov et al.,
2000; Ihara et al.,
2005

In vivo models

The deletion of the Nox2, and to a lesser extent Nox1,
can prolong survival in the SOD1 G93A transgenic
mice.

Li et al., 2011b

A significant increase in the concentrations of 3-NT in
upper and the lower spinal cord and in the cerebral
cortex of the SOD1 G93A transgenic mice was found.
MDA was increased in cerebral cortex. 3-NT and MDA-
modified protein immunoreactivities were increased
throughout the transgenic mice spinal cord but
particularly within motor neurons.

Ferrante et al.,
1997b; Casoni et
al., 2005

Protein carbonyl content in 30-day-old SOD1-G93A
mice was twice as high as the level found in age-
matched nontransgenic mice. The levels in the SOD1-
G93A mice increased dramatically (557%) between 100
and 120 days of age, compared with either the
nontransgenic mice or transgenic animals that
overexpress the wild-type human SOD1.

Andrus et al.,
1998

Transgenic mice expressing mutant SOD1-G93A show
enhanced free radical content in spinal cord but not
brain. This increase precedes motor neuron degeneration

Liu et al., 1998

Brain Ischemia and
Excitotoxicity

Human Patients

Multiple markers of oxidative damage are increased
immediately after stroke and remain elevated for several
days in 66 stroke subjects with respect to 132 control
subjects.

Seet et al., 2011

In vivo models

Nox inhibition or scavenging reduced brain injury H2O2

in a neonatal rat model of hypoxia/ischemia
demonstrating that Nox contributes to oxidative stress
mediating cerebral injury during ischemia/reperfusion.

Lu et al., 2012;
Kahles et al.,
2010; Kleinschnitz
et al., 2010
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Disease Model Findings Reference

Hypoxic-ischemic insult was produced in p10 mice.
Administration of the complex I inhibitor pyridaben
significantly decreased the extent of HI injury.
Mitochondria isolated from the ischemic hemisphere in
pyridaben-treated animals showed reduced H2O2

formation and decreased oxidative damage to the
mitochondrial matrix. A protective effect of pyridaben
administration was also observed when the reperfusion-
driven oxidative stress was augmented by the exposure
to 100% O2.

Niatsetskaya et al.,
2012

Traumatic Brain Injury (TBI) In vivo models

Biochemical damage of the cerebral vasculature is
initiated by the induction of the free radical-generating
enzymes Nox1 and iNOS. Induction of these enzymes by
shock-wave exposure increased oxidative and nitrosative
damage.

Abdul-Muneer et
al., 2013

Levels of 4-HNE and 3-NT were significantly increased
at 3 h post-exposure to blast and returned to control
levels after 24 h.

Readnower et al.,
2010

Significant time-dependent changes in antioxidant levels
were observed as early as 3 h post-trauma and paralleled
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