Table 6.
ML and Bayesian Estimation Performances for Multilevel MIMIC Models
Parameters vs. ML estimates | Parameters vs. Bayesian estimates | |||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Factors | Items | Covariates | Sample size | Parameters | AAB | RMSE | AAB | RMSE |
1 | 3 | 1 | 500 | 9 | 0.017 | 0.022 | 0.008 | 0.011 |
1,000 | 9 | 0.015 | 0.020 | 0.005 | 0.006 | |||
3,000 | 9 | 0.016 | 0.020 | 0.002 | 0.002 | |||
| ||||||||
2 | 500 | 10 | 0.015 | 0.019 | 0.007 | 0.010 | ||
1,000 | 10 | 0.013 | 0.017 | 0.004 | 0.005 | |||
3,000 | 10 | 0.011 | 0.015 | 0.002 | 0.003 | |||
| ||||||||
6 | 1 | 500 | 15 | 0.027 | 0.037 | 0.005 | 0.008 | |
1,000 | 15 | 0.025 | 0.034 | 0.003 | 0.004 | |||
3,000 | 15 | 0.025 | 0.033 | 0.001 | 0.002 | |||
| ||||||||
2 | 500 | 16 | 0.017 | 0.023 | 0.004 | 0.005 | ||
1,000 | 16 | 0.017 | 0.023 | 0.002 | 0.002 | |||
3,000 | 16 | 0.017 | 0.022 | 0.001 | 0.001 | |||
| ||||||||
2 | 3 | 1 | 500 | 18 | 0.028 | 0.035 | 0.007 | 0.009 |
1,000 | 18 | 0.026 | 0.034 | 0.003 | 0.005 | |||
3,000 | 18 | 0.025 | 0.033 | 0.001 | 0.002 | |||
| ||||||||
2 | 500 | 20 | 0.019 | 0.025 | 0.005 | 0.007 | ||
1,000 | 20 | 0.018 | 0.024 | 0.002 | 0.003 | |||
3,000 | 20 | 0.019 | 0.025 | 0.001 | 0.001 | |||
| ||||||||
6 | 1 | 500 | 30 | 0.050 | 0.064 | 0.007 | 0.010 | |
1,000 | 30 | 0.046 | 0.059 | 0.004 | 0.006 | |||
3,000 | 30 | 0.042 | 0.054 | 0.001 | 0.002 | |||
| ||||||||
2 | 500 | 32 | 0.031 | 0.040 | 0.005 | 0.007 | ||
1,000 | 32 | 0.031 | 0.039 | 0.003 | 0.004 | |||
3,000 | 32 | 0.029 | 0.037 | 0.001 | 0.002 |
Note. AAB represents averaged absolute bias; RMSE represents root mean square error.