Skip to main content
. Author manuscript; available in PMC: 2014 Jul 1.
Published in final edited form as: Multivariate Behav Res. 2013 Jul 26;48(4):563–591. doi: 10.1080/00273171.2013.802647

Table 6.

ML and Bayesian Estimation Performances for Multilevel MIMIC Models

Parameters vs. ML estimates Parameters vs. Bayesian estimates

Factors Items Covariates Sample size Parameters AAB RMSE AAB RMSE
1 3 1 500 9 0.017 0.022 0.008 0.011
1,000 9 0.015 0.020 0.005 0.006
3,000 9 0.016 0.020 0.002 0.002

2 500 10 0.015 0.019 0.007 0.010
1,000 10 0.013 0.017 0.004 0.005
3,000 10 0.011 0.015 0.002 0.003

6 1 500 15 0.027 0.037 0.005 0.008
1,000 15 0.025 0.034 0.003 0.004
3,000 15 0.025 0.033 0.001 0.002

2 500 16 0.017 0.023 0.004 0.005
1,000 16 0.017 0.023 0.002 0.002
3,000 16 0.017 0.022 0.001 0.001

2 3 1 500 18 0.028 0.035 0.007 0.009
1,000 18 0.026 0.034 0.003 0.005
3,000 18 0.025 0.033 0.001 0.002

2 500 20 0.019 0.025 0.005 0.007
1,000 20 0.018 0.024 0.002 0.003
3,000 20 0.019 0.025 0.001 0.001

6 1 500 30 0.050 0.064 0.007 0.010
1,000 30 0.046 0.059 0.004 0.006
3,000 30 0.042 0.054 0.001 0.002

2 500 32 0.031 0.040 0.005 0.007
1,000 32 0.031 0.039 0.003 0.004
3,000 32 0.029 0.037 0.001 0.002

Note. AAB represents averaged absolute bias; RMSE represents root mean square error.