Table 4.
Parameters vs. ML estimates | Parameters vs. Bayesian estimates | |||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Factors | Items | Covariates | Sample size | Parameters | AAB | RMSE | AAB | RMSE |
2 | 3 | 0 | 500 | 16 | 0.062 | 0.086 | 0.102 | 0.137 |
1,000 | 16 | 0.030 | 0.048 | 0.052 | 0.069 | |||
3,000 | 16 | 0.026 | 0.042 | 0.023 | 0.030 | |||
| ||||||||
1 | 500 | 18 | 0.039 | 0.055 | 0.078 | 0.106 | ||
1,000 | 18 | 0.025 | 0.041 | 0.043 | 0.056 | |||
3,000 | 18 | 0.022 | 0.040 | 0.013 | 0.017 | |||
| ||||||||
6 | 0 | 500 | 28 | 0.045 | 0.059 | 0.107 | 0.141 | |
1,000 | 28 | 0.031 | 0.043 | 0.052 | 0.068 | |||
3,000 | 28 | 0.025 | 0.039 | 0.020 | 0.026 | |||
| ||||||||
1 | 500 | 30 | 0.033 | 0.046 | 0.069 | 0.094 | ||
1,000 | 30 | 0.024 | 0.038 | 0.034 | 0.046 | |||
3,000 | 30 | 0.022 | 0.037 | 0.012 | 0.017 | |||
| ||||||||
3 | 3 | 0 | 500 | 25 | 0.053 | 0.076 | 0.141 | 0.187 |
1,000 | 25 | 0.029 | 0.039 | 0.078 | 0.102 | |||
3,000 | 25 | 0.025 | 0.033 | 0.027 | 0.034 | |||
| ||||||||
1 | 500 | 28 | 0.059 | 0.112 | 0.089 | 0.133 | ||
1,000 | 28 | 0.030 | 0.046 | 0.048 | 0.071 | |||
3,000 | 28 | 0.023 | 0.032 | 0.017 | 0.026 | |||
| ||||||||
6 | 0 | 500 | 43 | 0.047 | 0.071 | 0.116 | 0.151 | |
1,000 | 43 | 0.039 | 0.061 | 0.057 | 0.076 | |||
3,000 | 43 | 0.031 | 0.048 | 0.015 | 0.021 | |||
| ||||||||
1 | 500 | 46 | 0.034 | 0.051 | 0.094 | 0.128 | ||
1,000 | 46 | 0.029 | 0.044 | 0.049 | 0.066 | |||
3,000 | 46 | 0.023 | 0.033 | 0.017 | 0.024 |
Note. AAB represents averaged absolute bias; RMSE represents root mean square error.