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Abstract
Latent variable models with many categorical items and multiple latent constructs result in many
dimensions of numerical integration, and the traditional frequentist estimation approach, such as
maximum likelihood (ML), tends to fail due to model complexity. In such cases, Bayesian
estimation with diffuse priors can be used as a viable alternative to ML estimation. The present
study compares the performance of Bayesian estimation to ML estimation in estimating single or
multiple ability factors across two types of measurement models in the structural equation
modeling framework: a multidimensional item response theory (MIRT) model and a multiple-
indicator multiple-cause (MIMIC) model. A Monte Carlo simulation study demonstrates that
Bayesian estimation with diffuse priors, under various conditions, produces quite comparable
results to ML estimation in the single- and multi-level MIRT and MIMIC models. Additionally, an
empirical example utilizing the Multistate Bar Examination is provided to compare the practical
utility of the MIRT and MIMIC models. Structural relationships among the ability factors,
covariates, and a binary outcome variable are investigated through the single- and multi-level
measurement models. The paper concludes with a summary of the relative advantages of Bayesian
estimation over ML estimation in MIRT and MIMIC models and suggests strategies for
implementing these methods.
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Various topics in education or the social sciences are related to latent hypothetical
constructs, such as mathematics ability, that can be examined only through observed
dependent variables (i.e., indicators or test items). There have been many studies
investigating ability factors and/or their relation with an outcome variable in any given test
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(Carlstedt, 2001; Glas & Hendrawan, 2005; Gustafsson & Balke, 1993; Kuusinen &
Leskinen, 1988; Undheim & Gustafsson, 1987). These studies estimated or tested ability
factors either in the structural equation modeling (SEM) or in the item response theory (IRT)
frameworks. Both SEM and IRT can be used for factor analysis of dichotomous item
responses, in which the measurement model in the SEM approach is formally equivalent to
an IRT model (Clockner-Rist & Hoijink, 2003). Some of the ability studies examined a
single ability factor (general ability), while others examined multiple ability factors (specific
abilities) as well as a single ability factor. For example, Gustafsson and Balke (1993)
investigated the relations between aptitude variables and school achievement scores using
some factor models, a higher-order factor model and a bi-factor model, that allowed
simultaneous identification of general and specific abilities.

Two types of measurement models in the SEM framework are considered in estimating
multiple (specific) ability factors and a single (general) ability factor in the present study:
one is an IRT model, and the other is a multiple-indicator multiple-cause (MIMIC; Jöreskog
& Goldberger, 1975) model. IRT models traditionally use a continuous factor score variable
(latent variable) as an ability factor, and these models are based on the idea that the
probability of answering an item correctly (i.e., the performance of an individual item) is a
function of that ability. In the present study, a multidimensional IRT (MIRT) model is
considered for accommodating the case of multiple ability factor estimation and ascertaining
how individual items perform with respect to those multiple ability factors. There is a
simpler alternative model in which subtest (or subsequent dimension) scores are used as
continuous indicator variables instead of using the individual item scores (i.e., categorical
variables). It is a factor analytic model with incorporated covariates, also termed a MIMIC
model. A MIMIC model can save a substantial amount of estimation time compared to an
MIRT model. Numerical integration is needed to estimate an MIRT model using maximum
likelihood (ML) estimation; it becomes increasingly computationally demanding as the
number of factors, the number of items, and/or the sample size increase (Muthén & Muthén,
2010). However, the MIRT approach allows us to estimate multiple, specific ability
parameters, whereas the MIMIC (or a factor) approach is not able to estimate them because
specific sub-dimension scores are used as indicator variables.

The primary purpose of the present study is to compare the performance of Bayesian
estimation to ML estimation methods in estimating specific or general ability factors using
the MIRT and MIMIC models. The main objective of this study is accomplished through a
series of Monte Carlo (MC) simulations within the SEM framework. In addition, the
usefulness of the MIRT model, despite its complexity, compared to the MIMIC model is
discussed through a real data analysis utilizing multistate bar examination (MBE) data. The
structural relationships among an ability factor(s), covariates (e.g., undergraduate grade
point average and law school admission test), and proximal/distal outcomes (e.g., pass or
fail) are examined across the two types of measurement models. If the structural
relationships are similar enough between the two models and if one is interested only in
those relationships, the simpler MIMIC model can be a practical alternative to the more
complex MIRT model.

In the present study, an important motivating data example was the MBE data. The MBE is
a six-hour, 200-question multiple-choice examination covering six subtest areas
(constitutional law [CNL], contracts [CTR], criminal law and procedure [CRM], evidence
[EVD], real property [RLP], and torts [TOR]), which was developed by the National
Conference of Bar Examiners (NCBE). We first tried to fit the MIRT and MIMIC models to
the complex, six-dimensional MBE data using ML estimation to compare structural
relationships between the two models. However, the estimation of the MIRT models with
the MBE data consumed a tremendous amount of computation time without success,
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probably because of multiple continuous latent variables (six ability factors) with many
categorical observed variables. It has been generally known that many models are
computationally cumbersome or impossible using ML, such as with categorical outcomes
and many latent variables resulting in many dimensions of numerical integration (Muthén &
Asparouhov, 2010). On the other hand, Bayesian estimation with diffuse (non-informative)
priors provided plausible results in the MBE data analysis within a reasonable timeframe.1

The Bayesian estimation approach was used in this motivating example as an alternative to
ML estimation because initial runs using the ML estimation approach failed to converge to a
satisfactory solution even after a month of continuous computation.2 Since the Bayesian
estimation approach was a matter of practical convenience, proper verification was needed
as to whether the ML and Bayesian estimation results in the SEM framework were
comparable for both the MIRT and MIMIC models. The ML estimation time with MIMIC
models was almost instant, enabling direct comparison of parameter estimates derived from
the ML and the Bayesian methods. Non-convergence, however, was a major problem with
the MIRT models. To address this problem, comprehensive Monte Carlo simulations were
conducted to compare the ML and Bayesian estimation approaches with MIRT models.
Considering the importance of MIMIC models in this study,3 a simulation study with
MIMIC models was also performed. The simulations had multilevel extensions of the MIRT
and MIMIC models to emulate the nesting within jurisdictions that exists with the
motivating MBE data example. The multilevel structure was also applied to the real data
analysis of the MBE data. The real data analysis and the simulation study provide a general
idea of whether the structural relationships are comparable between the MIRT and MIMIC
models and whether Bayesian estimation of MIRT and MIMIC models in the SEM
framework can be a reasonable alternative to ML estimation. All of the analyses and
simulations in this study were carried out using Mplus 6 (Muthén & Muthén, 2010) on a
personal computer under Windows 7.

The organization of this study is as follows. The following two sections contain overviews
of the IRT and MIMIC models and the Bayesian estimation method for the purpose of the
real data analysis and the Monte Carlo simulation study. Next, a section presents real data
analyses using the motivating MBE data and details the results. The next section addresses
the method, presenting the procedures for the design and data analysis for the Monte Carlo
study, and provides simulation results. The MBE data example is presented prior to the main
Monte Carlo study because (1) the Monte Carlo study was motivated by the confronting
estimation problem using ML, and (2) MC simulation conditions were generated while
reflecting the MBE testing circumstances. Discussion and conclusions are presented in the
final section.

Models
Item Response Theory Models

IRT models represent the relationship between the latent trait (θ; ability) and the
performance on a set of categorically scored items (i.e., the probability of a correct

1The ML estimation of six-dimensional single-level IRT models took more than a month using a modern personal computer with 174
available binary items and approximately 3,000 random subjects, and resulted in non-convergence or Heywood cases. In contrast, the
Bayesian estimation with diffuse priors took less than a day and produced successful results for the same model.
2There are several alternative algorithms and computer programs, such as IRTPRO (Cai, Thissen, & du Toit, 2011) and flexMIRT
(Cai, 2012), for the ML estimation of MIRT models; however, they are not considered in this study.
3The comparison of structural relationship estimates using the MBE data between the two measurement models was one of the main
objectives in the present study. By comparing the two models, it would be easier to decide on which models are preferable given
different circumstances or purposes.
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response). Dichotomous IRT models are described by the number of item parameters they
make use of. A two-parameter logistic (2PL) model, which was used in this study, is briefly:

(1)

where ai represents the discrimination of the item i, bi represents the difficulty of the item i,
θj is a latent trait or ability level of a person j, and P(Uij = 1|θj) is the probability of
endorsing the item i given a person j’s ability level. When the 2PL model is estimated in the
SEM framework, the relationships between the a and b parameters of IRT and the Mplus
parameters are as follows:

(2)

where λ is a factor loading, and threshold is a kind of intercept in the logistic link function.4

Standard IRT models involve one-factor (one-ability) models, also called unidimensional
IRT models. With educational testing in particular, these models have proven very effective,
such as with the scholastic aptitude test (SAT), the graduate record examination (GRE), and
the law school admission test (LSAT) (Uebersax, 1993). However, solving complex ability
test items typically involves a series of mental operations (components or dimensions), each
of which can be considered as a separate cognitive construct (Whitely, 1980). Furthermore,
some tests have designs that lead one to expect natural multidimensionality, such as the
MBE with six subtest areas.

A multidimensional 2PL model can be expressed as:

(3)

where θj represents multiple ability parameters associated with each respondent, ai
represents multiple discrimination parameters associated with each item, and di represents
an item’s location on an item response surface. Path diagrams for two types of MIRT
models (within- and between-item MIRT models) are provided in Figure 1. In general, the
within-item model is more appropriate for analyzing a test with each item measuring two or
more intentionally defined abilities, while the between-item model is more suitable for
analyzing a test that measures several subsets of domains (Oshima, Raju, & Flowers, 1997;
Wang, Wilson, & Adams, 1995). Although cross-loadings are possible among multiple
latent abilities and individual items (Figure 1a), the between-item MIRT model (Figure 1b)
is more relevant to our motivating example because the MBE consists of six subtest areas
implying a simple structure of relationships between the multiple abilities and individual
items.

Multidimensional models are best (1) when there is an assumed multidimensional structure
to the set of items, and one wishes to understand the multidimensional structure and (2)
when there are a large number of items, say 50 or more (Uebersax, 1993). In the present
study, we acknowledge the multidimensionality by directly applying between-item MIRT

4Mplus reports the threshold in place of the intercept in the link function, logit(p) = ai(θj − bi). The threshold and the intercept are the
same except that they have opposite signs. That is, threshold = −intercept = −(−aibi) = aibi. Thus, the difficulty parameter

.
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models in the six subtest structures of the MBE and in the multiple generated factors through
an MC study.

Multiple-Indicator Multiple-Cause (MIMIC) Model
A MIMIC model (Jöreskog & Goldberger, 1975) is a special case of the more general
structural equation model that contains one or more latent variables that are simultaneously
identified by both multiple endogenous indicator variables (i.e., items) and by single or
multiple exogenous causal variables (i.e., covariates). The MIMIC model is used to study (1)
the effects of covariates on factors and (2) the effects of covariates on observed outcome
variables (i.e., indicator variables). The former is related to testing population heterogeneity,
which is the relationship between the covariates and the factors. If they are significant, this
indicates that the factor means are different for different levels of the covariates. The latter is
associated with testing measurement non-invariance, and it is called differential item
functioning (DIF) analysis in the context of IRT; if interested, see Muthén (1989) or Woods
(2009).

A MIMIC model is composed of two modeling parts: the measurement model

(4)

and the structural model

(5)

where y represents a vector of indicator variables (observed outcome variables), Λy is the
loading matrix for the factor model, η represents a vector of factors, ε represents a vector of
measurement errors, Γ is the regression coefficient matrix, x represents a vector of
covariates for latent variables, and ζ is the disturbance vector. A MIMIC model is able to
test the factor structure of a measure as in traditional confirmatory factor analysis (CFA)
while simultaneously testing the effects of observed exogenous variables (x) on the latent
factors (η).

Incorporation of Covariates and Outcome Variables
There are several advantages of placing a model in an SEM or latent variable context. One
of them includes the ease with which one can incorporate covariates or outcome variables
and estimate the effects of those variables in a single estimation process. Covariates can be
easily added to a CFA model so that a MIMIC model is formulated. Covariates can also be
easily added to an IRT model because an IRT model can be regarded as a CFA model with a
different parameterization when analyzed from an SEM perspective (see e.g., Kamata &
Bauer, 2008; McDonald, 1999; Takane & de Leeuw, 1987). Incorporating a binary outcome
variable (e.g., 1 = ‘pass’ or 0 = ‘fail’) into an IRT or a MIMIC model is also allowed in the
SEM framework, resulting in logistic regressions with the outcome variable being a
dependent variable and the factors or the covariates being independent variables.

Bayesian Estimation
If one has a model that is computationally demanding and/or conventional frequentist
approaches (i.e., ML estimation) fail to converge, Bayesian estimation is not a fancy option
but an important and realistic alternative to ML estimation. Such an analyst may view the
Bayesian analysis simply as a computational tool for getting estimates that are analogous to
what would have been obtained by ML estimation had it been feasible (Muthén &
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Asparouhov, 2010). This is usually conducted with diffuse (non-informative) priors. In this
section, Bayesian statistical inference is briefly reviewed for the purpose of the simulation
study and the real data analysis (for details, see e.g., Hoff, 2009; Kaplan & Depaoli, 2012;
Muthén & Asparouhov, 2010).

In statistical inference, the goal is to obtain estimates of the unknown parameters (θ) given
data (y). The main difference between frequentist statistical inference, ML estimation, and
Bayesian statistical inference is the nature of the unknown parameters, θ. In the ML
estimation, the assumption is that θ are unknown, but fixed, whereas in Bayesian estimation,
θ are random, possessing a probability distribution which reflects our uncertainty about the
true value of θ (i.e., posterior distribution). More formally,

(6)

where p(θ|y) is referred to as the posterior distribution of the parameters θ given the
observed data y, p(θ, y) is the joint probability of θ and y, p(y) is the probability of observing
y, p(y|θ) is the probability of observing y given unknown parameters θ, and p(θ) is the prior
distribution of the parameters. This equation is Bayes’ Theorem.

One distinguishing feature of Bayesian estimation is the specification of prior distributions
for the model parameters. Priors can be non-informative or informative based on how much
information we believe we have prior to the data collection and how accurate we believe that
information to be. A non-informative prior (also known as a diffuse prior), which was used
in this study, has a large variance reflecting large uncertainty in the parameter value. With a
large prior variance, the likelihood contributes relatively more information to the formation
of the posterior and the estimate is closer to a maximum likelihood estimate.

With a posterior distribution in hand, summarizing the distribution provides the necessary
elements for Bayesian hypothesis testing. The mean of the posterior distribution can be
written as

(7)

and is referred to as the expected a posteriori (EAP) estimate. Similarly, the conditional
variance of θ (Gill, 2002) can be obtained as

(8)

The Bayesian perspective also forms a credibility interval, just like the confidence interval
in the frequentist statistical inference. Formally, a 100(1 − α)% credibility interval for a
particular subset (C) of the parameter space θ is defined as

(9)

As opposed to the interpretation of a confidence interval, a 100(1 − α)% credibility interval
means that the probability that the parameter lies in the interval is 1 − α.5

5The frequentist interpretation is that 100(1 − α)% confidence interval captures the true parameter 100(1 − α) times out of 100. The
actual probability that the parameter is in the interval is either zero or one.
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For the simulation study and the real data analysis, convergence is determined using the
Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992; Gelman, Carlin, Stern, &
Rubin, 2004). This considers the potential scale reduction (PSR) factor. The comparison of
between and within variances is utilized, and large values typically indicate that the chain in
the Markov chain Monte Carlo (MCMC) sampling method has not fully explored the target
distribution. In this study, 1.1 of PSR (Gelman et al., 2004) is used as a convergence
criterion for all parameters. For the model comparison, deviance information criterion (DIC)
was developed by Spiegelhalter, Best, Carlin, and Linde (2002). This index can be used just
as the AIC (Akaike, 1974) or the BIC (Schwarz, 1978)--the lower, the better.

Real Data Analyses
Data

For the real data example, 2,983 examinees were randomly drawn from the July 2010
administration of the MBE who had provided consent. Data included 41 states with 36 – 91
candidates in each state and complete (i.e., no missing) data on all measures. Of the 200
items on the MBE, 174 (30 CNL, 31 CTR, 27 CRM, 29 EVD, 28 RLP, and 28 TOR) were
used in this study. Some items were excluded for several critical reasons including multi
keys, breaches, poor statistical characteristics, changes to the law, etc. Undergraduate grade
point average (UGPA; M = 3.35, SD = .424) and law school admission test (LSAT; M =
155.74, SD = 6.952) scores were used as covariates. A binary variable indicating pass/fail
(pass = 79.7% and fail = 20.3%) was formulated as an outcome variable in the models. In
fact, each jurisdiction sets its own passing standard and has its own bar exam,6 so there is no
single, apparent threshold indicating pass or fail. However, the minimum passing standards
(MPS) ranged from 128 to 145, and the median and modal MPS was 135 based upon the
information of previous 2008 data from 41 jurisdictions. For purposes of the study, a score
of 135 or above on the MBE scale was chosen as a passing standard, and a pass/fail variable
was created (1 = ‘pass’ or 0 = ‘fail’).

Multidimensional IRT Models
In this section, the results of six-dimensional IRT models (both single- and multilevel) are
provided. For the single-level MIRT model, six ability factors were estimated from the six
subtest dimensions of the MBE. Two covariates, UGPA and LSAT, and the outcome
variable, pass/fail, were added to the models. Regression paths between the covariates, the
outcome, and the ability factors were specified as in Figure 2. The model was estimated via
Bayesian approach with default diffuse priors in Mplus, which are provided in the
Appendix.

Estimates based on the post burn-in iterations7 for the single-level MIRT model are
presented in the left columns of Table 1. Only structural relationship parameter estimates
(e.g., regression paths) are provided since those were of interest in this study as well as there
were too many factor loading and threshold parameters (i.e., 174 a and b parameters in an
IRT framework) to be shown. The EAP estimates and standard deviations of the posterior
distributions are presented for each parameter. The one-tailed p-value based on the posterior
distribution is also included for each parameter. If the parameter estimate is positive, this p-
value represents the proportion of the posterior distribution that is below zero. If the
parameter estimate is negative, the p-value is the proportion of the posterior distribution that

6MBE scores typically make up about half of the bar exam score in a given jurisdiction. Most bar examinations are a combination of
the MBE (multiple choice), essays, and performance tasks.
7In MCMC sampling, the iterations prior to stabilization are referred to as burn-in phase, and they are generally discarded. The
number or the proportion of discarded iterations varies by computer programs. In Mplus 6, the first half of the iterations are
considered as a burn-in phase.

Kim et al. Page 7

Multivariate Behav Res. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is above zero (Muthén, 2010). A 99% credibility interval for each parameter is also
provided.

There are several findings to be reported. First, given the parameter estimates in Table 1, all
of the regressions of the six ability factors on UGPA and LSAT were positively significant
at p < .01 level,8 meaning the scores of the six ability factors increased as the UGPA and
LSAT increased at a rate that would happen by chance less than 1% of the time. Second, all
of the logistic regressions of the outcome variable on the six ability factors were positively
significant at p < .01, except for the factor related to real property (RLP) (one-tailed p = .
017). That is, the probability of passing the exam significantly increased as each of the
ability factor scores increased, except for the RLP ability factor. Third, the logistic
regressions between the outcome variable and the covariates were negatively significant.
This should not be interpreted as if the probability of passing the exam decreased as the
UGPA and LSAT increased, because the ability factors were functioning as mediators in the
model. In fact, when separately modeled in a path analysis, the UGPA and LSAT were
significant positive predictors (γUGPA = .485, p < .001, and γLSAT = .069, p < .001) of the
outcome variable. It appears that the six ability factors mediated the relationship between the
covariates and the outcome variable. By adding the mediators (i.e., six ability factors), the
relationship between the covariates and the outcome variable became even negative because
the relationships between the mediators and the covariates and between the mediators and
the outcome variables were highly positively significant. Lastly, the six ability factors were
all highly correlated and statistically significant, with the correlations ranging from .799 to .
904.

The application of MIRT modeling in the SEM framework should also take nested effects
into account since the MBE data being modeled arose from multistage sampling. Ignoring
the between-state variability would result in predictable biases in the parameters of the
MIRT model when there was significant between-state variation. Therefore, it was desirable
to apply multilevel methodology to the MIRT model, and the results are provided in the
right columns of Table 1. In the multilevel MIRT model, the within part of the model stayed
the same as the single-level MIRT model, and the between part of the model was basically
null without any random effects for within-level coefficients.9 As such, there were no
structural relationship parameters in the between part of the model, and consequently only
the results of the within part of the model are provided in the table. In other words, in the
multilevel MIRT, individual level parameters were estimated taking the multilevel structure
into account. Overall, standard deviations as well as point estimates were quite similar, but
the standard deviations of the regression coefficients were a bit higher than those of the
single-level model. The corresponding p-values were also similar. From the results, we may
reasonably guess that there was very minimal intraclass correlation (i.e., small between-state
variation) in the items, meaning there was not a large difference in response patterns on the
MBE across 41 states.

Convergence plots, posterior density plots, and auto-correlation plots (for all chains in
MCMC) for all parameters were provided through Bayesian estimation in Mplus, but they
are not reported here to save space. Note also that model comparison indices were not
available for these particular data examples and are thus not presented here. This is an area
within MCMC estimation that requires further research (Kaplan & Depaoli, 2012).

8α of 0.01 was used as a Type I error rate in this study because (1) sample size was quite large (n = 3,000), so power was expected to
be quite high, and (2) the MBE had been highly elaborated over dozens of years. Thus, we wanted to use somewhat conservative α.
9The covariance matrix (variances and covariances) of individual responses can be decomposed into between-group covariance matrix
and pooled within-group covariance matrix (Muthén, 1994) which are the sources of the between part of the model and the within part
of the model, respectively, in multilevel structural equation modeling.
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MIMIC Models
Instead of using all 174 binary items, six subtest scores, in this section, were used as
indicator variables for a CFA model that had only one ability factor (general or total ability
factor). Adding the UGPA and LSAT to the CFA model yielded a MIMIC model, and the
outcome on the MBE was incorporated to the MIMIC model. A path diagram for this model
is displayed in Figure 3. The model was also estimated via Bayesian approach with default
diffuse priors in Mplus, which are specified in the Appendix.

The results of the single-level MIMIC model are provided in the left columns of Table 2.
Only structural relationship parameter estimates are provided as in the MIRT results. There
are several findings worth highlighting. First, the regression coefficients of the total ability
factor on the covariates were positively significant, meaning that UGPA and LSAT were
positively related to the general ability on the MBE. Second, the logistic regression
coefficient of the outcome variable on the total ability factor was also positively significant,
meaning that the general ability measured by the six subtest scores was positively related to
the pass/fail indicator on the MBE. Lastly, the logistic regression coefficients of the outcome
variable on the covariates were negative; the UGPA was not significant (p = .014), while the
LSAT was significant (p < .001). These results are similar to those obtained with MIRT and
would have the same interpretation. That is, the relationship between the covariates and the
outcome variable was fully mediated by the total ability factor.

The multilevel extension was also applied to the MIMIC model. The within part of the
model stayed the same as the single-level MIMIC model, one factor model with the
covariates and the outcome variable. In the between part of the model, we specified a one-
factor model without between-level covariates or outcome variables. For the comparison, the
within part results are provided in the right columns of Table 2. Overall, the estimates and
their significance were close to the results of the single-level MIMIC model. The intraclass
correlations of the six indicator variables (CNL, CTR, CRM, EVD, RLP, and TOR subtest
scores) ranged from .014 to .025, indicating little between-state variability in the data.10

These intraclass correlations correspond to the fact that the single-level estimates and the
multilevel estimates were quite comparable.

Comparison of the Two Models
The results were quite similar in terms of the structural relationships among the ability
factors, the covariates, and the outcome variable, which implies that MIMIC models may be
used to study structural relationships as an alternative to the computationally demanding
MIRT models. However, the more complicated MIRT models provided some advantages
over the simpler MIMIC models. First, we found that some items were not significantly
related to their specified dimensions (specific ability factors) in the MIRT model. For
example, three items did not measure their corresponding ability factors (i.e., three items did
not discriminate examinees’ abilities) significantly under 1% of α: CNL 7 (p = .017), CRM
18 (p = .472), and EVD 24 (p = .141). Item fit could not be tested in the MIMIC models,
because the MIMIC models used only the subarea scores for the analysis. Second, we found
that the RLP ability factor estimated in the MIRT model did not significantly predict the
outcome variable under 1% of α (p = .017), meaning the ability factor measured by real
property items was not a good predictor of the outcome, pass or fail, controlling for the other
five ability factors. In the MIMIC models, it was not possible to examine the relationship
between a specific ability factor and the outcome variable because the MIMIC models do
not have a specific ability factor. In sum, although the MIRT models had the more
complicated specification and required much longer estimation time even with Bayesian

10Mplus calculates intraclass correlations, not residual intraclass correlations, even with covariates in a model.
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approach, those models were quite useful in the sense that they provided item-level and
subtest-level information, which were not provided by the MIMIC models.

A Monte Carlo Study
In this section, Monte Carlo simulations were carried out for investigations and comparisons
of the performances of two statistical estimators, maximum likelihood estimation with
robust standard errors and Bayesian estimation with diffuse priors. The study examined
parameter recovery of the two estimators and the degree to which the two estimators were
comparable.

Study Design and Data Generation
For conducting the simulation study, the MIRT model and the MIMIC model were chosen to
specify Monte Carlo variables and population specifications. As the Monte Carlo variables,
sample sizes of 500, 1,000 and 3,000 were considered for the two models, and 100
replications were generated in each condition. Then, population variables for both the MIRT
and the MIMIC simulations were determined: (1) levels for the model, (2) number of
factors, (3) number of items, and (4) number of covariates.

For the MIRT model, specifically, the first population factor to consider was the number of
levels for the model: single-level and multilevel. Since Bayesian estimation was applied to
both single- and multi-level models in the previous examples, these two conditions were
reasonable. To emulate a nested data structure, 50 groups were generated with 8 to 12
individuals in each group for a sample size of 500, with 16 to 24 individuals for a sample
size of 1,000, and with 40 to 80 individuals for a sample size of 3,000. The second factor
was the number of latent variables: 2 and 3 factors. The choice of six latent variables across
all conditions would have been ideal, but this would result in the same convergence problem
encountered with the actual data, particularly for ML. The third factor was the number of
binary items per each factor: 3 and 6 items. The last factor was the number of covariates: 0
and 1. IRT models are frequently used without covariates, but, in this study, covariates were
added to the models. Therefore, the models with and without a covariate were considered.
The MIRT models investigated were generated on the basis of the sample size and the four
crossed design factors for the purposes of the simulation study (a total of 48 conditions). For
the all of the generated conditions, one binary outcome variable (fail coded 0 and pass coded
1) were incorporated. Factor loadings for each item ranged from 0.5 to 1.6, and threshold
values of each item ranged from −1.0 to 1.5 arbitrarily, which were, in the authors’
experience, quite common numbers in IRT models in the SEM framework. Across all the
conditions, there were no missing responses.

For the MIMIC model, the first population factor to consider was the same as in the MIRT
simulations. The second factor was the number of latent variables: 1 and 2 factors. The third
factor was the number of continuous indicators per each factor: 3 and 6 items. For
simplicity, the means and the standard deviations of all the items were set to be 0 and 0.5,
respectively. The last factor was the number of covariates: 1 and 2 covariates. The MIMIC
models investigated were also generated on the basis of the sample size and the four crossed
design factors for the purposes of the simulation study (a total of 48 conditions). As before,
one binary outcome variable was incorporated, and there were no missing responses.

In addition to the planned simulations for the MIRT and MMIC models above, the
simulations were expanded to deal with MIRT models under very high complexity.
Although the simulations of the MIRT models with a limited number of factors and items
(e.g., 3 factors and 6 items each) might give us a good sense overall about the relative
performance of Bayesian estimation to ML, their complexity did not match with our
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motivating MBE data example. For this reason, we considered some select conditions that
were as complex as the MBE data: 3 factors with 30 and 60 dichotomous items, and 6
factors with 15 and 30 dichotomous items across the three sample sizes, 500, 1,000, and
3,000. Since, as expected, ML showed very lengthy estimation time under these high
complex conditions (e.g., several days per single replication), we performed only Bayesian
estimation with the generated data sets. In addition, when the sample size was small (i.e., N
= 500) Bayesian estimation under multilevel settings frequently showed non-convergence
within the maximum specified number of iterations, which was 100,000. Multilevel MIRT
models under the highest complexity (e.g., 3 factors and 60 items each, and 6 factors and 30
items each) also took tremendous amount of estimation time regardless of the sample size.
Therefore, these expanded simulations were carried out under some limited modeling
settings.

Data Analysis Strategy
Data sets were generated according to the simulation factor conditions, and the MIRT and
MIMIC models were estimated using the two estimators. The discrepancies (1) between
population parameters and averaged ML estimates over replications and (2) between
population parameters and averaged Bayesian estimates over replications were examined
across all the generated conditions using averaged absolute biases (AAB) and root mean
square errors (RMSE). The AABs were calculated using absolute values in this study to
assess models’ overall discrepancy between parameters and estimates:

(10)

where p is the number of free parameters, θk is the parameter value, and θ̄k is the averaged
parameter estimate across replications. The AAB of the present study is differentiated from
the commonly used mean bias (MB) in that an MB is calculated for an estimate over
replications while an AAB is calculated over averaged estimates for a model. The RMSEs
were calculated as:

(11)

The calculation of RMSE differs by situation. In a Monte Carlo simulation study, the RMSE
is calculated over replications to assess the variability of each estimate. In this study, it was
calculated over multiple parameters using averaged estimates over replications to assess the
precision of a model.

Both the AAB and RMSE are designed to be close to zero if averaged estimates are close to
parameter values. Here, the AAB and RMSE may not be used as an absolute indicator of
determining whether an estimator is legitimate or not, because there is no commonly
accepted threshold to decide on whether an estimator is valid or not. Therefore, these two
indices were used together to compare the relative performance of the ML and Bayesian
estimation methods.

Simulation Results
The AABs and RMSEs between ML estimation with robust standard errors and Bayesian
estimation with diffuse priors for MIRT models are compared in Tables 3 and 4. Although
there was no large performance difference between the estimators, some noticeable patterns
were observed. First, the performances of both ML and Bayesian estimators were, overall,
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slightly better with more binary items and with an added covariate, while the influence of
the number of factors was trivial. Second, the performances of the estimators became
substantially better as sample sizes increased from 500 to 3,000. The AAB and RMSE
improvement due to the larger sample size was more obvious with Bayesian estimation than
with ML estimation. Third, the performances of the estimators were somewhat different
across the single- and multi-level modeling settings. ML estimation was overall better than
Bayesian estimation across the single- and multi-level models, whereas Bayesian estimation
was better than ML estimation in the multi-level models with sample sizes of 3,000. Lastly,
the patterns of the AAB and RMSE were similar, meaning that when the AAB increased, the
RMSE also increased, and vice versa.

The simulation results for MIMIC models are presented in Tables 5 and 6. The AABs and
RMSEs were relatively smaller than those in the simulation results for the MIRT models.
There were also some noticeable patterns. First, the performances of both ML and Bayesian
estimation methods improved as sample sizes increased from 500 to 3,000 and as the
number of covariates increased from 1 to 2. The improvement with the increased sample
size was quite predictable, but the improvement with the increased number of covariates was
unexpected and interesting. Second, the numbers of items and factors did not affect the
performances of the estimators in any single direction, which was different from the MIRT
results. They affected the accuracy of the estimators positively in some conditions, but
negatively in other conditions. Lastly, there were very minimal differences between the
estimators in single-level MIMIC models, and the actual AABs and RMSEs were also much
smaller compared to the values for single-level MIRT models. However, in multi-level
MIMIC models, the performance differences between the estimators were obvious overall;
the Bayesian results were better than the ML results.

The simulation results for the single- and multi-level MIRT models under high complexity
are presented in Table 7. There were up to 180 dichotomous items and nearly 400 free
parameters in a single model. As a result, the AABs and RMSEs were somewhat larger than
the values for single- or multi-level MIRT models in Tables 3 and 4. However, as the
sample size increased from 500 to 3,000 or from 1,000 to 3,000, the AABs and RMSEs
decreased very fast, and they looked quite acceptable when compared to the previous results.
The single- and multi-level results were also comparable; the multilevel specification did not
make the model more complex in terms of AABs and RMSEs. One interesting finding in the
single-level results was that, as opposed to the results in Tables 3 and 4, the estimation
quality was worse with more items per factor under this high complexity. Too many items
per factor in this particular settings did not help the accuracy of estimation.

In summary, the performance of Bayesian estimation with diffuse priors was comparable to
the performance of ML estimation with robust standard errors, even in multilevel modeling
settings. Under the simulation conditions studied, ML estimation performed better for some
and Bayesian estimation performed better for others. Bayesian estimation of single- and
multi-level MIRT models under high complexity conditions also showed reasonably
acceptable results when sample size was large (N = 3,000). The purpose of this simulation
study was to check whether the Bayesian estimation with diffuse priors could be used as an
alternative to the ML estimation in the MIRT and MIMIC models. Even without prior
knowledge about the parameters (i.e., with non-informative priors), Bayesian estimation
produced quite reliable results compared to ML estimation.

Conclusions
Initially, the present study started with a very important motivating data example, the MBE
data that had multiple subtest areas and many categorical items. ML estimation failed to
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converge with an MIRT model that had six dimensions and 174 binary items, probably due
to model complexity, but a Bayesian estimation method11 was successful as an alternative to
the ML estimation. The purposes of the present study were to verify whether Bayesian
estimation with diffuse priors could be used as an alternative to ML estimation in the MIRT
and MIMIC models, and to compare the practical usefulness of the two models with real
data. To achieve the aims of the study, we first provided a real data analysis utilizing the
motivating MBE data and Bayesian estimation with diffuse priors, and we then performed a
Monte Carlo simulation study under various simulation conditions. Through the Bayesian
real data analysis, we compared the MIRT and MIMIC models by estimating multiple
ability factors or a total ability factor and examining the structural relationships among those
factors, covariates, and/or an outcome variable with the MBE data. For the simulation study,
the precision of the two estimators was evaluated under various simulation settings through
the AAB and RMSE indices.

The real data analyses with the MBE data resulted in some similarities across the MIRT
model and the MIMIC model. First, the relationship between the covariates (UGPA and
LSAT) and the outcome variable (pass or fail) was fully mediated by the ability factors: the
six specific ability factors in the MIRT model and the total (general) ability factor in the
MIMIC model. In other words, there were statistically significant relationships between the
covariates and the ability factors, and between the ability factors and the outcome variable.
The relationship between the covariates and the outcome variable was suppressed even up to
the significant negative association in our particular examples. Second, the single- and
multi-level results were quite comparable regardless of the modeling types. The parameter
estimates of the single-level models were fairly similar to the within-part parameter
estimates of the multilevel models. That is, there were small multilevel effects, indicating a
low ratio of between-state variances to total variances across indicator variables. This was
also supported by the small intraclass correlation estimates of subtest scores that were
previously shown in the multilevel MIMIC model.

Although the structural relationship results of the MIRT and MIMIC models were fairly
comparable, there were some advantages of using the more complicated MIRT models over
the simpler MIMIC models. First, the MIRT models provided some item-level analysis
results. That is, we were able to identify the three items showing non-significant
discriminations, implying that they did not measure their corresponding dimensions very
well. Second, the MIRT models provided the tests for structural relationships among
specific ability factors, covariates, and the outcome variable. For example, the MIRT model
applied to the MBE data identified that one of the subtest domains, the RLP factor, did not
predict the outcome variable very well.

We were able to compare the similarities and advantages among the MIRT and MIMIC
models by adopting Bayesian estimation with diffuse priors because ML estimation failed.
Verification was necessary because the performance of Bayesian estimation in these models
in the SEM framework was not yet fully examined to the best of our knowledge. A Monte
Carlo study was carried out to check whether Bayesian estimation with non-informative
priors could be used as an alternative to ML estimation. The simulations were performed
across the MIRT and MIMIC models under some limited conditions. The Bayesian
estimation results were quite comparable to the ML estimation results according to the
AABs and RMSEs. Even with non-informative priors, Bayesian estimation performed
overall better than ML estimation especially when sample sizes were large (N = 3,000) and
multilevel structures were considered. Because this was a simulation study, interpretation of

11Because no prior information about the parameters in the models was available, diffuse priors, as opposed to informative priors,
were used in the Bayesian estimation process.
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and generalization from the results are by the limited settings. Nevertheless, the findings
support that Bayesian estimation with diffuse priors may be a realistic alternative to ML
estimation, particularly when ML fails. In other words, when ML is nearly impossible, such
as with the case of the MIRT model utilizing the MBE data, Bayesian estimation may be
used as an alternative to, or possibly better choice than, ML.

The present study demonstrated that if ML estimation failed due to model complexity,
Bayesian estimation with diffuse priors could be used as a reliable substitute in the MIRT
and MIMIC models. This study also compared the practical usefulness of the MIRT and
MIMIC models by analyzing the MBE data example with Bayesian estimation. For the
investigation of multiple ability factors, the MIRT model in the SEM framework would be a
good choice because it permits item-level and specific factor analyses. However, the MIMIC
model may be a simpler alternative to the MIRT model when one examines only a general
ability factor and is not interested in item-level or specific factor analysis.
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Appendix. Mplus Default Specifications for Diffuse Priors for the MIRT and
MIMIC Models

For the Bayesian estimation with default diffuse priors of the MIRT and MIMIC models
using Mplus 6 (Muthén & Muthén, 2010), three kinds of distributions were used: a normal
distribution, an inverse gamma distribution, and an inverse Wishart distribution. Briefly, the
normal distribution is specified as N(μ, σ2), and the density function is:

The inverse gamma distribution is specified as IG(α, β), and the density function is:
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The inverse Wishart distribution is specified as IW(Ω, d), where Ω is a positive definite
matrix of size p and d is an integer, and the density function is:

For more details, see Asparouhov and Muthén (2010).

For the single-level MIRT models, the priors for the loading values were N(0,5); the priors
for the regression coefficients of the ability factors on the covariates were N(0, ∞); the
priors for the regression coefficients of the outcome on the ability factors and the covariates
were N(0,5); the priors for the covariances between the ability factors were IW(0,7); and the
priors for the thresholds of the items were N(0,5).

For the multilevel MIRT models, in the within model, the priors for the loading values were
N(0,5); the prior for the variance of the group variable was IG(−1,0); the priors for the
regression coefficients of the ability factors on the covariates were N(0, ∞); the priors for
the regression coefficients of the outcome on the ability factors and the covariates were
N(0,5); and the priors for the covariances between the ability factors were IW(0,7). In the
between model, the prior for the mean of the group variable was N(0, ∞); the priors for the
residual variances of the items were IG(−1,0); and the priors for the thresholds of the items
were N(0,5).

For the MIMIC models, the priors for the intercepts of the indicators (subtest scores) were
N(0, ∞); the priors for the loading values were N(0, ∞); the priors for the covariances
between the indicators were IG(−1,0); the priors for the regression coefficients of the ability
factor on the covariates were N(0, ∞); the priors for the regression coefficients of the
outcome on the ability factor and the covariates were N(0,5); and the priors for the
thresholds of the outcome were N(0, ∞).

For the multilevel MIMIC models, in the within model, the priors for the loading values
were N(0, ∞); the priors for the covariances between the indicators were IG(−1,0); the
priors for the regression coefficients of the ability factor on the covariates were N(0, ∞);
and the priors for the regression coefficients of the outcome on the ability factor and the
covariates were N(0,5). In the between model, the priors for the loading values were N(0,
∞); the priors for the residual variances of the indicators were IG(−1,0); the prior for the
variance of the outcome was IG(−1,0); and the prior for the threshold of the outcome was
N(0, ∞).
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Figure 1.
Two types of multidimensional IRT models.
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Figure 2.
A multidimensional IRT model using the MBE item-level data.
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Figure 3.
A MIMIC model using the MBE subtest-level data.
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