Skip to main content
. Author manuscript; available in PMC: 2014 Jul 1.
Published in final edited form as: Multivariate Behav Res. 2013 Jul 26;48(4):563–591. doi: 10.1080/00273171.2013.802647

Table 5.

ML and Bayesian Estimation Performances for Single-Level MIMIC Models

Parameters vs. ML estimates Parameters vs. Bayesian estimates

Factors Items Covariates Sample size Parameters AAB RMSE AAB RMSE
1 3 1 500 9 0.004 0.007 0.008 0.010
1,000 9 0.005 0.003 0.006 0.007
3,000 9 0.002 0.003 0.002 0.002

2 500 10 0.005 0.008 0.007 0.009
1,000 10 0.003 0.004 0.004 0.005
3,000 10 0.001 0.001 0.003 0.003

6 1 500 15 0.003 0.004 0.006 0.009
1,000 15 0.002 0.003 0.003 0.003
3,000 15 0.001 0.002 0.001 0.002

2 500 16 0.003 0.005 0.004 0.005
1,000 16 0.003 0.003 0.003 0.003
3,000 16 0.001 0.001 0.001 0.001

2 3 1 500 18 0.004 0.005 0.007 0.009
1,000 18 0.003 0.005 0.004 0.004
3,000 18 0.002 0.002 0.001 0.002

2 500 20 0.005 0.008 0.006 0.008
1,000 20 0.003 0.003 0.003 0.004
3,000 20 0.001 0.002 0.001 0.001

6 1 500 30 0.004 0.006 0.008 0.010
1,000 30 0.003 0.004 0.005 0.006
3,000 30 0.001 0.002 0.002 0.002

2 500 32 0.002 0.003 0.005 0.007
1,000 32 0.003 0.004 0.003 0.004
3,000 32 0.001 0.002 0.001 0.002

Note. AAB represents averaged absolute bias; RMSE represents root mean square error.