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Abstract
The analysis of genome-scale sequence data can be defined as the interrogation of a complete set
of genetic instructions in a search for individual loci that produce or contribute to a pathological
state. Bioinformatic analysis of sequence data requires sufficient discriminant power to find this
needle in a haystack. Current approaches make choices about selectivity and specificity
thresholds, and the quality, quantity and completeness of the data in these analyses. There are
many software tools available for individual analytic component-tasks, including commercial and
open source options. Three major types of techniques have been included in most published
exome projects to date: frequency/population genetic analysis, inheritance state consistency, and
predictions of deleteriousness. We discuss the required infrastructure and use of each technique
during analysis of genomic sequence data for clinical and research applications. Future
developments will alter the strategies and sequence of using these tools and are speculated on in
the closing section.
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INTRODUCTION
Brief introduction to technology

Genome-scale sequencing (whole genome, exome, custom capture) is the result of the
parallel production of a large number of short length sequences, or reads. Each short read
must be mapped back to a genomic position. Methods for mapping short reads include the
creation of contigs by assembly of overlapping sequences, gap-and/or-mismatch-tolerant
alignment to a reference genome, or a combination of both. The short reads are compared to
a reference sequence. Differences are detected, annotated and compiled into a list. The
minimal working files for a genome-scale sequencing project include a structured,
compressed file of aligned short reads plus a second file containing potential differences
between the test subject and the given reference sequence.

We can define the problem of analyzing genome-wide data as part of a general class of
problems of searching a large data space for a small number of candidate answers. Thus,
there is a small signal size relative to the search space. As a result, the overall signal to noise
ratio, even for low average noise levels, is problematic. Optimization of this process requires
examination of the quality of the entire data set and recognition of the magnitude and
locations of the types of noise present. Successful analysis involves being able to restrict the
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search space by the use of reduction “filters” that reject a very large amount of noise and
still retain the small amount of true signal.

A second major challenge is characterization of the relationship between any given sequence
variant and an organism-level phenotypic trait or traits. Common phenotypes can be studied
using adequately-powered case-control studies and/or large pedigrees containing individuals
with the trait. Definitive causation is more difficult to prove for rare phenotypes. In
particular, determining causation is difficult when gene-phenotype relationships have not
been previously established and when too few cases have been identified to allow
epidemiological methods to reach statistical significance.

The total genome size for all humans is roughly 6.4x109 bases. The “signal” (the causative
DNA variation) can be as small as a single base or as large as whole chromosome
aneuploidy. Since large scale genomic alterations have had reliable karyotype and
microarray tools available for decades, we restrict our discussion to the analysis of small
scale genetic changes, on the order of a few exons or less, a range of 0.001Kb to 10Kb.

Targeted versus Non-Targeted Sequencing—Most current genome-scale sequencing
utilizes one of two basic types of strategies: targeted and non-targeted. Both begin with a
random fragmentation of a quantity of genomic DNA that contains multiple copies of the
genome. This can be from samples like whole blood, mixed genome samples such as human
saliva (containing both human and micro-organismal DNA), non-blood tissues, cultured
tissues and even genomes amplified from a single cell. The purified DNA is sheared at
random places to yield fragments that, if reassembled correctly, would allow overlapping
fragment contigs to regenerate the original intact sequence of each chromosome. At this
point, targeted strategies such as exome sequencing and non-targeted strategies such as
whole genome sequencing diverge. In the targeted approach, a genomic DNA subset is
selected by non-stringent hybridization to immobilized “bait” sequences. Non-hybridized
fragments are then washed away. The baits can be customized to include any genomic
subset of interest. Common examples include exomes and single chromosome regions. Non-
targeted strategies do not select for a genomic subset; in ideal conditions the entire genome
is included.

Sequencing—Once a library of fragments is generated, the individual fragments are
sequenced, either by synthesis in parallel spatially separated microscopic clusters, polonies
or other physical processes or by single molecule detection devices. The end result is a file
of short reads that are each a small length (1 × 10-5) relative to the entire intact chromosome
sequence. These short reads are typically stored in a FASTQ file format.

Alignment—All current modern and economically efficient techniques use alignment
reconstruction, aligning individual reads to a pre-existing reference genomic sequence. An
alternate technique, de novo assembly, has been explored on a research basis (Simpson and
Durbin, 2012). Aligned short reads are stored in a standard Sequence Alignment/Map
(SAM) file format, typically in compressed (BAM) form. An accompanying sorted BAM
file index (BAI) file allows for rapid data access for processing and viewing.

Genotyping—Once the short reads are aligned to a reference genome, genotypes are called
at each genomic position for which an adequate number of short reads have aligned or “piled
up”. Various probabilistic models are used to determine the most likely genotype at
positions where the short-reads contain a non-reference base. The most common approach
uses a Bayesian algorithm conditioned on an estimated probability of variation at the given
chromosomal position. Called variations are often stored in a standard Variant Call (VCF)
file.
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All the steps in sample preparation and sequencing can cause dropout of fragments or failure
to generate fragments in some regions of the genome, in both random and systematic ways
throughout the genome. Sources of systematic error include regions with high GC content
(or other properties specific to the primary sequence) that interfere with the process of
uniform and complete library generation/sequencing. Such errors degrade the quality of the
sequence for the first exons in many genes. Amplification errors may lead to problems with
allele drop out or allele skewing, which is reflected in a large difference in the expected 0.5
ratio of short reads between two different bases at a heterozygous position. Low
amplification approaches to library generation can reduce this type of error, but are not
currently available for most capture techniques like exome sequencing. They are in use for
whole genome sequencing.

Annotation—The final step of genome-scale sequencing is annotation. Annotation is the
process of combining information about individual variants with a registration of their
position relative to known genes. Variants may need to be defined in the context of several
potential transcripts. Other common annotations include an estimate of the variation's
pathogenic potential (potential to disrupt protein function), the frequency of the variation in
available populations, and the predicted consequences of the variation (deletion, insertion,
missense, etc.). Annovar and SeattleSeq are examples of publically available annotation
programs; several proprietary programs are also available (Wang et al., 2010) (http://
gvs.gs.washington.edu/SeattleSeqAnnotation/). Different collections of gene transcripts such
as Ensembl, UCSC Known Genes and Refseq are used or can be selected during annotation
(Flicek et al., 2012; Hsu et al., 2006; Pruitt et al., 2009; Pruitt et al., 2012). Annotations are
generally added to the VCF file used to store the called genotypes.

Figure 1 highlights some of the major components of the post-genotyping analytic strategy
we use in the NIH Undiagnosed Diseases Program.

Scope and Characteristics of Genome-Scale Sequencing Results
Exome results from the current generation of capture kits target approximately 60 Mb of
genomic regions. The average depth of coverage of the targeted regions is variable, but a
>60x benchmark is commonly produced by commercial sequencing. Coverage of individual
exons (or groups of closely packed exons) is highest in the center of the exon and tails off
rapidly at the exon/intron boundaries. This pattern creates peri-exomic regions with low
coverage that are generally not reliably interpretable for accurate genotype calls, especially
for single exome interpretation. Thus, exome analyses require attention to the depth of
coverage for each genotype call.

Whole genome sequencing typically utilizes a much lower average depth of coverage (10x
or less). Reduced allele dropout and allele skew are present at the cost of a requirement for
more starting material (fractionated DNA). Short read coverage is more uniform than the
peaked short-read pile-ups associated with exome sequencing. As a result, edge detection
techniques used to detect copy number variations may be employed. The cost for whole
genome sequencing is currently 4X higher than equivalent exome sequencing. Costs for data
storage and data processing are higher, approximately 10 to 20X for the same degree of
accuracy.

“Research” vs “Clinical”
Genome-scale sequencing in humans may detect DNA sequence variations that are not of
specific interest to the bioinformatician or to the person ordering the sequence, but are of
potential medical importance nonetheless. Medical exomes performed in a clinical
Laboratory, under the Clinical Laboratory Improvement Amendments (CLIA) act of 1988
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require process controls to ensure reproducible, medical-grade results. Various standards for
such testing have been proposed by the Center for Disease Control (Chen et al., 2009), the
College of American Pathology, and the American College of Medical Genetics and
Genomics (ACMG). The ACMG has published a list of genes/variants that it recommends
be reported for exome sequencing performed for clinical diagnostics (Green et al., 2013).
There is ongoing debate about whether variants found during research sequencing fall under
similar or different standards; the ACMG recommendations were targeted to clinical
sequencing.

ANALYTIC ASSUMPTIONS IMPLICIT TO GENOME-SCALE SEQUENCING
Ehrnfest model

The Ehrnfest model, as applied to genotype prediction, is based on a Bayesian calculation of
the likelihood of obtaining the observed results at a specific location within a pileup of short
reads. The likelihood calculation compares two models. In the first, a random, small sample
has been taken of a large, hidden collection of mostly-reference alleles. It allows for a small
number of non-reference alleles to be present due to sequencing error. In the second, a
random, small sample has been taken from a large, hidden collection of alleles that are half
reference and half variant. An excellent resource for understanding this process of inverse
probability is described by Eigen (Eigen and Winkler, 1981) and popularized for general
prediction by Sliver (Silver, 2012). The prior probability of variation at a given genomic site
is, to a first approximation, the genome-wide average of the variation rate, taken over a
sample of whole genomes. This number is about 1/1000 for an average human sample
compared to the hg19 human genome reference. Using this basic model to calculate a
genotype at any position therefore assumes a prior probability of ≈0.999 for a homozygous
reference genotype at every site, and ≈0.001 prior probability for all other (variant)
genotypes. This type of uniform estimate is problematic. Not all genomic sites mutate at the
same rate. Any single genome-wide estimate will fail to capture the actual population
history and structure that determines the allele frequency patterns across the genome for real
populations. Better estimates of the prior probability of a non-reference allele can be
obtained in several ways. SNP databases can be used to assess per-site variation where such
information exists. Such databases are most useful when the population in the database
closely matches the ancestry of the test subject. When parental sequences are available,
genotypes can be called based on parental genotypes and Mendelian risks for inheritance.
Parent-aware and population-aware genotypers are now available that significantly improve
the Ehrnfest prior probability for called genotypes over the one-size-fits-all prior-probability
genotypers. Such improvements are observed at many sites in the genome, but come at a
cost of increased computation times and increased complexity of analysis-parameter choices
(i.e. which population frequencies to use). Of note, the parent-aware approach is best suited
to a global/naïve analysis and may make little or no difference for well-studied, small
regions.

Reference sequences
Any single human reference sequence is an idealized construct. Compared with de novo
assembly, the use of a reference sequence is more efficient for aligning short reads. But, the
use of a reference sequence can be also cause misalignment in potentially important
situations. The very notions that the total length is constant between any two parental
chromosomes, or that the length of either is the same as that of a given reference sequence,
are incorrect for many genomic regions. The idealized “reference sequence” for alignment is
actually two references: the exact, haploid genome inherited from each parent. Strategies to
approach this ideal are a focus of ongoing research and include limit dilution of source
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chromosomes, chromosome sorting prior to sequencing, and diploid alignment algorithms
(Peters et al., 2012).

Genotype-Phenotype Relationships
Assessing the organism-level effect of any DNA sequence variation (or combination of
variations) is challenging. The uncertainty associated with this determination is pervasive
and touches on every aspect of the analysis of genome-scale data sets. In fact, unambiguous
characterization of such genotype/phenotype relationships has only been obtained for a tiny
fraction of the human genome. Extension to other genomic regions can only be made using
inferential arguments. There are several ongoing efforts to improve this situation. Genome-
wide variant databases have been established to collect phenotype association information
about individual variants. Examples are the Online Mendelian Inheritance in Man (http://
www.ncbi.nlm.nih.gov/omim; UNIT 9.13), HGMD (Stenson et al., 2003, CPBI UNIT 1.13),
and ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/). In all such databases, the level of
evidence for component genotype/phenotype relationships varies dramatically and cannot be
used without interpretation. Many of the published observations used to populate existing
databases are based on limited observations of the co-existence of a given phenotype and
genotype, reflect assessments based on limited case populations, and refer to geographically
and ethnically limited control groups.

Estimation of a single DNA variant's “pathogencity” or its potential to change protein
function can be estimated to some extent by several methods. Current approaches include:
amino acid residue conservation in sequence alignments from distant orthologous proteins or
protein domains; prediction of amino acid substitution effects on protein structure;
assessment of chemical/structural differences between native and substituted amino acids;
population frequency of variants; large-scale association studies for common variants; and,
segregation-based statistics if informative families are available.

STRATEGIC APPROACH TO DESIGNING THE SEQUENCING EXPERIMENT
Defining the Sequencing Targets

The ability to successfully analyze a genome-scale sequence is highly dependent on
experimental design. An important initial decision is whether or not to use a targeted
sequencing technology, and if so, whether to use exome targeting or a more specific
experimental design. For instance, if the intent is to perform a cost-effective sequencing-
battery for a limited number of known disease-genes, the sequencing protocol can be
adjusted to produce reliable data. Additional Sanger sequencing may be required for regions
that are not well covered by the exomic sequencing. Custom capture kits can be developed
to focus more of the DNA library into sequencing the regions where accurate and complete
genotype calling is desired. Analysis in such projects is similar to the analysis performed in
Sanger-sequencing gene panels. Just as in Sanger sequencing, evaluation of the raw data is
critical to a complete assessment. A determination of missing data (and potential false
negatives) is critical to the gene-panel approach. It is especially critical when employing a
stringent genotyping procedure that uses prior probabilities weighted toward reference
alleles. The next-generation sequencing equivalent to the Sanger chromatogram is the BAM
file. Individual alignment regions can be inspected for alignment, depth and context using
tools like the Integrated Genome Viewer (IGV, see figure 2). To assess large groups of
exons, many centers use small, home-grown computer programs to detect un-captured exons
or shallow depth of coverage. Low depth-of-coverage, combined with even a small allele
skewing bias during PCR amplification at the library construction stages of sequencing, can
reduce the sensitivity of detection of non-reference alleles. In such cases, there is an
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insufficient depth of coverage to force the genotype calling Bayesian calculation to switch
from a homozygous reference to a heterozygous call.

Exhaustive scrutiny of individual genes becomes intractable as the number of genes rises to
the 100's and 1000's present in an entire exome. A typical VCF file for one individual
contains about 20,000 variants. In such cases, a series of “filtration” steps can be utilized to
reduce the pool of variants for further more intense consideration. Experimental design can
have a dramatic effect on the number of variants requiring extensive evaluation. Individual
filtration steps are detailed below, but several specific examples are relevant to experimental
design. Population-frequency-based variant exclusion removes variants above some fixed
frequency in the population. Such filtration assumes that the population of the test subject
matches that of the population used to derive the frequency estimate. Selecting test subjects
from different populations will result in a higher rate of false positives—variants that appear
to look rare will only be rare in the frequency-estimate population, not in the test subject's
ancestral population.

Family versus Unrelated-Individual Study Design—Whenever possible, the authors
recommend that every experimental design, beyond simple candidate gene searches for
known variants, should include consideration of using small (nuclear) families rather than
“single exomes” with no family data. As discussed below, parental data can be used to
improve genotyping. In addition, segregation consistency constitutes a powerful variant
filter. Even with the application of other filtering strategies, high quality exome sequencing
may generate thousands of rare potentially deleterious candidate variants. Evaluation of such
variants becomes especially complex when considering all the recessive alleles that can
contribute to a compound heterozygous inheritance pattern. Family data that includes
unaffected siblings can exclude identical combinations of variants inherited by unaffected
siblings. Parents and siblings can be used to establish a variant as a de novo change in the
affected individuals, including germline mosaic recurrences.

All uses of family data depend absolutely on correct assignment of affected and unaffected
statuses. Such phenotyping may run counter to the structure and inertia of current medical
practice. Many clinical encounters focus on the affected individual only. Finding resources
to phenotype additional family members may be difficult. However, the advantages of
segregation analysis are profound and worth making an effort to obtain. Phenotyping may
also be complicated by age-of-onset penetrance factors present in some heritable conditions.

In our hands, an informal cost-benefit analysis suggests that certain family structures
optimize signal-to-noise characteristics while maximizing practicality for real-world use.
The nuclear family should include both parents, the proband and up to two additional
siblings (if present). Clearly, such individuals are more likely to be available for pediatric
cases, and less likely to be available for late-onset conditions in adults. Working with
cohorts of such families is similarly difficult, but provides substantial power for not only
finding genes, but supporting hypotheses regarding causation.

The use of multiple families with the same phenotype provides an opportunity to detect
independent alleles at a common locus. It is important to note that adding unrelated
individuals adds complexity and may increase the total noise of the data. Locus
heterogeneity and phenocopy effects from separate diseases with a “final common pathway”
or a common phenotype may occur. This is especially true for atypical cases in a cohort.
Reliance on family-member reports and indirect references in medical records are should be
avoided. An interesting study of these principles is the paper describing the discovery of the
gene for Kabuki syndrome (Ng et al., 2010).
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DNA Sources
The source of genomic DNA is important to consider briefly. True genomic DNA is not
present in many blood cells due to genomic editing in antigen receptor and immunoglobulin
loci. DNA from immortalized, and even primary, cell lines may be modified and rearranged
to some extent. Alignments using these sources of DNA may produce problematic alignment
errors in regions such as the one that includes the T cell receptor. Salivary derived (oral
brushing) samples are frequently used. The total quantity of DNA in such samples is
variable and may be contaminated with non-human DNA (bacterial, viral, and/or fungal).
Foreign DNA sequences can cause sequence misalignment, although such misalignments are
partially ameliorated by using “decoy” sequences in the reference sequence. Foreign DNA
may be particularly deleterious in de novo assembly methods. Mitochondrial DNA may be
enriched to provide the greater depth of coverage needed to assess heteroplasmy. This can
be done by spiking a blood-derived DNA sample with additional mitochondrial DNA,
bringing the percentage of mitochondrial DNA up to one to two percent of the total. The
easiest source of pure mitochondrial DNA is a platelet pellet. However, as with any
mitochondrial source, the platelets may or may not adequately represent the mitochondrial
heteroplasmy present in the tissue(s) most affected by a given phenotype. Other sources of
DNA can include tumor samples from tissues other than blood; these are often analyzed
using a subtraction strategy to look for somatic differences. Very small samples may not
produce sufficient DNA for sequencing. For whole genome approaches, 6 – 10 micrograms
at 50 ng/μl or more concentration are typically required. Formalin-fixed paraffin-embedded
(FFPE) samples and highly amplified whole genome DNA will be biased for uneven allele
amplification. In general, targeted genome-scale strategies, especially when used for a
specific candidate region or gene subset, will have smaller starting material requirements
than non-targeted approaches used to survey the entire genome.

Consent
A full discussion of obtaining consent for human genome-scale sequencing is beyond the
scope of this commentary. However, several important aspects of consent have become
apparent as exome sequencing transitions from research applications to ever-more-common
clinical use. Firstly, all of the usual principals of genetic testing consenting apply, including
discussion of non-parentage, the possibility of ambiguous results and the possibility of
revealing undisclosed family relationships. Secondly, people have varying opinions about
what type of results they want to receive, including risk factors and unanticipated results.
Adequate consent for clinical exome sequencing should strive to ascertain the individual's
preferences in this regard. Finally, the issues surrounding genome-scale consenting are
complex. Considerable time needs to be budgeted to adequately discuss consent-related
issues.

Technology selection
Exome versus Genome—Most published clinical applications to date have used targeted
approaches, and most of those have been exome sequencing. The likely reasons include cost,
prioritization of improved signal-to-noise characteristics over uniformity of coverage,
smaller starting material requirements and, perhaps most importantly, the presumption that
the exome contains most of the important genetic information. Published basic-science
projects have used a mixture of technologies. Non-targeted approaches have significant
advantages, as discussed previously, and are becoming less costly. The decision to use one
or the other technology in the future will be guided by experimental design and available
resources.
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Incorporation of Array Data—Genome-scale sequencing projects, particularly those
using targeted approaches, may benefit from the inclusion of data from a DNA
polymorphism array. In a clinical setting, karyotype, microarray and FISH may be used as a
screening step preceding genome-scale sequencing. In both clinical and research contexts,
array data can be used to determine genomic structural characteristics that are difficult to
determine using sequence data alone. For instance, SNP chip data, in the context of a
nuclear family, can be used to determine recombination segments (if multiple children are
present), mosaicism, copy number variation, parentage and regions of homozygosity.

Selection of Targeted Sequencing Strategy—A variety of approaches are available
for targeting specific regions of the genome. In the case of exome sequencing, the selection
of any given commercially available capture kit was initially a price to performance
question. As sequencing prices have declined, and capture kit technology has improved, the
question has shifted to one of completeness. Current capture kits (potentially augmented
with additional probes/baits when specific genes are going to be analyzed) have reached a
plateau where there is no general preference to be considered. One very important point
about new capture kits are that they now include sequences that were not produced by
sequencing older kits, and thus a variant from an exome captured by a new kit may appear
rare when a population sequenced by an older kit is used as the frequency standard. This is a
common false positive that will only be perceived when enough of a cohort is sequenced
using the same kit to obtain a true frequency at that position in the population ancestral to
the individual whose exome is being sequenced.

INFRASTRUCTURE REQUIREMENTS FOR DATA HANDLING
Overview

Recall that genome scale sequencing involves several steps: DNA sequencing, alignment
and/or assembly, genotyping, annotation and analysis of called genotypes. Starting with
alignment and/or assembly, the resources needed to analyzed genome-scale data are
substantial but decrease quickly. In concrete terms, most large projects (>50 exomes) use
institution-scale, unix-based computers for alignment. At the other end of the process, many
activities surrounding the analysis of called genotypes can be performed on a modestly
powerful desktop workstation. The examples discussed below will focus on exome data.
Whole-genome data increases most of the presented numbers by a factor of 20 or so.
Anyone considering performing their own computational work with genome-scale data
should familiarize themselves with the data available the Broad Institute Genome Analysis
Toolkit Website (http://www.broadinstitute.org/gatk/). Whether or not their software is
employed, the information they provide constitutes an invaluable resource for understanding
the process. The field is changing so rapidly that a comprehensive list of software in is not
worth committing to the printed page. An internet or Wikipedia search for “sequence
alignment software” is a reasonable way to find a list of options. Choosing among the
options is a complex matter that is largely beyond the scope of this commentary. The major
considerations are price, performance for the particular experiment in hand, support options
and computational resources (both physical and intellectual).

Alignment and/or Assembly (Alignment)
Typical output files from an Illumina HiSeq instrument (UNIT 18.2) for example, are in the
gigabyte range, usually less that 10 Gb. Multiple output files may need to be incorporated
into the alignment for a single individual depending on the sequencing strategy incorporated
by the sequencing facility. For individual exomes, alignment of an exome can be performed
on a standalone computer. NextGENe, one of the commercial products for aligning exomes
on a workstation, specifies the following minimum system requirements: Windows 64 bit
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operating system with dual quad-core processors and 12 Gb of RAM. Some technologies,
e.g. Ion Torrent, may require fewer resources. This type of machine is typical for currently
available software. As noted, larger projects will benefit from a multiple-node unix
environment.

Requirements for Remaining Analytic Steps
The subsequent analysis procedures have smaller hardware requirements. However, there
are cases where the experimental design dictates that multiple data sets be analyzed
simultaneously. In those cases, the requirements scale with the size of the dataset. The
smallest data set to work with is a list of detected variants (genotypes) in VCF format. For
one or a few exomes, this file can be handled on a typical desktop computer using familiar
spreadsheet types of programs like Excel. For a single individual it will be on the order of
20,000 rows, with each row corresponding to a single called DNA variation/genotype. For a
family of five, this approach will still be manageable for the resulting 100,000 entries. While
the spreadsheet approach offers maximum flexibility, many users will opt for a freeware or
commercial product with a more structured interface. Optimally, the files containing the
aligned short reads will be available for inspection. These BAM files are typically on the
order of 5 to 10 Gigabytes. As a rule of thumb with current technology, about 9 Gb of
storage should be allocated for each sample. Genome wide data is roughly 20 times larger in
storage requirements, needing about 100 to 120 Gb of storage per genome in a searchable
format. These requirements increase linearly with the number of genomes/exomes per
family or project. Unless VCF files are to be analyzed in isolation, consideration must be
given to storage and processing facilities when planning a genome-scale analysis.

Software
VCF Genotype files can be opened directly with a text editor or spreadsheet program.
Examples of commercial tools for manipulating such files include Cartagenia (Cartagenia,
Inc. Cambridge, MA), Ingenuity (Ingenuity, Redwood City, CA), and Alamut (Interactive
Biosoftware, Rouen, France). Freeware tools may be less integrated, but can be combined to
provide many similar analyses. Examples include VAAST (Yandell et al., 2011) and
exomizer (http://hem.bredband.net/magli143/exo/). BAM alignment files can be visualized
using SamTools (Li et al., 2009) or the Integrated Genome Viewer (http://
www.broadinstitute.org/igv/). GATK (McKenna et al., 2010) and Galaxy (Blankenberg et
al., 2010; CPBI UNIT 10.5) provide rich sets of data analysis and manipulation tools. For
complex analyses, custom computer programs (Perl and Python are popular languages) may
be required. We have found that a graphical interface allowing for arbitrary Boolean
searches is an exceptionally powerful analytic tool. We use an available but unsupported
tool called VarSifter (Teer, 2011); we hope that this technology is incorporated into newer
programs in the future.

Collaboration
Small scale experiments by users who are performing genome wide analysis on only a few
individuals, or on a single cohort all with the same pathology, will benefit from
collaboration with a center that has a larger database of exome/genome data. This allows
recognition of variants that are shared (or not-shared) with large control populations. In
addition, systematic sequencing and alignment errors are much easier to detect using large
data sets compare with small ones.
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GENERAL APPROACH TO DATA ANALYSIS
Classes of results

Genome-scale sequencing will produce several classes of results. Experimental design
should include a strategy for dealing with each type of result.

1. Well-described variant, well-described gene, consistent phenotype.

2. Severe-appearing variant, well-described gene, consistent phenotype. These are
variants that introduce termination codons or frameshifts or variants that alter
amino acids known to be critical for protein function. The affected gene is known
to be associated with the phenotype. The pattern of inheritance is biologically
plausible given existing knowledge about dosage sensitivity and other factors.

3. Questionable variant, well-described gene, consistent phenotype. These variants
recapitulate the “variant of unknown significance” (VUS) problem that is well
known in molecular diagnostics. The variant itself provides incomplete evidence of
causation, but may be studied further depending on the strength of the phenotype-
gene association. Such variants likely have multiple lines of “soft” evidence for
pathogenicity: high degree of conservation, significant change in amino acid
structure, etc.

4. Severe-appearing variant, known gene, inconsistent phenotype. In this case the
variant looks like it should cause disease, but the phenotype bears no resemblance
to the phenotype associated with the known gene. These variant may represent
incomplete penetrance, incorrect dogma about the gene, or evidence of genetic
pleomorphism (multiple different phenotypes from the same gene).

5. Severe-appearing or questionable variant, gene in same pathway as well-described
gene, phenotype consistent with known gene in pathway but not mutated gene.
These may represent a new gene-phenotype causal relationship, but may also be
difficult to prove experimentally. A subset of this situation is synergistic
heterozygosity where two genes in the same pathway, both associated with
recessive disease, carry one severe mutation each.

6. Severe-appearing or questionable variant, gene not associated with any phenotype.
Such variants may represent new gene-phenotype discoveries or be unrelated to the
phenotype. Biological hypotheses linking the gene to the phenotype may be
present. This type of variant is common and presents a major challenge for
establishing evidence of causation.

7. Severe-appearing mutations, known gene, consistent phenotype, inconsistent
inheritance. In particular, these are “carrier” patterns, where a gene associated with
autosomal recessive inheritance has only one detected variant. Depending on the
strength of the gene-phenotype association. Some of these cases may be “rescued”
from exclusion by finding a second mutation that was missed by sequencing.
Examples include deletion of the second allele, allele-bias, failed capture of a
mutated exon and deep-intronic mutations that affect splicing but were not captured
in targeted sequencing.

8. Other. Other significant categories include false-positive variants, variants that can
be excluded by conservative filtration or segregation analysis.

Incorporation of genome structure information from SNP chips
Hybridization experiments including array CGH and SNP chips, provide an orthogonal
methodology (chemical thermodynamics versus numerical calculation) to determine a
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variant, either a single SNP, a deletion or the suspicion of some level of variance in the
probe region of the oligonucleotide that causes an apparent deletion (failed hybridization).
This information is genome-wide, highly accurate (in most cases) and can be used to
complement and improve the analysis of genome -wide sequencing data. Linkage mapping
utilizes chip data to identify chromosomal regions that have transmitted to offspring. Copy
number variation information may include single copy deletions that can be matched with
trans-oriented point mutations to form compound heterozygote pairs. With a close
collaboration between the bioinformatics team and the sequencing facility, it is possible to
use this data to alter the reference genome and improve the quality of the alignment
processes even before a VCF file is produced. The detection of mosaicism and uniparental
disomy requires some level of dynamic range beyond three diploid genotype states (0, 1
allele or 2 alleles). As a result, SNP data is preferable to exome data if those genetic
mechanisms are suspected. The NIH Undiagnosed diseases program obtains SNP chip data
for all cases it considers for genome-scale sequencing. Currently, adding a SNP chip to
exome sequencing incurs approximately 30% additional costs. If the experimental goal is to
obtain genomic structure and exome sequence, a SNP + exome is presently less expensive
than a whole genome experiment. As whole genome costs decrease, this situation will need
to be re-evaluated.

“Filtration”
Filtration is a general term for prioritizing the variants generated by genome-scale
sequencing. The following section provides observations about the characteristics of
common filtering components, where they have not been discussed earlier.

Pathogenicity—Filtration by predicted potential to alter protein function, as discussed in
previous sections. Pathogenicity filtration must be used with caution, as it is error prone. In
general, it should not be used as a static filter that is buried in an automated analytic
pipeline. It is better used in an aid to an interactive process in the final stages of analysis.

Chromosome-Level Segregation—The inheritance state of any given chromosomal
segment is determined by the crossover events that occurred during meiosis in the parents of
the person being studied. In any series of children from the same parents, some
chromosomal segments will be shared, and some will differ. These similarities and
differences can be correlated with the affected status of each child. SNP chip (or whole
genome) data can be used to identify and define crossover sites if sufficient family members
are available. The smallest practical pedigree size for this procedure is two parents and two
offspring. Crossover sites can be localized to within a few tens of kilobases, or well within
the typical length of one genetic locus. Chromosomal regions demarcated by this mapping
exercise can be included or excluded from further analysis depending on whether they
segregate into the offspring in a manner consistent with a proposed genetic model. Excluded
regions for a two-parent/two-offspring family ideally sum to the following percentages of
the genome: inherited recessive (25%), dominant (50%) or X-linked (50%). In practice, the
sum of the excluded regions is smaller because most genetically informative (gene
containing regions) are not randomly distributed over the linkage map of the genome. This
approach is becomes increasingly powerful with the addition of siblings. When there are two
affected sibs, linkage bed files routinely exclude 70-80% of the genome from inherited
recessive model analyses. Other means of including and excluding genomic regions include
homozygosity mapping, which may be constructed using only proband DNA. Mosaicism
and Uniparental disomy regions are also reliably defined by SNP chip data.

Whole genome data, in contrast to exome data, can potentially be used to for the same
procedures described for SNP chips. Firstly, it covers a larger area than an exome data set
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and therefore allow for more even distribution of polymorphisms used in the analysis.
Secondly, and importantly, it is also less susceptible to allele skewing and can be used to
differentiate hemizygosity from homozygosity (based on read depth). The latter is
problematic in exome analysis to the point where read depth cannot be used to reliably
differentiate copy number differences. Targeted/exome experiments produce uneven depths
of coverage and wide variances due to amplification during PCR reactions that frequently
are taken to the saturation plateau on PCR curves. The result is that the distribution of read
depths for single-copy (hemizygous) states and double-copy (dizygous) states may overlap.

Variant-Level Segregation—Construction of a VCF genotype file for a family allows
each called genotype to be tested for segregation consistency (which is not always the same
as the inheritance state). This can be done for homozygous recessive, X linked, and de novo
dominant states by simple line by line Boolean sorting. Deletion plus point mutation
recessive pairings can be identified by combining the VCF genotype file with a BED format
file that defines the location of single copy deletions. Deletion files may be derived from
array data or from whole-genome depth of coverage data. Future development of genotype
callers that can reliably detect hemizygous alleles in whole-genome datasets will streamline
this analysis.

Compound heterozygous recessive inheritance is the most difficult analysis. There are
usually more than five variants within any single locus and thus many potential
combinations of variants. Any potential variant pair must furthermore be phased to verify
trans-orientation. The authors approach this type of filtering by generating a list of potential
“half-compound-heterozygotes”—variants that could be one of the two alleles in a
compound heterozygous pairing. The Boolean search for such variants stipulates that a
variant is present in one or the other parent but not both (the XOR Boolean operator), and
that the variant is not homozygous in unaffected sibs (Figure 3). The resulting list of variants
is sorted to group by genetic locus, generally using the annotated gene name. Pairs of alleles
are manually assessed for pathogenic characteristics. Allele combinations that look
promising are then further evaluated for segregation-consistent, trans-orientation. After
testing that unaffected sibs do not have both alleles in the pair, the total number of
compound het candidate pairs is typically reduced to a very small number, usually less than
10 for the entire genome and quite often only one or two loci. Of note, we generally apply a
population low-frequency filter before, or at the same time as, Mendelian segregation filters.
Typical cutoff values are between 1% and 5% maximum frequency of the variant allele.
Genotyping programs may call multiple alleles at the same genomic location when a small
insertion or deletion is present. Therefore, our first-pass analysis requires the major
frequency allele to be greater than 50% to exclude variable length indels. These steps are
discussed in detail in following sections.

Population Variant Frequency—The appearance of both common and rare variants is
normal in any genome-scale sequencing data set. The mutation pattern in any given
individual is the result of multiple factors: segregation of variants from parental DNA; the
history of the parents’ ancestral population(s); the DNA mutation rate associated with
thermodynamic chemical limits on replication fidelity even after all molecular proof reading
corrections are included; interphase DNA mutations; mutation effects on fitness/fecundity;
and genetic drift. Common variants, except in exceptional circumstances, are assumed to
have small effects on fitness. Rare variants may be neutral with respect to selection, but are
close to extinction due to genetic drift or population history. Rare variants may also affect
fitness, but remain in the population because they are newly introduced, incompletely
penetrant or associated with disease only in a recessive state.
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Population allele frequencies are commonly incorporated into genome-scale sequencing
analysis in two ways: exclusion of frequent alleles and verification of Hardy-Weinberg
Equilibrium consistency. The argument for excluding frequent alleles is that they are so
common that they would result in the common occurrence of a homozygous phenotype. If
the phenotype is known to be rare, such a situation would be inconsistent. The most
important condition of this argument is that the phenotype is truly rare and not the extreme
end of the normal distribution in a common phenotype. Exclusion of frequent alleles is
likely reasonable in complex and severe phenotypes that are markedly different from normal
and from any other known phenotype. A common, conservative threshold for this type of
filter is an allele (or heterozygote) frequency of between 1 – 5 percent. Put in context, carrier
rates for common deleterious alleles such as sickle cell anemia, hemochromatosis and cystic
fibrosis are between 3% and 12%. Carrier rates may be higher in populations that are
isolated or have a high coefficient of in breeding. Even so, the frequency of beta thalassemia
in Sardinia was only 12.6% (Cao et al., 1978).

Early efforts in constructing polymorphism frequency filters utilized Entrez dbSNP (now
NCBI dbSNP) (Ng et al., 2010; Teer et al., 2012). However, dbSNP was never intended as a
uniform population record of allele frequencies, or as a list of verified, non-pathogenic
variations. More recent versions of dbSNP (version 130 and later) have included large,
annotated subsets (1000 genomes data, etc.) of data with good population-survey
characteristics. Use of dbSNP data should include a careful selection of an appropriate
subset. Direct use of a variety of databases is now possible. Popular examples include 1000
genomes (Abecasis et al., 2012) and the Exome Variant Server (http://
evs.gs.washington.edu/EVS/). These databases are also beginning to have subpopulation-
specific allele frequencies useful for exome filter functions (Tennessen et al., 2012). The
ideal population frequency data would be gathered from carefully phenotyped individuals
genotyped using identical DNA sources, laboratory techniques, and bioinformatics. This is a
strong reason to recommend using a small number of common sequencing core laboratories
and to carefully cross-validate each change in data-gathering protocols. Accumulated
sequence data at any site may be used to estimate population allele frequencies. In fact, if a
project is focusing on a poorly-studied population, the frequency data may be superior to
larger public databases. Of note, only independent chromosomes should be counted toward
the calculated frequencies; only “founder” data from each family should be included.

The second way frequency of an allele is used is to look at verification of Hardy-Weinberg
Equilibrium consistency. One type of short-read misalignment is caused when two groups of
nearly identical short read sequences align two different genomic regions. In this case, the
pileups over each region will be a mixture of reads from both sites. This situation causes the
apparent genotypes in those regions to appear as perfect heterozygous variants. Assuming
that the same alignment error occurs with every person in the sequenced cohort, they will all
appear to be heterozygous. Biological explanations for such a pattern are unlikely and
include an extreme heterozygote advantage together with a large fetal wastage rate, or that
all parents of every person sequenced were from two different homozygous and distinct
subpopulations, with no homozygous pairings between two people from the same
subpopulation. Therefore, such variants can be comfortably excluded as false positives.
Even a sequenced cohort of a few hundred individuals will allow the exclusion of frequent
polymorphisms and systematic errors. Such patterns can be used to filter out inconsistent
phenotypes (Fuentes-Fajardo et al., 2011). The De Finetti diagram is a means of visualizing
the range of possibilities of different proportions of population genotypes (Edwards, 2000).
Furthermore, it provides a framework for designing a quantitative variant-exclusion criterion
to use as a variant filter. The De Finetti surfaces change from a three state triangle to a very
thin horizontal crescent moon shape around a central parabola, as the number of subjects
genotyped from a large population in hardy Weinberg equilibrium is increased towards
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infinity (Figure 4). Given a sufficiently-sized collection of genome-scale sequencing data
(300+ individuals works well in our hands), one can define a plus or minus 2-standard-
deviation-surface for this crescent. The region outside this surface is large enough, for
alleles with a minor allele frequency >5%, to allow exclusion of a given position based on
the probability of alleles that are both common and out of Hardy Weinberg equilibrium due
to an artifact like misalignment is greater than the likelihood that the candidate is real,
common, and has one of the rare population genetic explanations for being far from HWE.

The calculation of a Chi-square statistic for each location in a VCF file can be done if there
is a suitable population from the chosen sequencing center. The Exome Sequencing Project
and the NCBI dbSNP ClinSeq™ subset have both frequency and Chi-square data for
sufficient numbers of alleles to be a guide for HWE concerns during exome analysis. An
ideal data base might include well-phenotyped individuals over the age of 70-90 years (who
presumably have few genetic diseases), grouped by subpopulation type, and in a quantity
somewhere near 50,000 to 100,000 individuals. Given recent advances, such a resource is
feasible.

Quality scores (read, genotype) and coverage—Any candidate variant discovered
during an analysis of a VCF file must be interrogated for the possibility of being a false
positive due to genotyping or alignment error. Three characteristics of called genotypes are
particularly useful for this determination: the depth of coverage, the phred-like short-read
sequence quality scores and the MAQ (map quality) score. These should be used in concert
with a direct inspection of the short read alignment (BAM file) using IGV or a similar tool.
Marginally aligned sequences will have very low MAQ scores, meaning that the probability
that the given short read was derived from the region it is nominally aligned to is not much
greater than the probability that it was derived from another location in the genome. Some
genotype callers use a threshold of 20 or 30 for MAQ and do not include any reads below
that level. Leaving a substantial number of reads out of an alignment and genotyping process
is risky in that it may violate assumptions of the Ehrenfest model and cause false-positive or
false-negative calls. Manual examination of the .BAM files easily shows when this is
occurring. Unlike the MAQ that applies to the entire read, the phred quality estimates are
given to each base in every read, and are roughly correlated to the same score given in
Sanger based capillary sequencing, approximately the 10*LOG of the odds that the base
assigned in the read is the correct one (Ewing and Green, 1998; Ewing et al., 1998). The
coverage is the total number of reads that contain a base at the given position. Some
genotype software only counts the coverage of reads and phred scores above a given
threshold. This “clipping” can cause aliasing bias in genotype calls, but greatly simplifies
the Ehrenfest Bayesian calculations. Sensitivity and specificity are sacrificed, especially for
poorly-covered and low-complexity regions of the genome. Using parent (pedigree)-aware,
population-aware and genome-topology-aware genotype software may improve this aspect
of genotyping.

Direct inspection of the pileup also allows assessment of the short reads and variants nearby
the variant of interest. Typically a pile of overlapping reads will involve a region of around
200 bp with current technology. Regions with problematic alignments can be identified by
the very large number (typically > 5) of non-homozygous positions over this short interval
(considering that the genome-wide average of one heterozygous SNP per 1000bp predicts
about 0.2 variants should be present). The newest generation of alignment and genotype
callers (e.g. Stampy/Platypus) take this information into account and can use it to improve
alignment and genotype calls (Rimmer A, 2012).

Analysis can be done without looking at the BAM files, and still incorporate partial
information about quality score, and depth of coverage. By being aware of the nature of the
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Ehrenfest/Bayesian calling principle of genotyping, the analyst can recognize when a
confidence score attached to a genotype is low relative to the depth of coverage. Another
proxy for direct BAM file inspection is to note the close approximation (within 100 bp) of
variants listed in a VCF genotype file. The genotype score/coverage ratio can be a be used to
assess poor alignment as well (Wei et al., 2011). Calibration of this metric must be
empirically adjusted to the type of quality score and to the conditions of the sequencing for
an individual center, type of source DNA, type of capture, type of sequencing , type of
alignment and finally type of genotype caller. This approach becomes increasingly powerful
when a larger number (n>100) of exomes are able to be viewed simultaneously for their
genotype, quality score and coverage in a sorted manner from lowest to highest. Such data
can be used to assess variance across many exomes of the typical quality and coverage, and
where the subject being analyzed fits into that distribution. Software has been developed to
create a direct link between a variant file analysis interface that is pointed to a single variant,
and to the same region in the BAM file, which the current authors find indispensable during
analysis (Teer, 2011).

Predicted Pathogenicity—Pathogenicity prediction is the use of chemical, protein
structure, ortholog conservation and other data to predict whether or not a given DNA
variation is likely to affect protein function. There are numerous algorithms and tools that
been designed to assess pathogenicity. Sift (Ng and Henikoff, 2006), Polyphen-2 (Adzhubei
et al., 2010; UNIT 7.20), Grantham scores (Grantham, 1974), CDPred (Cherukuri, 2010)
and Mutation Taster (Schwarz et al., 2010), phyloP (Cooper et al., 2005), PhastCons (Yang,
1995), and GERP (Davydov et al., 2010) are examples. The biggest unresolved issue for all
models is the question of whether the training set of disease causing variants is a biased
subset of causal mutations found by the very fact that these were the first and easiest
diseases investigated. In that case these models will be a risk to exclude the very changes
that do not look like traditional changes causing disease in the training set of variants.
Additionally these algorithms have been trained on a set of presumed disease causing
mutations from literature sources that were mostly reported in the era prior to genome-wide
sequencing. All of the available procedures are, at best, estimates of average behavior and
cannot predict or exclude the true effect of a variant at a single site. Such results must be
considered judiciously during analysis. Numerical predictions can be included among per-
variant annotations in genome-scale sequencing projects. The pathogenicity estimates can
then be used to prioritize variants during analysis.

Special Genetic Cases De novo mutations and regions of homozygosity
New “de novo” mutations—New mutations are an important subset of genome-scale
sequencing results. Their extraordinary rarity suggests that they should be considered with
other potential candidates for disease causation. The Haldane/Bell estimate of 1.2 X 10-8 de
novo mutations per locus per generation, based on hemophilia epidemiology in London
England in the 1930-50s was confirmed in the whole genome sequencing of the Miller
Syndrome Quartet (Muller, 1950; Roach et al., 2010). This rate predicts 1.2 mutations per
average exome (60Mb) or 70-100 mutations per diploid genome. Using the Poisson
distribution, the 95% confidence interval is between 0-4 de novo mutations per exome per
generation. Since many genetic loci are recessive, many of the de novo mutations will only
produce carrier states, even when truly deleterious. Some will result in dominant, penetrant
phenotypes and a very few will complement a trans-inherited deleterious variant to produce
a de novo recessive pair. When both parents are available, and especially when an
unaffected sib has the same inheritance state for the specific region of the chromosome, de
novo mutations are easy to detect.
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One particular family structure is notably favorable for de novo analysis: a three generation
pedigree with an unaffected grandparental generation and an affected parent with an affected
child (or children).

In this case, a de novo mutation that is missing from the grandparents and present in all
affected individuals is consistent with both the new appearance of a phenotype in the child
of unaffected parents and the transmission of the phenotype in a dominant manner. Given
unambiguous phenotyping in the grandparents, the parents, the affected child and one
unaffected child, the probability that a de novo variant will randomly segregate in a manner
consistent with disease association is less than 5%. This very favorable pedigree is the most
statistically powerful small pedigree to allow discovery of a single gene causing disease.
These pedigrees should be sought and attempts to study them should be offered.

Homozygosity Mapping—Homozygosity mapping has been repeatedly demonstrated to
be a powerful technique for identifying disease genes. In genetic terms, cases of identity by
descent (IBD) represent the entire linkage power of the consanguineous loop contained in
the genotype of the single individual (Smith, 1953). However, there is also a substantial
possibility that more than one deleterious change is present within the regions of
homozygosity. Many severe rare phenotypes in a small consanguineous pedigree are not
monogenetic. Separation of the effects of multiple mutated genes may not be
straightforward.

Frequent pitfalls in exome experimental design
Strategy for recognizing true positives—The most common pitfall in experimental
design is the presumption that a causal variant will be recognizable as such. Genome-scale
sequencing not only generates many variants, but “false positives”. Here, false positives are
any variants that appear to be likely to contribute to a phenotype, but in actuality do not.
Improvement in this situation is unlikely to be possible for some time into the future,
primarily due to the near impossibility of producing a false-positive-free data set. Even a
data set that is 99.999% accurate will contain many hundreds of variants with some
characteristics suggesting pathogenic potential. The use of careful and stringent filtering can
reduce the number of false positives, but only at the cost of an increasing probability of
excluding potential true positives. In practice, rapid determination of causation requires
finding a known or severe variant in an already-well-established disease-causing gene.
Establishing causation in other cases is a matter of current debate, but needs to include some
combination of convincing functional studies and/or sufficient cases to use genetic or
association statistics.

Inadequate starting material—Every choice that is made in the experimental design –
e.g. using DNA from immortalized lymphocyte cell lines, using highly amplified DNA from
dilute samples, using FFPI extracted DNA, - will potentially increase the false positive rate
from hundreds to thousands of called genotypes in a VCF file. Given the effort required to
analyze genome-scale sequence data, a high priority should be given to starting with large
quantities of high quality (un-degraded) DNA whenever possible

Inadequate consideration of sequencing strategy—Filtration steps can be divided
into those that remove variants based on a heuristic characteristic of the individual variant
(frequency in population, predicted pathogenicity) and those that include or exclude regions
of the genome. The latter strategy, when available, is often the most powerful. The most
dramatic example would be a small candidate region or region of homozygosity. In such
cases, genome-wide sequencing may not even be needed unless the region contains many
genes/exons. The use of family/segregation data, with genomic-sequencing- or SNP-array-
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based recombination mapping becomes increasingly powerful with the addition of
informative meioses. Further strategic decisions that will decrease false positives include
using low amplification techniques in library construction and sequencing to the greatest
depth affordable.

COMMENTARY
Expectations versus reality

Genome-scale sequencing is a powerful technology that is transforming genetics research
and clinical practice. However, in our experience, nearly every new user of the technology
experiences discomfiture when they are confronted with the fact that even the best analytic
procedures fall short of establishing definitive genotype-phenotype causation. The situation
is improved when there are many affected individuals to test for the presence of mutations in
a candidate gene, or when an unambiguous diagnostic result is produced. For very rare
phenotypes, the process of establishing causation is no different from other candidate
generating procedures such as linkage analysis or homozygosity mapping. Exhaustive
phenotyping, stepwise experiments in model organisms and searching for additional cases
are the rule. Publishing trends are reflecting this fact. The requirements for publishing
genotype-phenotype correlations were relaxed for a time when genome-scale sequencing
first appeared. Since that time, there has been a general trend toward stricter requirements
and more substantive evidence.

Future directions
The past few years have been a time of rapid improvement in genome-scale sequencing
technology. Costs have decreased and supporting data sources such as variant databases
have proliferated and improved. As discussed in this commentary, it is now possible to
consider feasible, near-ideal characteristics for future sequencing resources. Paramount
among these is an improvement in our understanding of the structure of major world
populations. Some would argue that trends towards population admixture make this goal
impossible. However, the needs of the sequencing community do not necessarily require
static populations as much as the broadest possible survey of allele frequencies and a clearer
picture of the ability of human homeostasis to tolerate variation at specific sites across the
genome. For clinical applications, ethical and utility considerations will be forced upon the
medical community a medical genome-scale sequencing undergoes rapid implementation.
Whether such rapid deployment is wise, it is happening. As a result, we predict a
continuation of the rapid changes of the past few years.
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Figure 1. Selected Components of the NIH UDP Analysis Pipeline
The NIH Undiagnosed Diseases Program analysis pipeline combines exome data with high-
density SNP array data. We find that this is a cost-effective method for combining deep
coverage of coding regions with a genome-spanning structural survey. SNP chips are
checked for quality then analyzed for copy number variations (CNVs) with PennCNV
(http://www.openbioinformatics.org/penncnv/). The list of CNVs is manually curated and
combined with manual analysis for homozygosity and verification of parentage. If sufficient
family members are available, Boolean searches and further manual curation are used to
map recombination sites. CNVs, recombination sites and other regions of interest are
defined in Browser Extensible Data (BED) file format for incorporation into later analysis.
Subsequent exome analysis utilizes two primary programs: IGV and VarSifter (see text).
The former is used to visualize pile-ups in the assembled BAM file and the second is used to
incorporate BED file filters, allele frequency data, pathogenicity data and gene lists.
VarSifter also allows the construction of arbitrary Boolean filters, providing fine control
over searches for subsets of interest.
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Figure 2. Integrated Genome Viewer Screenshot
The Integrated Genome Viewer (IGV, http://www.broadinstitute.org/igv/) is a lightweight
yet powerful tool for viewing short read pile ups. The example show includes pileups from
six individuals: two parents, one affected child and three unaffected children. For
convenience, a case was selected that shows two variants that are physically close to one
another (and fit on the same screen). At the top of the display is a diagram of the
chromosome being reviewed, with a small vertical red bar (between q12.1 and q13)
highlighting the region being displayed below. The bulk of the display is taken up by six
rows of pile-up data. Each row is an individual; each short read is a thin, gray horizontal
line. Base positions that have been genotyped as non-reference are highlighted blue or red.
In this case, the mother is heterozygous for two DNA variants. The father is heterozygous
for one of the same variants and also for one different variant. The fact that each parent's
pair of variants is cis-oriented is knowable because there are short reads with both variants,
and short reads with neither variant. The affected sibling has DNA variations on both alleles,
in contrast to any of the unaffected siblings.
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Figure 3. Boolean Filter for finding compound-heterozygote “half hets”
Boolean filtration can be used find variant subsets of interest within the called genotypes in
a genome-scale sequencing data set. The schematic shown diagrams the criteria for all
alleles to be one of two that can pair to fit a compound heterozygous recessive Mendelian
model. After application of this filter, the resulting variant list is sorted by locus name.
Variants of certain classes are prioritized, including those that result in stop, splice site,
frame shift and non-synonymous amino acid changes. A normal number is about 300 to 900
total per exome. At any one locus there are at most a very small number of these types of
variants, and typically there are only a very few loci with two or more. These must be
inspected individually to see if there are two variants within loci that have more than one
allele, to see if any pair are oppositely phased, one to each of the two parents. Pairs of
variants that occur at the same loci, are of the type to change protein function, and are
correctly phased (typically are no more than 0 to 5) constitute the compound heterozygous
candidate variant pairs.
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Figure 4. Di Finetti Diagram
A de Finetti diagram is used to graph genotype frequencies in populations. It presumes two
alleles, and can be used to plot genotype frequencies at which Hardy-Weinberg Equilibrium
(HWE) is satisfied. The figure shows a rectangular prism with surfaces plotted in its interior.
The vertices of the triangles on the ends of the prism correspond to genotypes as shown:
AA, AB and BB. The length of the prism is a scale of individuals in the population from 1
(far left) to ≥ 400 (far right). The area between the upper and lower internal plot surfaces
define the combinations of genotypes that are consistent with HWE given a particular
population size. As the population size increases, an increasingly small proportion of all of
the possible genotype combinations are in HWE. However, difference between the in-HWE
and out-of-HWE regions changes increasingly gradually as the population size reaches
hundreds of individuals. For this reason, a data set of 100's of individuals allows stringent
criteria to be used in assessing whether a set of genotypes is out of HWE—potentially due to
misalignment.
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