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Abstract
The Undiagnosed Diseases Program at the National Institutes of Health uses High Throughput
Sequencing (HTS) to diagnose rare and novel diseases. HTS techniques generate large numbers of
DNA sequence variants, which must be analyzed and filtered to find candidates for disease
causation. Despite the publication of an increasing number of successful exome-based projects,
there has been little formal discussion of the analytic steps applied to HTS variant lists. We
present the results of our experience with over 30 families for whom HTS sequencing was used in
an attempt to find clinical diagnoses. For each family, exome sequence was augmented with high-
density SNP-array data. We present a discussion of the theory and practical application of each
analytic step and provide example data to illustrate our approach. The paper is designed to provide
an analytic roadmap for variant analysis, thereby enabling a wide range of researchers and clinical
genetics practitioners to perform direct analysis of HTS data for their patients and projects.
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INTRODUCTION
The NIH Undiagnosed Diseases Program (UDP) is designed to evaluate medical syndromes
that have been refractory to diagnosis despite extensive assessment [Gahl, et al., 2011; Gahl
and Tifft, 2011]. Once accepted, participants undergo in-depth medical evaluation at the
NIH Clinical Center. Of the individuals or families seen at the NIH, 10% – 20% are
diagnosed with a known condition based on clinical evaluation. The remaining participants
become candidates for research studies designed to detect ultra-rare or new diseases that
would be difficult, if not impossible, to diagnose using conventional means.
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High-throughput sequencing (HTS) has emerged as a powerful tool to study undiagnosed
diseases. Many recent publications describe new genes discovered by whole exome
sequencing [Bilguvar, et al., 2010; Bonnefond, et al., 2010; Choi, et al., 2009; Erlich, et al.,
2011; Hoischen, et al., 2010; Kalay, et al., 2011; Klein, et al., 2011; Krawitz, et al., 2010;
Lalonde, et al., 2010; Ng, et al., 2010a; Ng, et al., 2010b; Puente, et al., 2011; Simpson, et
al., 2011; Sobreira, et al., 2010; Walsh, et al., 2010; Wei, et al., 2011; Worthey, et al., 2011],
and additional publications report genes identified by related techniques [Brkanac, et al.,
2009; Johnston, et al., 2010; Kahrizi, et al., 2011; Lupski, et al., 2010; Nikopoulos, et al.,
2010; Rehman, et al., 2010; Rios, et al., 2010; Summerer, et al., 2010; Volpi, et al., 2010].

HTS methods produce a list of genotype calls numbering on the order of 104 per exome, 105

for the combined exomes of a small family, and 106 per genome. The genotype list contains
common polymorphisms, rare variants and false positives. In the early stages of analysis,
variants are prioritized and filtered to produce a subset of potentially disease-causing
candidate variants. Filtering is based on factors such as population frequency, segregation
according to a proposed genetic model, and predicted consequences for gene function. In
addition, many of the published HTS diagnostic successes to date have made use of clues
that were present before sequencing commenced. Examples include linkage data [Rehman,
et al., 2010], regions of homozygosity [Walsh, et al., 2010], the presence of non-physiologic
metabolites [Rios, et al., 2010], and clinical similarity to known syndromes.

Application of HTS techniques to the UDP participant cohort is challenging due to the
paucity of pre-sequencing clues. Many families have apparently unique syndromes and no
history of consanguinity. The available family members often comprise a pedigree that is
too small for traditional linkage methods. The nature of the cases has driven the
development of methods to maximize the information obtained from small families and/or
individuals. Using both previously described and novel techniques, we have found disease-
causing mutations in 5 of 30 families to which HTS methods have been applied. A number
of additional families have generated highly suggestive candidates that are undergoing
functional validation.

In this paper we describe the step by step process used to analyze DNA sequence variants
produced by HTS for our UDP participants. We provide a composite/artificial set of exome
data to assist with the implementation of our techniques at other sites where similar clinical
work is being performed. For each step we provide a discussion of the rationale behind our
approach, a description of how to carry out the analysis with the example data set, and a
brief discussion of the tools available for similar analyses. It is our intention to describe an
approach that small and medium sized centers can use with their own patients, using next
generation sequencing (NGS) data obtained by collaboration or from commercial sources.

METHODS
Supp. Table S1 provides a beginning-to-end outline of the major steps involved in exome
sequencing. Most of the discussion in this paper focuses on the “Variant Filtering and
Analysis” step in that table. The table can be used to provide some context for the following
discussion.

Starting Dataset Acquisition, Annotation and Characteristics
Rationale—The starting point for our analysis is a list of annotated DNA sequence variants
—the candidate list. As the analysis proceeds, groups of variants will be tentatively removed
from the candidate list until there are few enough variants that each may be scrutinized on
an individual basis.
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The starting candidate list is the product of the following generalized steps: data acquisition
(generating sequence short reads from DNA); alignment (matching the short reads to a pre-
existing reference genome) [Lin, et al., 2011; Miller, et al., 2010; Schatz, et al., 2010]; base
calling (determination of the best-guess for the genotype, or other sequence feature, at each
aligned position) [Ledergerber and Dessimoz, 2011]; and annotation. These steps have been
reviewed elsewhere [McKenna, et al., 2010]. The term annotation, as used here, requires
special mention. Annotation involves multiple procedures used to gather and record
information about each detected sequence variant. Examples include, but are not limited to;
the alignment of the variant to a specific base position in a known gene; the assessment of
the variant’s potential to disrupt gene function (“pathogenicity”); and the presence of the
variant in databases such as dbSNP. Many annotations can be accomplished with free,
publicly available tools such as the Genome Analysis Toolkit (GATK) [McKenna, et al.,
2010], SeattleSeq (http://gvs.gs.washington.edu/SeattleSeqAnnotation/index.jsp) and the
Galaxy website [Giardine, et al., 2005; Goecks, et al., 2010; Taylor, et al., 2007]. A few
types of annotation are generated using custom programs developed at individual
sequencing centers. For smaller sites lacking the bioinformatics resources of the large
centers, the performance of some annotation procedures may be negotiated with a
collaborating academic sequencing center or commercial vendor. In any case, a commitment
to ongoing communication between the sequencing center and the researcher should be a
pre-requisite for any collaboration.

For the purposes of this paper, a specified set of annotations will be assumed to have been
performed before candidate list analysis begins. A few annotations are performed by
software that is not yet freely available in a stand-alone form. While those annotations are
not absolutely necessary, omission will result in a longer final candidate list. As an
alternative, we have developed of a suite of Linux-based software scripts called VAR-MD
and report this in a separate publication [Sincan, et al, 2012]. VAR-MD will provide the
variant annotations used in this paper starting with a basic set of genotype calls. It will also
automate many of the analytic procedures described below. Overlapping functionality is also
available in the VAAST program, a recently released tool that can automate some
annotation and candidate list manipulation tasks [Yandell, et al., 2011].

Our candidate lists are provided by our collaborators at the NIH Intramural Sequencing
Center (NISC) in the form of tab-delimited text files with one variant per line. The included
annotations and potential data sources are outlined in Table 1. The NISC methodology used
to generate the exome data in this paper is outlined in Supp. Methods S1. A wide variety of
computer programs can be used to view and manipulate a candidate list. We use a java
program called VarSifter, developed by Jamie Teer at NISC (Teer, et al., 2012, available at
http://research.nhgri.nih.gov/software/VarSifter/). Our candidate list, with accompanying
annotations, is in a text-file format readable by VarSifter. The VarSifter file format,
including information that is common to all similar files, is detailed in Supp. Methods S2.
Alternately, many candidate list manipulations can be carried out using the Galaxy website
[Blankenberg, et al., 2010; Goecks, et al., 2010], GATK, and/or a spreadsheet like Microsoft
Excel (Microsoft Corporation, Renton, WA). Commercial solutions are available, and some
offer alignment and/or annotation functionality as well, e.g., Nextgene (State College, PA)
and the tools provided with sequence data generated by Knome (Cambridge, MA).

Genome-sequencing will eventually become standard for many HTS applications. Until that
time, however, the addition of genome-wide data from a high-density SNP array has the
potential to add critical additional information to an HTS project, particularly in the case of
exome analysis. We also obtain SNP array data for every HTS project. We use the Illumina
platform and the associated analysis program Genome Studio (Illumina, San Diego, CA).
Other types of SNP arrays would be equally suitable.
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The guiding principle behind our filtering procedure is that an HTS variant-analysis process
must be flexible enough to allow adjustment of all analytic parameters. Those performing
the analysis must understand the rational, procedures and assumptions inherent in each step.

Procedure—The files used in the following analyses are available in one of two places. An
example data set and interval post-processing results are located at ftp://ftp.nhgri.nih.gov/
pub/NIHUDP/ADAMS_METHODS/. The example dataset compexome_30_unfiltered.vs is
an exome candidate list created and modified from several projects to protect individual
patient data. Each included project involves a family with a similar structure: four
individuals including two parents and two full sibs. One sibling is affected with a disorder
that appears to be early-onset, severe and likely to be highly penetrant at an early age. There
is no history of consanguinity. High-density SNP arrays have been run for each family
member. Individual variations are all biologically derived and there is one verified positive
finding in the dataset. The positive finding was found in a family for which the affected
child had a childhood-onset neurodegenerative disorder. A number of consistent known
diseases, including some lysosomal storage diseases, had been ruled out by specific clinical
testing. The story of the original exome-based diagnosis for that family is in press in a
separate publication [Pierson, et al., 2011].

Genotyping Quality Measurement
Rationale—HTS technology and methods are evolving rapidly. In addition to falling
prices, aspects of the laboratory techniques used for data generation change every few
months. Interpretation of an HTS candidate list requires an understanding of the genotyping-
quality issues associated with the specific techniques used to acquire the data. Excellent
reviews of HTS quality assessment are available [Teer, et al., 2010]. Quality for a given
project should be assessed by, or with the group who performed the data acquisition. Only
that group can provide historical data about their experience with the specific techniques
they use. Key issues include variant-call quality near the ends of sequence reads and
assemblies, quality of insertion/deletion variant calling and assessment of pre-sequencing
laboratory-work.

The average depth of HTS short reads in a sequence alignment is a frequently reported
metric of variant-call quality. Coverage for an entire HTS project can be reported in
different ways such as “average coverage per base” or “percent of bases covered to depth n”.
An example of one potential pitfall of using coverage as the sole measure of variant-call
quality is the compression misalignment. In a compression, reads from two highly similar
regions, e.g., a gene and matching pesudogene, are aligned to the same position on the
reference sequence. The two slightly-different sequences create apparent non-reference
genotype calls where they differ, and simultaneously create an area of falsely-reassuring
deep coverage.

Procedure—Quality assessment metrics for our data were developed by NISC and include
a Bayesian statistic for each base call (the Most Probable Genotype or MPG score) and a
ratio of the MPG score to the coverage for any given variant [Teer, et al., 2010]. The latter
makes intuitive sense. The quality score should increase in proportion to the coverage. A
deeply-covered variant with an inadequately high quality score may indicate a false-positive
genotype call. For the example dataset, variants have been included if at least one family
member exceeds a lower-cutoff for quality. The lower cutoffs for the MPG and MPG/
coverage were empirically derived and set at MPG = 10 and MPG/coverage = 0.5.
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Candidate List Filtering: Variant Type
Rationale—Each analyst must define a starting point with regard to assumptions about the
nature of the DNA change(s) affecting their gene of interest. Our usual starting assumptions
have failed in some cases, and proven successful in others. Failure to find a convincing
candidate simply prompts an additional pass through the data with different assumptions.

Procedure—As a first pass, we will guess that the disease-causing variation, or variations,
involves coding sequence or a canonical splice site. We will further postulate that it will be a
typical pathogenic variant, e.g., a missense change versus a less common type such as a
synonymous splice modifier. After loading compexome_30_unfiltered.vs into VarSifter, the
number of variant positions displayed is 116,837—a typically large number for a family of
four. The following variant types are selected: insertions/deletions, missense mutations,
nonsense mutations, and canonical splice-site mutations. Selecting those variants and
applying the filter reduces the number of variants to 14,338
(compexome_31_pathogenic_variants.vs). The mechanism by which filtering occurs is
straightforward. VarSifter uses one column of the candidate list file (“type”) to look up the
annotated mutation type. Any mutation types not included in the filter are removed from the
current view. To relax the criteria, intronic and other mutation categories may be added,
followed by re-filtering of the original data.

Candidate List Filtering: Population Frequency
Rationale—Filtering by population frequency is an attempt to remove common
polymorphisms that are unlikely to be disease causing. It is conversely equivalent to the
practice of reporting of negative results in a panel of normal controls when describing a new
mutation. The disease-causing variant is implicitly assumed to be rare, high-penetrance, and
responsible for a large phenotypic effect.

dbSNP [Sherry, et al., 2001] is highly-utilized public database of DNA sequence variations.
Entries have a regular format, but are not curated and have non-required fields. Most of the
HTS analysis papers to-date have used dbSNP entries as a filter to remove common
variations. Unintentional generation of false-positive or false-negative filtering results can
occur with inappropriate application of the dbSNP database. Many dbSNP entries lack
population frequency information and/or derive from studies with few individuals. The
dbSNP database is known to contain pathogenic mutations; it was never designed to exclude
them. In a 2008 study, Won et al. demonstrated that 8% of the sequence variations in dbSNP
(v.126) were also present in the Human Gene Mutation Database (HGMD)[Won, et al.,
2008]. The HGMD (BIOBASE Biological Databases, Wolfenbüttel, Germany) is ostensibly
a list of human disease-causing variations, although it is known to be only as good as the
medical literature it collates. The HGMD/dbSNP overlap serves to illustrate the potential for
misclassification of DNA sequence variants by using an unselected database.

The 1000 Genomes Project is increasingly providing an invaluable resource for identifying
common DNA sequence variations. It is available as a subset of current versions of dbSNP
or by itself from the 1000 Genomes website [Sudmant, et al., 2010]. 1000 Genomes variants
are annotated with heterozygosity information allowing for the construction of filters with a
specified lower limit of population heterozygosity. Determining an appropriate
heterozygosity exclusion criterion requires an estimate of disease incidence. For ultra-rare
conditions in Hardy-Weinberg equilibrium and with incidences on the order of 1:1,000,000,
the expected heterozygosity in the population is 1/500 or 0.002 (0.2%). For a condition with
an incidence of 1/10,000 it is 2%. It is preferable to set the criterion too high rather than too
low as the latter will run the risk of excluding the disease-causing variation being searched
for.
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Procedure—Varsifter allows filtering using BED-formatted text files, the BED format
providing a means to define arbitrary genomic intervals. Recent developments at the Galaxy
website allow for the rapid construction of BED files with dbSNP data. Filters should be re-
constructed with each dbSNP release as new data are added regularly. Table 2 shows the
results of population frequency filtering with files for several different heterozygosity
cutoffs including 0.5, 1, 2 and 5%. The 1% heterozygosity filter in Table 2 was applied
using both dbSNP131 and dbSNP132 to highlight the fact that using updated filters is
important to maximize the number of excluded variants. The dbSNP132 filter excluded 3000
more variants than the prior version. Each BED file is available at ftp://ftp.nhgri.nih.gov/
pub/NIHUDP/ADAMS_METHODS/. For our filters, we use a subset of dbSNP that
includes 1000 Genomes data and HapMap variants/polymorphisms that align uniquely to the
genome. A method for constructing such filters using the Galaxy website is provided as
Supp. Methods S3. Using the dbSNP132 1% filter, the example candidate list is reduced in
size from 14,338 to 5,041 (compexome_32_DB132.vs). The population filtering threshold
can be adjusted by creating files for various SNP heterozygosity cutoffs and substituting
files as desired to adjust filtration.

Candidate List Filtering: Gene and Site Exclusion Lists
Rationale—Some sequence variants can often be excluded a priori during a first pass
analysis. Two types of exclusion are explored in Fuentes Fajardo et al. [Fuentes Fajardo, et
al, 2012]. Excluded genes contain multiple variants in every HTS-sequenced individual and
are identified by restrospective analysis of accumulated exome data. These genes may fall
into one of several categories: pseudogenes, groups of paralogs such as olfactory receptors,
and/or chromosomal regions with biologically important hypervariability. An example of the
last is the HLA region on chromosome 6. Additionally, individual base pairs can be
excluded. Base-pair exclusions are made based on the meta-analysis of a collection of
exomes, preferably from one sequencing center and set of related sequencing methods.
Examples include sites that are always heterozygous (likely to be caused by alignment
problems specific to a given alignment methodology) and sites that are always homozygous
non-reference (sites where the reference sequence contains a minor allele).

Occasionally, certain projects will require the re-inclusion of typically excluded genes or
sites. The analyst should be familiar with the contents of any exclusion lists employed, so
that modifications can be made as needed.

Procedure—We use two exclusion lists developed using the techniques referred to in
Fuentes Fajardo et al [Fuentes Fajardo et al, 2012]. The gene list is a text file with gene
names, and the individual-base-pair list is a complemented BED file similar to the one used
in the earlier population frequency filter. Application of the base pair exclusions reduces the
candidate list from 5,041 to 3,752 (compexome_33_HWE_BEDfile_2.vs), and application of
the gene list reduces the number further to 2,360 (compexome_34_Gene_Kill_List.vs). The
BED file may be specific to our data acquisition methods, but the gene list should be useable
by other centers. Both files are provided as gene exclusion_list.txt and base-
pair_exclusion_list.txt, respectively.

Candidate List Filtering: Genotyping Quality Criteria
Rationale—Low-confidence genotype calls may be removed during the data acquisition
and annotation process. Only highly-compelling criteria should prompt such variant
removal. In the remaining cases, a quality score can be used to provide guidance to the
candidate list analyst. Take as an example a case where three out of four family members
have good quality data suggesting an important candidate variant. The variant may deserve
consideration despite the fact that one family member has poor-quality data. Such variants
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are examples of what to revisit if an answer is not found during a first pass analysis.
Genotyping quality scores, therefore, represent an additional variable that can be used to
adjust filtration stringency.

Procedure—As mentioned previously, our collaborators at NISC use the MPG score and
MPG score/coverage ratio to annotate variant quality. The VarSifter program allows
specification of the number of family members in a pedigree who need to exceed a given
cutoff for inclusion in the post-filtration list. For our example, we specify that all four family
members need to have an MPG score of at least 10 and an MPG/coverage score of 0.5 or
greater. The subsequent filtration reduces the number of variants from 2360 to 1469
(compexome_35_Quality_filters.vs).

Candidate List Filtering: Family Structure
Rationale—In the near-past, HTS data acquisition costs were frequently a limiting factor in
experimental design. As costs drop, data acquisition feasibility is giving way to other design
issues. One consideration is whether or not to sequence additional family members, beyond
the proband. Added family members have the potential to directly and substantially decrease
the number of candidate variations in an HTS project. Fig. 1 illustrates the effect of the
incorporation of family data on final candidate list size.

Added family members can be analyzed with concurrent SNP array analysis to provide
recombination mapping (precise segregation-consistent chromosomal intervals) [Roach, et
al., 2010], mosaicism detection [Gonzalez, et al., 2011; Markello, et al., 2011a]
identification of regions of homozygosity, estimates of inbreeding coefficients, confirmation
of parentage, uniparental disomy analysis and detection/interpretation of copy number
variations. As an example, if a proband and a father share a single copy deletion, then the
sequence of the corresponding maternal allele in the proband should be interrogated for
possible complementary loss-of-function variations that might generate a phenotype when
paired with the paternally-inherited deletion. If the same deletion is new to the proband, then
a different set of mechanisms can be considered including haploinsufficiency or a
complementary variant inherited from whichever parent contributed the non-deleted allele.

While recombination mapping can be performed using genome sequencing data, exome
projects require the addition of genome-spanning high-density SNP array data. Construction
of recombination maps using SNP data is described in an accompanying paper by Markello
et al.[Markello, et al., 2011b]. Recombination mapping is analogous to traditional linkage
analysis, which produces variable likelihood-based estimates of linkage between widely
spaced markers. The close proximity of SNPs on a high-density SNP array means that the
probability of a double-crossover event between a given pair of markers is small.
Consequently, sites of recombination can be mapped in a “square wave” fashion, with
regions of consistent and non-consistent segregation mapped to a precision on the order of a
few kilobases. For exome candidate list analysis, regions that have segregated in a manner
consistent with a given genetic model can be defined with a BED file. Variants outside the
consistent regions are filtered out.

Consistent segregation can also be verified for individual variants [Choi, et al., 2009; Ng, et
al., 2010b]. The group of variants filtered by recombination mapping overlaps but is not
identical to the set of variants excluded by individual-variant segregation filtering. The
difference probably represents variants in segregation-valid regions that are sequencing false
positives. The stringency of segregation filtering is determined by the number of “errors”
tolerated by the filter. For instance, consider the following situation. Given a postulated
autosomal recessive model, a pattern of variation for a family of four includes a consistent
proband, one consistent sib, one consistent parent, and a second parent with missing data
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(e.g., a local sequencing failure). Should this family be included or excluded? The rules used
to answer that question will define the stringency of the filter.

Procedure—Genome Studio was used for the high-density SNP-array analyses including
the straightforward visualization of copy number variants and the more complex detection of
recombination sites using Boolean rule-sets. The methods for the latter types of analyses are
provided in the papers referenced above.

We decided to obtain exome sequence on multiple family members. The decision was based
on several factors: 1) There was no evidence of consanguinity or potential for homozygosity
mapping based on previously obtained SNP array data; 2) There were no clinical findings to
suggest a specific set of genes implicated in disease causation (that had not been excluded
by clinical testing); and, 3) There was no linkage region or other mapping data to establish a
genomic candidate region. We therefore chose the most powerful approach for agnostic
screening of the exome and sequenced both parents and one unaffected sibling along with
the proband.

Recombination mapping was carried out using the methods described in Markello et al
[Markello, et al., 2011b]. The procedure involves using Genome Studio to apply a set of
Boolean segregation rules to SNP array data. The resulting recombination map was defined
in a BED-formatted file (Linkage File.txt). The BED file was applied using VarSifter and
reduced the candidate number from 1469 to 958 (compexome_36_linkage_regions.vs).

Our candidate list includes specific annotations regarding Mendelian consistency. Custom
scripts use family-relationship data to test whether a given variant did or did not segregate in
a biologically feasible manner and flag it as inconsistent if it did not. Furthermore, regions
defined by gene boundaries are surveyed for pairs of variants that could make up a
compound heterozygote set. Such variants are annotated with a column that lists the index
number(s) of the complementing variant or variants (Nancy Hansen, unpublished data). The
Mendelian consistency annotations may not be available in candidate lists from all
sequencing centers. The VAR-MD [Sincan et al, 2012] and VAAST [Yandell, et al., 2011]
programs can incorporate such information. However, once the variant list gets short
enough, a spreadsheet can be used to sort the variants by gene name. Once sorted, the
contents of individual loci can be inspected for Mendelian relationships.

For our candidate list, we postulated an autosomal recessive genetic model because both
parents were unaffected. A new dominant model would also be appropriate for a potential
subsequent analysis. The recessive inheritance could arise from homozygous or compound
heterozygous mutations. Application of the appropriate filters with VarSifter results in 7
homozygote candidates (compexome_37a_homozygous_recessive.vs) and 94 compound
heterozygote candidates (compexome_37b_compound_heterozygotes.vs).

Working With the Candidate List: Assessment of Individual Variants
Rationale—Inspection of the example files show that the candidate list is now small
enough for each variant to be considered individually for goodness of fit with the clinical
syndrome. Additional tools become useful at this stage. Individual variant positions should
be looked up in any available databases of known genomic variants. Homozygous variant
positions should be compared with the positions of any regions of homozygosity identified
by SNP array analysis or other means. Homozygous variants should also be correlated with
any single copy deletions, to see if the two might combine to cause an autosomal recessive
disease.
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Procedure—In our example, each homozygous variant is associated with a dbSNP “rs”
number, providing an additional source of information. Individual variants may require in
depth research. For example, among the homozygotes is a p.A34E mutation in the PPT2
gene, dbSNP number rs3096696. The coverage is low for the mother and the proband at 14
reads (compare with other variations in the list with coverage in the 50 to 200 range).
Inspection of the dbSNP record reveals that the variation has been seen in homozygous form
in 19% of 39 cell lines derived from persons of Caucasoid, African-American or American
Indian ethnicities, 28 out of 39 of whom had known consanguinity. The SNPs were reported
by a researcher at the Fred Hutchinson Cancer Research Center and contact information is
available. Inspection of the Online Mendelian Inheritance in Man website (OMIM, http://
www.ncbi.nlm.nih.gov/omim) shows that PPT2 (MIM# 603298) has a known mouse model
with a neurological phenotype. In addition to the dbSNP record, the laboratory that
performed the HTS data acquisition should be able to inspect the raw alignment data to see
if the variant is in an area consistent with genotyping errors. For the example case, similar
research was able to deprioritize all of the homozygous variations.

The compound heterozygote list has 94 individual variants. Compound heterozygotes must
have at least two pathogenic, trans-oriented mutations to satisfy an autosomal recessive
model. A study of the specifics of the annotation of our candidate list provides an example
of how knowledge about each step of data production is critical for interpretation.

First, for our list, family-based Mendelian-consistency annotation is carried out before the
final quality-based variant exclusions are decided. As a result, some variants are removed
from the dataset after compound heterozygosity variant pairings are established.

Second, an individual variant can be inherited in a manner consistent with a compound
heterozygote model, but never have had a second mutation to complement it.

Third, and as a corollary to the second item, multiple variants at one locus may not be
pairable if they all occur on the same allele.

Fourth, a pair of trans-oriented variants at a given site may have one good candidate and one
poor candidate (poor quality, low pathogencity prediction and/or known benign changes
based on literature or other information).

As a result of these four factors, the list of compound heterozygotes includes numerous
variants that are annotated as consistent with compound heterozygous inheritance, but can
be excluded due to lack of a second, high quality, trans variant. As mentioned in a previous
section, part of the NISC annotation pipeline attempts to find variant pairs that together
would explain compound heterozygous inheritance. VarSifter will display consistent
pairings, and the example data set reveals only 3 pairs of variants (out of the original 94
individual variants).

Working With the Candidate List: Pathogenicity Assessment
Rationale—Pathogenicty prediction estimates the effect a DNA variation will have on
gene function. It is not unique to HTS and is frequently incorporated into the analysis of
unknown sequence variants from other sources. Most of the available automated tools focus
on the alteration of amino acids in coding regions. However, specialized tools are available
to predict the affect of non-coding variants in splicing [Brunak, et al., 1991; Desmet, et al.,
2009; Hebsgaard, et al., 1996; Pertea, et al., 2001] and regulatory regions [Venter and
Warnich, 2009].
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The criteria used to assess the pathogenicity of missense mutations include intraspecies
conservation, information about protein structure (predicted and experimental), amino acid
chemical similarity, coincidence with disease and functional assay. Many related software
programs exist including Polyphen [Adzhubei, et al., 2010], SIFT [Ng and Henikoff, 2001],
Panther [Mi, et al., 2005; Thomas, et al., 2003], SNAP [Bromberg and Rost, 2007;
Bromberg and Rost, 2008; Bromberg, et al., 2008] and others. In general, pathogenicity
prediction has false positive and false negative rates between 10% and 20% [Ng and
Henikoff, 2006]. As a result of these substantial error rates, the predictions are primarily
useful for prioritizing variation candidates and must be used with caution in assessing
individual variants. When choosing a pathogenicity prediction software program, there are
several features to consider beyond ease of use and convention. The optimal program would
have the following characteristics: 1) the criteria by which individual predictions are made
should be accessible to the user; 2) programs should provide results for a wide variety of
regions, but should also reflect the paucity or abundance of information for a given site; and
3) the software should produce a reasonably variable numeric score to allow the
prioritization of a long list of variants.

Procedure—The UDP data sets are analyzed with CDpred, a component of the NISC
annotation pipeline [Johnston, et al., 2010]. CDPred estimates variant pathogenicity using
alignment conservation data from the Conserved Domain Database [Marchler-Bauer, et al.,
2003]. When conserved domain alignments cannot be made, the program defaults to a
BLOSUM matrix based on empirically derived substitution frequencies [Henikoff and
Henikoff, 1992]. Increasingly positive and negative integers indicate decreasing and
increasing pathogenicity, respectively. Stop mutations and canonical splice site mutations
are arbitrarily set at −30, a value more negative than that seen for any missense mutation.

The example data set contains three compound heterozygote pairs, and the CDPred scores
for each can be inspected to get a sense of how severe the mutations are. One pair has
positive CDPred scores, suggestive of relatively mild effect on gene function. The other two
pairs have negative scores, which are more consistent with a disease-causing mutation. All
of the mutations are missense, so there are no very low scores such as the −30 seen for a
stop mutation. As mentioned, using pathogenicity prediction software for individual variants
is risky, and for a list this small it would mainly be used to get a general sense of mutation
severity. However, in less favorable cases, there may be a long list of variants, and sorting
by pathogenicity is a useful way to focus on a subset of data for initial analysis.

Working With the Candidate List: Previously Reported Mutations
Rationale—Numerous software tools are available to search for associations between
candidate variants and known clinical syndromes. Examples include the Online Mendelian
Inheritance in Man (OMIM) website, Pubmed, the Human Gene Mutation Database [D.N.
Cooper, 2011], disease-specific mutation repositories, and software such as Alamut
(Interactive Biosoftware, Amsterdam, The Netherlands) that can collate information from
multiple sources. Many sequence variants listed as pathogenic will not have been adequately
characterized, so care must be taken when assigning disease causation.

Procedure—One of the compound heterozygotes genes is GLB1, and one of the variants in
the pair, p.R201H, has been reported as being associated with GM1 gangliosidosis. That
information supports the hypothesis that GLB1 is the disease-causing gene.

Working With the Candidate List: Incorporation of Pre-Existing Information
Rationale—Pre-existing knowledge about the biology or genetics of a particular project
can be added at any stage of analysis. If there is strong evidence that the causal variation(s)
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will be present in a specific chromosomal region, a targeted capture technique may be
preferable to exome capture. Targeted capture will genotype a wider range of potential non-
coding regulatory sites and intronic sequence in the region of interest. In either case, the
candidate list can be narrowed by creating a BED file that defines specific regions of
interest. Alternatively, a list of genes located in a candidate region can be specified.

Erlich et al. [Erlich, et al., 2011] reported an approach by which a candidate gene list was
narrowed using disease network analysis. The approach is suited for cases where the
syndrome being studied shows genetic heterogeneity. Genes known to cause the syndrome
are inspected for commonalities in physical structure, expression patterns, shared domains,
etc. Identified shared characteristics are then searched for in genes with variants in the whole
exome candidate list. Several software tools available for network analysis are reviewed in
the Erlich paper.

Individual clinical hypotheses can be studied by making gene lists associated with specific
syndromes. For example a syndrome that has characteristics consistent with a mitochondrial
disease would make use of a gene list of all known nuclear-encoded mitochondrial genes.

Procedure—We have developed and/or adapted a number of disease gene lists for
conditions known to exhibit significant genetic heterogeneity. For example, many of the
UDP participants have medical syndromes that could be caused by mitochondrial disease.
However, there are a large number of nuclear-encoded mitochondrial genes, and testing
them by individual Sanger sequencing is time consuming and expensive. Exome sequencing
provides an alternate approach to such diseases, and can be used to sequence all of the genes
of interest within the limits of exome sequencing coverage characteristics. The exome
candidate list is then examined by looking only at genes known to be associated with
mitochondrial disease.

Unfortunately, in the example case, the clinical phenotype did not match any of those
conditions. Inspection of the high-density SNP arrays did not show any genomic lesions that
would provide a candidate locus or basis for targeted capture. However, the clinical
presentation did have features consistent with a neurological lysosomal storage disease
(LSD), including progressive symptoms.

Working With the Candidate List: Variant Validation
Rationale—Once variants are detected by an HTS technique, it is standard practice to
validate candidates of interest using Sanger sequencing. For our sequencing collaborators,
approximately 90% of HTS detected variants will validate. For variants that are not well
supported by previous work, functional analysis must be the final determinant of the
pathogenic role of a DNA sequence variant.

Procedure—Given a clinical syndrome suggestive of an LSD,and knowing that GLB1
causes GM1 gangliosidosis (a type of LSD), we performed in-house Sanger sequencing
followed by CLIA laboratory sequencing to verify the HTS sequencing variants detected in
the GLB1 gene. We then repeated prior clinical enzymatic testing that had ruled out GM1
gangliosidosis. It turned out that the prior negative testing had been a false-negative result
and that the beta-galactosidase (GLB1 gene product) enzymatic-activity level was indeed
reduced to a level consistent with disease [Pierson, et al., 2011].

DISCUSSION
We have presented a framework for the analysis of HTS data, starting with a large list of
annotated DNA sequence variants, and ending with a small list of high-value candidates for
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confirmation or research follow-up. We have further provided an example data set that
includes a validated result. During the introduction, we reported that we have found
unequivocal disease-causing mutations in 5 of 30 families, plus several other compelling
candidate DNA variants. Our record illustrates that many HTS projects do not generate a
clear-cut answer during the early stages of analysis. In some cases, relaxing filtering
constraints will expand the list to include an obvious candidate. In other cases, the result is a
list of weak candidates that require significant laboratory work to definitively exclude or
confirm.

When considering HTS failure, it is important to consider the types of variants not detected
by the methodology. The default/first-pass scheme outlined for our example will not detect
pathogenic synonymous mutations, non-cannonical splice site mutations, or common
mutations that cause disease in certain circumstances (e.g., the common MTHFR c.677C>T
mutation in the setting of folate deficiency). For our first-pass analysis, such variants are
missed because of high filtration stringency. In other cases, the data acquisition
methodology fails to genotype the variant of interest. Examples include regions not included
in the capture design, and regions that are not well sequenced despite being captured. The
latter is often due to local sequence characteristics including repetitive DNA elements and/or
low sequence complexity. The analyst must know how the capture technique is designed
(what would be captured under optimal conditions), how the capture methods perform in
practice (what regions are actually captured by a given lab, chemistry and procedure), and
how well individual regions are sequenced once captured.

Failure of HTS projects may be caused by incorrect hypotheses regarding the genetic mode
of inheritance. In our example, the pedigree was consistent with several genetic/segregation
mechanisms including autosomal recessive and new dominant. We do not discuss more
complex models such as multi-allelic inheritance. Filtering based on a multi-allelic model
can be attempted for individual hypotheses by viewing variants only from genes belonging
to a specific pathway. Automated analysis is also possible, but requires bioinformatics
procedures that are outside the scope of this article.

The provided example dataset included exome sequence for a small family. Other potential
datasets include whole genomes, exomes from single individuals and custom capture of a
genomic candidate region. Different specialized methods, and/or additional analyses, would
be better suited to detect gene-gene interactions and epigenetic phenomena [Feng, et al.,
2011]. The techniques outlined for our example have variable application to other datasets.
Some elements, such as population frequency and kill-list filtering, are applicable to single
exomes and subsets of whole genome sequence.

For single exomes, some filters will not be usable due to the lack of family structure data.
However, with sufficient other clues, such as candidate regions or gene lists, the remaining
filters may be adequate to find the causative variant(s). A special case of single exome
sequencing is the simultaneous clinical testing of a large set of genes. An example of a
disease for which such a technique might be advantageous is spinocerebellar ataxia (SCA).
SCA is a neurologic syndrome comprising multiple overlapping diseases caused by multiple
different genes [Matilla-Duenas, et al., 2010]. Given the current ~$1000 cost for an exome,
it is enticing to consider using whole exome sequencing to screen the relevant genes for
variants instead of paying the tens-of-thousands of dollars needed to screen the same genes
using commercial clinical sequencing. However, several caveats need to be considered.
First, several of the SCA’s are caused by repeat expansions, a type of genetic lesion that is
not reliably detected by current HTS methods, especially exome sequencing. Second, exome
data from any given lab must be carefully studied to determine how well the SCA genes are
captured, covered and genotyped. Third, while exome sequencing is a convenient way to
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survey a group of genes for variants, it is more difficult to determine how well regaining
regions have excluded variants. In other words, the pattern of false negative results is less
well understood for HTS than for Sanger sequencing. Dias et al. looked at coverage for a
group of genes known to be associated with inherited neurologic disease [Dias, et al., 2012].
Surprisingly, although most positions were well covered/genotyped in most individuals,
there were no genes that were covered adequately in all individuals. Furthermore, the pattern
of “missed” sites was distributed among the sequenced individuals rather than being
concentrated in a few “bad reads.” These data suggest that we have work to do in
understanding the false negative characteristics of exome sequencing.

Whole genome data will eventually replace exome data as prices fall and the significance of
conserved intra-genic chromosomal regions are characterized [Margulies and Birney, 2008].
Genomic DNA will provide the genome-wide information we currently obtain from high-
density SNP arrays. In addition, there is the potential for overall greater coverage of genes of
interest, particularly non-coding regions that are missed by current exome HTS. Methods to
filter conserved, non-coding regions of the genome are being developed, but are not yet
widely available

HTS represents a fundamental advance in how genomic sequence data are measured, and
has fundamental implications for both research and clinical work. We believe that
interpretation of exome data must involve clinicians and scientists familiar with the subjects
of the study and should not rely solely on bioinformatics specialists. Using this model,
individual researchers need to be empowered to work directly with exome data. An
understanding of the fundamental underpinnings of HTS data manipulation and processing
will provide the means for that empowerment.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cumulative Filtration of Exome Variant Lists from 22 Families. A set of 22 exome projects
is displayed using two different analytical approaches: one uses all available family data
(black) and the other uses only data from the proband (red). The y-axis is the log10 of the
number of cumulatively filtered, residual variants. The x-axis shows filtration steps, which
are sequential from left to right. The last two steps (homozygotes and heterozygotes) use the
post-quality-filtration variants to filter and are not sequential. Note that the implementation
of homozygote and heterozygote filters differs between single exome analyses and family
based analyses. Mendelian segregation and phase information is not available in the case of
single exome analysis. Homozygotes are not checked for inheritance from both parents. The
“heterozygote” count is a tabulation of all pair-wise combinations of variants for those cases
where more than one heterozygous variant is found in the same gene. Single exome projects
start with fewer variants and end with a larger number of candidates for further study. See
the text for a further explanation of the various filtration steps.
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Table 1

Example Candidate List Annotations

Item Name Annotation Sources* Implementation Notes

Identifier (unique for each variant in
candidate list)

Sequencing/Assembling/Genotyping Facility**, GATK

Chromosome Number Sequencing/Assembling/Genotyping Facility**, GATK

Variant Position Within Chromosome Sequencing/Assembling/Genotyping Facility**, GATK Positions are given in the context of a
specific reference genome, e.g. NCBI
hg18/build36

Reference allele Sequencing/Asembling/Genotyping Facility**, GATK

Variant allele Sequencing/Asembling/Genotyping Facility**, GATK

Variant type (exon, intron, etc.) Annovar, SeattleSeq, GATK, VAAST

Gene name Annovar, SeattleSeq, GATK, VAAST

Transcript Annovar, SeattleSeq, GATK, VAAST

Strand Annovar, SeattleSeq, GATK, VAAST

Reference Amino Acid Annovar, SeattleSeq, GATK, VAAST

Variant Amino Acid Annovar, SeattleSeq, GATK, VAAST

Amino Acid Position Annovar, SeattleSeq, GATK, VAAST

Pathogenicity Score Galaxy, GATK, PolyPhen, many others NISC provides “CDPred” score

Coverage Samtools, Bed tools, GATK

Quality Measure Samtools, GATK NISC provides MPG and MPG/coverage
scores. Quality scores should be
calibrated to a specific sequencing
center/source

Mendelian Consistency for various
genetic models

Manual inspection with spreadsheet, VAR-MD, VAAST NISC provides annotation with in-house
software

Compound Heterozygote Pairing for
Autosomal Recessive Genetic Model

Manual inspection with spreadsheet NISC provides annotation with in-house
software

*
These are incomplete lists. A broad and rapidly expanding list of tools is available.

**
Often a collaborating sequencing facility can provide some or all of the annotations listed here. Most of the annotations can be carried out

separately if needed. However, synergistic benefits can accrue if assembling and genotyping are performed by the same team.
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Table 2

Population Frequency Filtering of Candidate List from Exome Sequencing

Filename dbSNP version Heterozygosity cutoff Starting variants (full candidate
variant list)

Post-filtering variants

dbSNP131_1percent.BED 131 1% 116,837 56,452

dbSNP132_0.5percent.BED* 132 0.5% 116,837 53,514

dbSNP132_1percent.BED* 132 1% 116,837 53,762

dbSNP132_2percent.BED* 132 2% 116,837 54,267

dbSNP132_5percent.BED* 132 5% 116,837 56,126

*
Only includes HapMap and 1000 Genomes Project data, and only uniquely mapping sites

Note that filtration numbers are all in the same order of magnitude, suggesting that the majority of the excluded SNPs are relatively common and
appear in all of the filters. An additional ~3000 SNPs were filtered out by updating the filter from db131 to db132 highlighting the fact that the
databases are significantly updated between releases.

Hum Mutat. Author manuscript; available in PMC 2014 March 19.


