Table 5.
Parameters vs. ML estimates | Parameters vs. Bayesian estimates | |||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Factors | Items | Covariates | Sample size | Parameters | AAB | RMSE | AAB | RMSE |
1 | 3 | 1 | 500 | 9 | 0.004 | 0.007 | 0.008 | 0.010 |
1,000 | 9 | 0.005 | 0.003 | 0.006 | 0.007 | |||
3,000 | 9 | 0.002 | 0.003 | 0.002 | 0.002 | |||
| ||||||||
2 | 500 | 10 | 0.005 | 0.008 | 0.007 | 0.009 | ||
1,000 | 10 | 0.003 | 0.004 | 0.004 | 0.005 | |||
3,000 | 10 | 0.001 | 0.001 | 0.003 | 0.003 | |||
| ||||||||
6 | 1 | 500 | 15 | 0.003 | 0.004 | 0.006 | 0.009 | |
1,000 | 15 | 0.002 | 0.003 | 0.003 | 0.003 | |||
3,000 | 15 | 0.001 | 0.002 | 0.001 | 0.002 | |||
| ||||||||
2 | 500 | 16 | 0.003 | 0.005 | 0.004 | 0.005 | ||
1,000 | 16 | 0.003 | 0.003 | 0.003 | 0.003 | |||
3,000 | 16 | 0.001 | 0.001 | 0.001 | 0.001 | |||
| ||||||||
2 | 3 | 1 | 500 | 18 | 0.004 | 0.005 | 0.007 | 0.009 |
1,000 | 18 | 0.003 | 0.005 | 0.004 | 0.004 | |||
3,000 | 18 | 0.002 | 0.002 | 0.001 | 0.002 | |||
| ||||||||
2 | 500 | 20 | 0.005 | 0.008 | 0.006 | 0.008 | ||
1,000 | 20 | 0.003 | 0.003 | 0.003 | 0.004 | |||
3,000 | 20 | 0.001 | 0.002 | 0.001 | 0.001 | |||
| ||||||||
6 | 1 | 500 | 30 | 0.004 | 0.006 | 0.008 | 0.010 | |
1,000 | 30 | 0.003 | 0.004 | 0.005 | 0.006 | |||
3,000 | 30 | 0.001 | 0.002 | 0.002 | 0.002 | |||
| ||||||||
2 | 500 | 32 | 0.002 | 0.003 | 0.005 | 0.007 | ||
1,000 | 32 | 0.003 | 0.004 | 0.003 | 0.004 | |||
3,000 | 32 | 0.001 | 0.002 | 0.001 | 0.002 |
Note. AAB represents averaged absolute bias; RMSE represents root mean square error.