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Abstract
Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the
evolution of behaviors in wild animal populations. The promise of quantitative genetics in
unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic
plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this
article, we describe how quantitative genetic techniques provide studies of the evolution of
behavior with information that is unique and valuable. We outline technical obstacles for applying
quantitative genetic techniques that are of particular relevance to studies of behavior in primates,
especially those living in noncaptive populations, e.g., the need for pedigree information, non-
Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We
illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple
and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our
analysis shows that proximity measures are consistent across repeated measurements on
individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative
genetics may hold lessons of considerable importance for studies of primate behavior, even those
without a specific genetic focus.
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Introduction
Quantitative genetics is a body of theory and set of statistical techniques that link directly
with rich evolutionary population genetic models, and that incorporate and formally arrange
information on variation in traits and their fitness consequences (Arnold 1994; Lande
1982).; One of the primary applications of quantitative genetic techniques is to characterize
the genetic variation underlying phenotypic traits. This includes heritability analyses,
whereby heritability is broadly defined as the proportion of phenotypic variance that can be
attributed to genotypic variance (broad-sense heritability, H2). Heritability is most often
examined as the proportion of phenotypic variance that is explained by additive genetic
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variance in particular (narrow-sense heritability, h2), with additive genetic variance
representing the fact that an individual’s mean genotypic value arises from the sum of the
average effects of his parents’ alleles (Visscher et al. 2008).

Genetic variation is necessary for evolution to respond to selection on any phenotype and
quantitative genetic techniques have been used to examine the genetic basis of many types
of traits e.g., morphology and life history (Blomquist 2009b; Cheverud and Dittus 1992;
Lawler 2006). Demonstrating that there is a genetic basis to behavior may be especially
important because behaviors are often viewed as infinitely plastic or reflective of unique
experiences during an individual’s lifetime (Jones 2005). We consider quantitative genetic
methods as complementary to the other more common approaches for studying the ecology
and evolution of behavior because no other approach provides the requisite information for a
realistic evolutionary model about genetic variation or covariation in traits (Cheverud and
Moore 1994).

Human behavioral geneticists have labored for many decades to describe the genetic basis of
human behavior (Plomin et al. 2009), and many ecologists have done much the same in
other taxa (Boake 1994; Dingemanse and Réale 2005; Weiss et al. 2002). Historically, this
work has been conducted using family studies, e.g., twins, siblings, or ancestor–descendant
pairs, in humans, whereby phenotypic differences between family members are associated
with genotypic differences, or by examining the effects of well-characterized genetic loci on
phenotypes in other animals (Bennett and Pierre 2010; Boake et al. 2002), whereby variation
in behavioral phenotypes is associated with genetic and/or genomic information. In contrast,
primate behavioral ecology has typically lacked a quantitative genetic dimension in spite of
accepting the premise that observed behaviors are the product of selection on genetic
variation in past generations (Grafen 1984; Hadfield et al. 2007; van Oers and Sinn 2011).
This divergence can be explained largely by technical and logistic limitations common to the
study of nonhuman primate behavior. This is especially true for primates living in
unmanaged populations (wild or free-ranging), for which rich information on behavioral
phenotypes exist, but that often is not accompanied by the detailed pedigree data required to
conduct quantitative genetic analyses. When pedigree information is available, researchers
must cope with the fact that many primate groups are characterized by complex relatedness
structures, i.e., complex pedigrees, and are relatively small, resulting in small samples sizes.
In addition, primate behavioral data are often recorded as counts or proportions that are non-
Gaussian, all of which pose challenges to quantitative genetic (or indeed regular statistical)
analyses.

With recent advances in noninvasive DNA extraction and genotyping techniques (Bradley
and Lawler 2011; Tung et al. 2010; Perry, this issue), the availability of genetic pedigree
data is increasing in nonhuman primate populations at a rapid pace. This, coupled with
advances in computational power and statistical techniques, particularly generalized linear
mixed models, lead us to propose that the time is ripe for adding a genetic dimension to
primate behavioral ecology through expanded application of quantitative genetics (Adams
2011; Bradley and Lawler 2011; Tung et al. 2010; Brent et al., this issue).

There is now a large body of work applying quantitative genetic techniques to phenotypes in
wild animal populations, including several accessible reviews (Kruuk et al. 2008; Wilson et
al. 2010). However, unlike much of the behavioral data collected by primatologists, most of
the phenotypes studied follow the normal (Gaussian) distribution of data that quantitative
genetic models were developed to describe, and are sometimes based on data from subjects
with simple relatedness structures, e.g., sets of siblings, which are difficult to obtain in
adequate sample sizes in most studies of primates. In this article we provide a brief
introduction to current quantitative genetic methods with a focus on the common challenges
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faced when analyzing behavioral data collected in wild or unmanaged primate populations.
We introduce the typical “animal model” used to analyze normally distributed phenotypes
and then explore a generalized linear mixed model (GLMM) version of it adapted for
Poisson-distributed counts. We demonstrate the use of such a model through a simple case
study of spatial association in adult rhesus monkeys living in a free-ranging colony with a
complex pedigree. We conclude this overview by noting opportunities for more detailed
quantitative genetic investigations.

A Brief Introduction to the Animal Model
The core tenet of quantitative genetics is that kin should resemble one another
phenotypically because they have copies of the same alleles. These alleles in common are
said to be identical by descent because the copies are made by DNA replication during
gamete production and transmitted across generations in fertilization. The number of genes
involved and where they are located in the genome are usually unknown, although if
molecular data are available they can be used to map genes that affect a given phenotype
(Visscher et al. 2008). Instead, the standard assumption is that the traits are polygenic—
there is a very large number of genes whose summed action results in a continuous
distribution of genotypes and phenotypes. The statistical match between phenotypic
resemblance and predictions from rules of Mendelian inheritance, e.g., parent and offspring
have 1/2 their alleles identical by descent, half siblings on average have 1/4 of their alleles
identical by descent, is then used to partition phenotypic variance into genetic and
nongenetic sources. Many methods are available for performing this statistical partitioning
of phenotypic variance, but all require sets of kin.

In recent decades, ecologists have borrowed techniques developed by animal breeders and
medical geneticists to use all of the genealogical information in complex pedigrees
efficiently and flexibly model phenotypes to control for known environmental factors. This
increases statistical power and helps reduce bias due to shared (or divergent) environments.
Animal breeders and ecologists call the most common of these approaches the “animal
model” (Kruuk 2004; Lynch and Walsh 1998). The typical animal model for normally
distributed phenotypes is given in matrix form in Eq. (1). This is a linear mixed model
containing fixed effects and random effects (Kruuk et al. 2008; Wilson et al. 2010).

(1)

Here, y is the vector of phenotypic measurements, and X is an incidence matrix for fixed
effects with β as a vector of regression coefficient estimates. Fixed effects are measured
differences among phenotypic records such as sex or age. Zi is an incidence matrix for
random effect i with ui as the vector of solutions for the random effect, and e is residual

error, i.e., . The residual error can also be described for normally
distributed phenotypes as the difference between observed and expected values e=y–E[y].
For genetic analysis in an animal model, a random effect is fit with a level for each
individual animal. The covariance of these animal random effect solutions is modeled
through a relatedness matrix (A) that documents autosomal allele–sharing predicted by
Mendelian rules. A has elements equal to 2θij where θij is the coefficient of coancestry
between individuals i and j (Lynch and Walsh 1998). Representing kinship via a matrix
allows quantitative genetic analyses to cope with unbalanced designs typical of wild and
unmanaged primate populations.
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A is typically derived from identification of parents to build up a complete pedigree. For
primates this is often a social pedigree of maternal links and paternities using parentage
assignment based on molecular markers. Methods have been proposed to approximate A
exclusively from molecular markers, though they have yet to receive wide use (Frentiu et al.
2008; Pemberton 2008; Sillanpää 2011). Additional random effects can be used to account
for repeated observations on individuals and maternal effects (see later, and Wilson et al.
2010). Quantitative genetic models for handling genomic imprinting, an additional potential
source of phenotypic resemblance among some kin, are complex and currently still in
development (Spencer 2009).

Estimates of variance components for each random effect are often reported as ratios to the
total phenotypic variance. For example, the narrow sense heritability is h2=σa

2/σp
2, the ratio

of additive genetic variance to total phenotypic variance. Numerical procedures for
estimating variance components are complex, computationally intensive, and typically use
maximum likelihood or Bayesian Markov chain Monte Carlo (MCMC) techniques (Lynch
and Walsh 1998; Sorensen and Gianola 2002). Although likelihood is much faster, MCMC
estimates are more appropriate for the size and structure of data sets commonly used by
primatologists (Hadfield 2010; Adams, this issue). A particular advantage of Bayesian
MCMC model fitting over restricted maximum likelihood is that the fixed effects are not
assumed to be known without error when estimating variance components of the random
effects (O’Hara et al. 2008).

Generalized linear mixed models (GLMMs) allow the same methods to be used with non-
normal traits (Bolker et al. 2009). Because behavioral data are often expressed as counts or
proportions, this is extraordinarily valuable (Silk 2002). In brief, a generalized linear model
uses a link function to transform the expected value of the phenotype (E[y]) onto a scale on
which it can be predicted by the linear sum of model effects, e.g., using the log-link, which

is common for count data assuming a Poisson distribution, .
Note that this is not just taking the log of y, but rather the mean value of the phenotype is
predicted on the log scale by the sum of effects in the linear model. The inverse of the link,
which is exponentiation in this case, can be used to write the same model (Eq. 2).

(2)

To illustrate the differences between the typical animal model and that based on a GLMM
for non-Gaussian data in greater detail, we provide an example case of spatial proximity data
(count data) in adult rhesus macaques. Our analysis of this dataset focuses on four outcomes.

1. First, we ensure that the proximity phenotype can be analyzed as a typical count
variable using a Poisson GLMM.

2. Next, we extend the model to include a random effect for individual monkeys. This
accounts for the many repeated observations on each individual in the data set and
allows for the direct estimation of repeatability, i.e., how consistent individual
differences in proximity are across repeated measurements.

3. We then identify a suitable fixed effects model for predicting proximity from
known differences among individuals or observations, e.g. sex, time of year. These
first three steps are likely familiar to ecologists who have dealt with count data
before (Zuur et al. 2009). Here they are also important precursors to genetic
analysis.

4. Finally, we leverage the pedigree to estimate the heritability of proximity.
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Case Study: Spatial Proximity on Cayo Santiago
Data Collection

We collected behavioral data on adult male and female rhesus macaques (Macaca mulatta)
living on Cayo Santiago Island, Puerto Rico. This free-ranging colony was established in
1938 with a single founding population of Indian-origin (Rawlins and Kessler 1986). At the
time of study there were six social groups on the island. We based analyses on 2 yr of
observation of 107 adults (6–25 yr of age) in group F (2010: N = 26 males, N = 58 females;
2011: N = 33 males, N = 68 females). Although this is a large data set compared to those in
most primate field studies of behavior, it is small by the standards of quantitative genetics,
which is cause for concern over low statistical power to detect genetic variance. Simulation
of phenotypes on a known pedigree can be used to describe power for a given data structure.
Further, the effects of any uncertainty in the pedigree can be gauged through further
simulations (Kruschke 2011; Morrissey and Wilson 2010; Quinn ). Although this is a large
data set compared to those in most primate field studies of behavior, it is small by the
standards of quantitative genetics, which is cause for concern over low statistical power to
detect genetic variance. Simulation of phenotypes on a known pedigree can be used to
describe power for a given data structure. Further, the effects of any uncertainty in the
pedigree can be gauged through further simulations (Kruschke 2011; Morrissey and Wilson
2010; Quinn et al. 2006).

We used the same protocol in both years collecting 10-min continuous focal individual
samples. We collected 1293.3 h of focal individual data with means (SD) of 4.07 (0.39) and
5.02 (0.11) h per subject in 2010 and 2011, respectively. We recorded the identity of all
adults (male and female) ≤2 m of the focal subject at three evenly dispersed intervals during
focal individual samples, i.e., at 0, 5, and 10 min). From this, we calculated the total number
of individuals of unique identity found in proximity to the focal subject during each 10-min
observation. For example, if individual A was found ≤2 m of the focal subject at all three
data collection intervals of a 10-min observation, we counted this individual once toward the
number of unique individuals in proximity to the focal subject during that observation. We
determined dominance rank from the direction and outcome of submissive interactions.
Further details on the Cayo Santiago population and our collection of behavioral data are
found in Brent et al.(this issue).

To enable quantitative genetic analysis, we obtained genealogical information linking all of
these individuals in a single, large interlocking pedigree (N = 428 members) from the
Caribbean Primate Research Center (CPRC) long-term database (Table I). This database
contains maternal assignments based on census information, i.e., based on behaviors of
putative mothers, such as lactation) for all individuals from the founding population
onwards, as well as maternity and paternity based on analysis of 29 microsatellite markers
for most individuals born since 1990 (≈2900 monkeys). Further details on the CPRC
pedigree data are found in Brent et al. (2013a) and Brent et al. (this issue).

Analysis and Results
We performed the entire analysis using various functions from packages in R (R
Development Core Team 2012). This is convenient, because all data manipulation, graphical
display, and analysis can be done in a single free, open-source, cross-platform, environment
that has many features standalone genetics software lack, e.g. ASREML, DMU, WOMBAT,
SOLAR. In general, their support for generalized linear mixed models is either absent or
very limited. Here, we explore a single model for count data but note a variety of
alternatives are available for counts and proportions (Nakagawa and Schielzeth 2010; Zuur
et al. 2009). We used a Poisson model with log-link for additively overdispersed counts and
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we focus on Bayesian MCMC results because of important disadvantages of likelihood in
GLMMs (Bolker et al. 2009). We analyze the proximity data in sequence of building
progressively more elaborate models to illustrate the difficulties and power of GLMM for
primate behavioral phenotypes and describe the four outcomes noted in the Introduction.]

1. Overdispersion, variance components, and the appropriateness of a Poisson
GLMM. As introduced in the preceding text, a GLMM differs from the standard
animal model in a variety of ways. An important difference is the relationship
between mean and variance. This is crucial because it affects interpretation of
variance components that are used to construct heritabilities. With normally
distributed phenotypes, the mean and variance are separate descriptors of the
distribution. For the animal model with a single additive genetic random effect one

could write  to state that the phenotype has been treated

as a random normal/Gaussian variable with mean X β and variance .
In other words, X β is a vector of fitted values determined by the fixed effects. The
variance components only describe a matrix of covariance among the observations
in y. For other distributions there may only be a single value that controls the entire
shape of the distribution. This is true for the Poisson distribution in which the mean
and variance are equal (E[y]=λ, the rate parameter). Using Eq. 2, one would write

 to state that y is Poisson distributed with mean and

variance equal to . In this case,  is a long vector of
Poisson rate parameters fit to the observed data. Observed distributions of count
data often have variance > mean, which is called overdispersion. A generalized
linear mixed model fits heterogeneity in this rate parameter to explain
overdispersion through known differences among observations either through
fixed, e.g. sex, age, or random effects, e.g., individual identity in the case of
repeated observations. It is important to note that e is no longer just the difference
between observed and expected values of each observation in y. Instead, it is
additional variation in the Poisson rate parameter corresponding to each
observation in y. The observed values in y are the result of one draw from a
Poisson distribution having λ equal to the estimated rate parameter for that
observation (E[y]). On the link scale, however, the rate parameter is modeled in the
same way as the normal animal model: random effects, and the additive residual e,
are assumed to be Gaussian/normal, i.e., this is a Poisson log-normal model.

Overdispersion is a common situation, and it usually indicates there is
heterogeneity among the observations in the underlying biological processes
generating the data. The adult proximity data were overdispersed and did not
precisely fit a Poisson distribution (Fig. 1). This is not surprising considering there
are many repeated observations on each individual; they cover a variety of different
demographic categories of sex, age, and rank; and were collected at different times
of the year. The MCMCglmm function from the package of the same name
(Hadfield 2010) can be used in R to fit a GLMM to this data with just an intercept
to estimate the mean and a single random effect (Elston et al. 2001). This model is
E[y]=e1β+e, where eβ is a single baseline rate parameter common to all observations
and e is a vector of observation-level random effects that are added to β and adjust
the rate parameter for each observation. A numerical measure of overdispersion is

provided by the variance of this observation-level random effect, . Rather
than a single value, MCMC estimates rely on description of a simulated posterior
distribution (Gelman and Shirley 2011; Geyer 2011). We retained 1000 samples of
posterior distributions for all models reported. Variance component estimates are
taken as the posterior mode. A Bayesian credible interval is also available from the
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quantiles of the posterior distribution. Here, the 95% credible interval for  was
0.517–0.676, indicating there is a 0.95 probability that the true level of
overdispersion falls within this interval (Sorensen and Gianola, 2002; Hadfield and
Nakagawa, 2010). This level of overdispersion is small and it declines as other
factors are added to the model (Table II). Moreover, a set of graphical checks on
the final model explored below indicate the Poisson assumption is not severely
violated (Elston et al., 2001).

If the level of overdispersion were more severe, or the number of zero counts was
much larger than expected for a Poisson distribution (zero-inflation), alternatives
would have to be explored. These include zero-inflated Poisson and hurdle models
(Loeys et al. 2012), modeling the counts with a negative binomial distribution
(Hilbe 2011), or collapsing the counts into 0/1 scores and using a logit or probit
model (Nakagawa and Schielzeth 2010). However, for this data set, the Poisson
model is adequate and there is little reason to try alternatives.

2. Estimating repeatability. Establishing that adult proximity is repeatable is
important to justify undertaking a quantitative genetic study. Repeatabilities can
only be calculated in the case of repeated measures on individuals and are a ratio of
variance components recording the proportion of among individual variance to total
variance. Typically, repeatabilities set an upper bound on heritabilities (Nakagawa
and Schielzeth 2010). Only if an individual has a consistent, measureable “signal”
in his behavioral phenotype should we expect to also detect similarities among kin.
Repeatabilities will be familiar to readers who have performed measurement error
studies and are particularly commonly reported for morphometric traits. Values
calculated for behavioral measures are often low (Bell et al. 2009). This would be
disappointing if we expected them to be highly repeatable, e.g., adult tibia length.
However, 1–R for behavioral phenotypes is not simply measurement error because
behavior is typically much more dynamic than adult morphology. Although
heritabilities can still be estimated in cases of single measurements per individual,
they offer no indication of this intraindividual variation that is likely to be common
for behavioral phenotypes. Repeatabilities can be estimated from GLMMs. As was
noted in the previous section, heterogeneity among the observations results in
overdispersion and a major source of heterogeneity is the repeated records on each
of the monkeys. This can be dealt with directly by adding a random effect such that
the model becomes E[y]=e1β+Zm+e, where m is the vector of individual monkey
effects and Z is its incidence matrix relating the 5056 observations to the 107
monkeys. We estimated two variance components with this model; one is the

individual monkey variance ( , CI: 0.246–0.497; Table II), and the other
is the observation-level random effect representing remaining overdispersion

( , CI: 0.312–0.452). These variance components can be used to calculate
a repeatability. Although this would simply be a ratio of the monkey variance to the

total phenotypic variance for a normally distributed phenotype [ ], a
repeatability on the observed scale for the Poisson log-normal GLMM with
additive overdispersion is more complex (Carrasco 2010; Nakagawa and Schielzeth
2010).

(3)
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In Eq. 3, exponentiated variance components appear in the numerator and
denominator along with the expected mean marginalized over the random effects
(Eu,e[y]). This marginal mean reflects the dependence of the total variance in a
Poisson GLMM on the mean. Eu,e[y] is the predicted value for an observation given
its known fixed effects and any random effect in the sample (as opposed to its

calculated random effect solution). Applying  produces a vector of
predictions for each observation for each MCMC sample. We used the median of
these predictions as the estimate of Eu,e[ y] for that sample (Foulley et al. 1987) and
then applied Eq. 3 to it, the fixed effect coefficients, and variance components in
each MCMC sample to generate a posterior distribution of the repeatability.
Applying Eq. 3 yields a posterior mode repeatability on the observed count scale of
Ro=0.157 (CI: 0.112–0.228).

There are two other things worth noting about this repeatability. First, it is not truly
comparable to repeatabilities calculated for normally distributed phenotypes in
which the denominator is the sum of the variance components. For this reason,
some authors prefer to call these pseudo-repeatabilities and pseudo-heritabilities
from GLMMs (Foulley et al. 1987; Olesen et al. 1994). Because of the dependence
on the mean and requirement that variance components be positive, the Poisson
repeatability cannot be equal to one. This is common regardless of the link and
variance functions used. Second, a variety of additional information about the
individual monkeys or the observations has been left out of this model.
Incorporating these effects is the next task.

3. Adjusting for other effects. The repeatability just described could be upwardly or
downwardly biased by not accounting for other sources of heterogeneity. Upward
bias likely results from not accounting for differences among individuals that are
constant but not necessarily a property of the individual. These are sometimes
referred to as “group level” effects (Nakagawa and Schielzeth 2010). Sex is the
best example of this in the present data set. Males and females have different mean
proximity measures. Not accounting for this inflates the mean dissimilarity among
individuals and the resulting repeatability (Wilson 2008). However, repeated
measurements on each individual might be taken under very different conditions.
Not accounting for this would depress the repeatability because an individual
monkey’s measurements are more variable than they would be if it were not for
these changing conditions. These are often called “data level” effects. A good
example of this here is seasonal changes in proximity. Each monkey was measured
many times often weeks or months apart. Any additional factors could enter the
GLMM as fixed or random effects. The distinction is somewhat arbitrary, but
random effects generally should only be used when there are many levels sampled,
i.e., enough that estimating a variance makes sense, and they are considered to be
drawn from a common distribution (Bolker et al. 2009; McCulloch and Searle
2001). Sex and seasonality are best modeled as fixed effects. Sex is a simple two-
level factor. Seasonal changes could be modeled in a variety of ways. We chose to
use natural cubic splines. These are local piecewise polynomial fits constrained to
be smooth at knot points (Fox 2008; Meyer 2005). We used a single knot, placed at
the median of days after January 1, based on visual inspection of the smoothness of
the fitted curve and its overall correspondence with monthly sex-specific means.
Finding seasonal differences between the sexes, we used the interaction between
these variables as part of the fixed effect model. We also used the interaction of sex
and linear effect of social rank. We standardized rank within sexes and years to fall
on a −1 to +1 scale with highest ranks at −1. Age was the only other variable we
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tested and found it to have little effect on proximity in either sex, with or without
the other fixed effects.

To make the intercept more interpretable in our full model, we also mean-centered
observation date such that it reflected the rate parameter for a female measured on
the mean day after January 1 (241.2 d≈ September 1) of middle rank (Schielzeth
2010). In the notation used above, this expanded model is E[y]=eXβ+Zm+e where
the additional fixed effects are reflected in the expanded design matrix X and
vector of coefficients β.

A common avenue for identifying a suitable set of fixed effects is to run a large set
of models and select the best fitting based on information criteria. However, this is
often frowned on by statisticians and we do not advocate it for several reasons
(Burnham and Anderson 2002). First, the behavior of information criteria is not
well understood for many GLMMs, potentially making their ranking of models
unreliable (Spiegelhalter et al. 2002; Wilson et al. 2010). Second, MCMC models
must run on the computer for a much longer time to obtain trustworthy results in
comparison to traditional likelihood routines for fitting models. Although hardware
improvements and parallel processing ease this pain, it makes running a large
number of models impractical for most investigators. Finally, no software can
substitute for the careful consideration of the biological questions at hand and
limitations of collected data to identify suitable models rather than “letting the
computer decide.” Along these lines, we would echo the recommendation of Bolker
et al. (2009) of a long phase of exploratory analysis of graphical displays,
descriptive statistics, and models with data subsets before attempting to fit a full
GLMM.

In our case study, the addition of sex*observation date and sex*rank fixed effects
depressed the repeatability of adult proximity, though it clearly remained greater
than zero (Ro=0.062, CI: 0.040–0.102; Table II, Fig. 3). This was primarily because
most of the fixed effects are at the “group” level, i.e., individual monkeys. There is
another less obvious difference from the intercept-only repeatability. Along with
the changes in variance components, the distributions of Eu,e[y] also differ. This
difference is relatively small and is one reason for using the marginal mean
(Carrasco 2010). Alternatively, one could report a range of repeatabilities using
different levels of the fixed effects. However, this is unwieldy, because there is a
unique repeatability for each combination of the fixed effects (Nakagawa and
Schielzeth 2010).

Fixed effect coefficients are given on the log scale and should be exponentiated to
interpret them on the original count scale. These are straightforward for the
intercept and sex and rank effects (Fig. 3, Table II). For example, the intercept is
mid-ranked females (e−0.452=0.636); the coefficient for males is −0.659, which
means their mean proximity value is e−0.659=0.517 times the intercept
(e−0.452e−0.659=0.329). Spline coefficients are typically explored graphically. Effect
plots show a distinct seasonal pattern of a drop in mean proximity in the late
summer corresponding to the beginning of the birth season that is more persistent
for males (Fig. 2, cf. Brent et al. 2013b), and that rank effects are much stronger in
males. Precision of the fixed and random effect estimates can be assessed from
their credible intervals and these are straightforward to use in graphical displays.

4. Estimating heritability. Our final step is estimating a heritability of proximity.
This is accomplished by the addition of a random effect for individual monkeys
that is linked to the pedigree which allows calculation of an additive genetic
variance component that is separate from the monkey variance and overdispersion
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variance described previously. A corresponding ratio can be constructed for the
heritability. For that reason, we have called these heritability models to distinguish
them from the repeatability models above. Here the GLMM becomes E[y] =
eXβ+Zmm+Zaa+e if the fixed effects are included, and E[y] = e1β+Zmm+Zaa+e if only
the intercept is modeled. In these heritability models, a is the vector random effect
solutions for individual monkeys linked to the pedigree. In other words, it has the

covariance . In contrast, m is the vector of random effect solutions for
individual monkeys that is not linked to the pedigree. As before, it has the

covariance . Conceptually, the monkey variance ( ) of the repeatability
models is being broken down into a portion that reflects resemblance among kin

( ) and one that reflects stable but nonfamilial differences among monkeys (σm
2),

or the “permanent environment” of an individual monkey (Lynch and Walsh 1998).

The estimated additive genetic variances and heritabilities in our heritability
models were greater than zero, but they had much broader posterior distributions
and larger credible intervals than the variances or ratios in the repeatability models
(Fig. 3). Including the set of fixed effects caused a reduction of the heritability

estimate similar to the repeatability models (intercept only model,  CI:

0.057–0.198; full fixed effects model,  CI: 0.009–0.093). Large credible
intervals are caused by using a very small data set to estimate a pair of strongly

correlated variance components (  lag 0 correlation = −0.686).

Posterior distributions of all the fixed effects can be explored graphically. Figures 2
and 3 provide these displays from the heritability model with the full set of fixed
effects. Coefficients for the full repeatability and heritability model were very
similar (Table II), which is typical when heritabilities are small. A final set of
checks on the adequacy of the Poisson distribution for this full model is also given
in Fig. 4. In truth, this is the most important check on how suitable the Poisson
distribution is for the counts because the full model accounts for all sources of
heterogeneity in the data we found to be important. Ideally, the animal and monkey
random effects would be normally distributed (assessed by quantile plots) and the
predicted rate parameters (E[y]) would be Poisson distributed (assessed by a
probability–probability plot). These plots can be produced for each MCMC sample,
but only three randomly selected sets are shown (Elston et al. 2001).

Discussion
We have demonstrated that the tendency for free-ranging rhesus macaques to be found
within two meters of other adults has a narrow-sense heritability somewhere in the range of
5–15%, depending on how we accounted for covariates such as sex, rank, and seasonality.
So what? One answer to this question is very basic. Genetic variation is necessary for
populations to respond to selection on any phenotype and demonstrating that there is a
genetic basis to primate behavior is therefore an important first step in describing its
potential evolutionary trajectory. Although behavioral measurements have been included in
heritability estimates for multivariable abstractions such as social network statistics (Brent et
al. 2013a), and behavioral tendencies (Williamson et al. 2003; Adams et al. 2012; Brent et
al. .this issue) to our knowledge, this is the first demonstration that tendency for adult
primates to be in proximity with one another is heritable. The increased availability of
pedigrees and power of animal model methods may change this in the near future. However,
there is much more that can and should be done with quantitative genetic models and
methods.
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Before exploring useful applications of a heritability estimate and extensions, it is worth
recalling some of the pitfalls of interpretation. These are well known and have been
discussed by many authors but are worth recounting (Adams 2011; Roff 1997; Vitzthum
2003; Visscher et al. 2008). First, high heritabilities should not always be expected for
phenotypes where genes are thought to play an important role. Heritabilities are fractions of
phenotypic variance. Many traits that undoubtedly require interacting networks of genes,
e.g. the presence of a brain in adults, do not vary and therefore have undefined heritabilities.
Moreover, because heritabilities are dependent on allele frequencies and environmental
conditions in a population, a large heritability could be the result of small environmental
variance (Charmantier and Garant 2005). Animal model heritabilities are also dependent on
how the phenotypic variance is calculated. If fixed effects primarily affect the phenotypic
variance, then removal of their variance from the denominator of the heritability will result
in higher heritabilities (Wilson 2008). GLMM “pseudo-heritabilities” may also have
additional quirks such as the dependence on the overall mean in the Poisson case explored in
the preceding text. Second, a low heritability does not mean genes play no role in shaping
phenotypic variance. Again, because heritabilities are ratios, a low value could result from
large environmental variance even when additive genetic variance is greater than zero. Price
and Schluter (1991) argue this is likely a common situation for behavioral and life history
traits that are contingent on other physiological and social circumstances. Finally,
heritabilities describe intrapopulation variation. Therefore, a simple heritability estimate is
next to useless for describing intergroup differences. For example, the difference in mean
proximity between monkeys in group F and those in any other social group probably have
nothing to do with genetics, and a heritability estimate of 5% certainly would not mean that
5% of any mean difference in proximity between groups is due to the additive effect of
genes (Brommer 2011).

Avoiding these pitfalls, we would highlight some appropriate uses of heritability estimates
and areas for extension. First, heritabilities link very directly to simple quantitative models
of evolutionary change, such as response to directional selection in the breeder’s equation
(R=h2S; Roff 1994, 1997). In this equation, intergenerational change in the mean (R
=response) is always a fraction of the selection differential (S) equal to h2. A small
heritability such as the one estimated for adult proximity implies very slow response to
selection. This is typical of behavioral phenotypes which often have lower heritabilities than
morphological traits (cf. Stirling et al. 2002). The response to directional selection of
phenotypes with non-normal distributions, such as Poisson counts, is somewhat different
because of the mean–variance equality but it has been modeled (Korsgaard et al. 2002).

Second, heritability estimates are often an effective tool for initial screening of phenotypes
amenable to exploring the molecular signatures of inheritance through genome-wide
association (GWAS) and or linkage mapping (Visscher et al. 2010). Once identified, loci
can be subjected to a variety of tests for departures from equilibrium including molecular
signatures of selection. Well-characterized loci from laboratory settings that have
documented associations with behavioral patterns can also be incorporated, e.g.,
neurotransmitter production and regulation; Brent et al. 2013a). These are enticing research
projects that are treated in great detail by other authors and emphasize the “genetic” side of
quantitative genetics (Bradley and Lawler 2011; Tung et al. 2010). The allure of molecular
genetics need not overshadow the advantages of quantitative genetic techniques themselves.

Instead of fretting over the molecular details of inheritance, we should also consider
quantitative genetic methods relevant for addressing the equally exciting complexity of
environments primates experience and construct for each other. Lengthy developmental
periods in primates have often been argued to be opportunities for parental and peer effects
on behavioral phenotypes (Leigh 2001; Maestripieri 2009). There are sophisticated
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quantitative genetic models for describing such effects through variance components or
covariances between social partner phenotypes and they often have very different dynamics
from the intuitive breeder’s equation (Cheverud and Wolf 2009; Moore et al. 2002; Adams,
this issue). Moreover, the flexibility of primate behavior and depth of longitudinal
measurements on known individuals are an opportunity for studying the evolution and
genetics of plasticity. Plasticity itself can be treated as a phenotype (Schlichting and
Pigliucci 1998) when individuals are measured across environmental gradients and
individual reaction norms can be calculated (Dingemanse and Dochtermann 2013;
Dingemanse et al. 2010; Martin et al. 2011). For example, in our case study we treated
spatial association as the same trait regardless of season of measurement. In other words, if
proximity in the birth and nonbirth seasons were, in fact, two different traits our case study
analysis requires we assume the genetic correlation between these traits is 1 and their
heritabilities are equal. It is an open question as to how realistic these assumptions are.
Given large enough data sets, they can be tested with multivariate and random regression
quantitative genetic models (Brommer et al. 2012).

Power concerns will often limit the applicability and complexity of quantitative genetic
models for unmanaged primate populations. The number of such populations with well-
resolved pedigrees is rapidly increasing, thus removing the other major barrier to the
application of quantitative genetics to studies of primate behavior. We would encourage
primatologists wishing to employ these techniques to use simulations on their pedigrees to
identify the necessary number of individuals to measure to achieve sufficient power, e.g., for
detecting nonzero genetic variance). For example, Quinn et al. (2006) showed a total of 300
measured individuals was sufficient to generate precise estimates of heritabilities and
genetic correlations in two bird populations. Although this figure is currently unattainable
for most any primate behavioral study, our analysis of spatial association used considerably
fewer individuals, but was still able to detect a nonzero genetic variance. Because of the
strong influence of pedigree structure, the locations of measured individuals within the
pedigree, measurement error, and how well environmental effects are accounted for, there is
no clear “rule of thumb” to guide when quantitative genetic analysis is or is not worthwhile.
However, we would suggest samples<100 are unlikely to be of much use. This places a
considerable limit on the current applicability of quantitative genetics to all but the longest-
running primate field sites, and may preclude such analysis with understudied and
endangered species. Nevertheless, large-scale sampling efforts are currently underway at a
number of field sites, and would be feasible to implement over relatively short periods of
time at others. We therefore encourage primatologists in the future to consider the
requirements of quantitative genetic techniques when designing data collection protocols.

We close by noting an indirect but potentially far-reaching contribution of quantitative
genetics by wondering, should behavioral ecology become like comparative biology? Hardly
any interspecific comparative study is published today that does not somehow account for
the phylogenetic relationships among study species (Freckleton 2009; Housworth et al.
2004). Primate behavioral ecologists face a similar problem of non-independence among the
individual members of the populations they study because many primate groups consist of
sets of kin, and kin may not be randomized across environments (Blomquist 2009a; Silk
1984). In comparative studies the phylogenetic history of species is most influential for
identifying interspecific patterns, e.g., evolutionary allometries, when those patterns are
weak (Klingenberg 1996). Because ecological trends are typically quite weak (Nee et al.
2005; Peters 1991), the genealogy of primate groups could make a huge difference for
establishing how population members respond to changing social and climatic conditions
that are the foundation of primate theoretical and field ecology (Campbell et al. 2011;
Clutton-Brock and Janson 2012). The increasing availability of pedigrees, or techniques to
construct them, for wild primates begs for deeper appreciation and direct treatment of this
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problem. Just as comparative biologists use a phylogeny as a tool for analysis of
interspecific data without any direct interest in discovering phylogeny, perhaps ecologists
should be using pedigrees even when they are uninterested in genealogy or estimating
heritabilities.

Acknowledgments
We thank the Caribbean Primate Research Center (CPRC) for the permission to undertake research on Cayo
Santiago, along with Bonn Aure and Jacqueline Buhl, who assisted in data collection, and Elizabeth Maldonado,
Angelina Ruiz-Lambides, and Janis Gonzalez-Martinez, who provided access to the CPRC pedigree database. L. J.
N. Brent also thanks Michael Platt for mentorship during the collection of these data. L. J. N. Brent was funded by
fellowships awarded by the Duke Center for Interdisciplinary Decision Sciences. Additional funds were provided
by NIMH grants no. R01-MH096875 and R01-MH089484. The CPRC is supported by a grant no. 8-P40
OD012217-25 from the National Center for Research Resources (NCRR) and the Office of Research Infrastructure
Programs (ORIP) of the National Institutes of Health. G. E. Blomquist is supported by the University of Missouri
Department of Anthropology and Research Council. G. E. Blomquist also thanks L. J. N. Brent and Noah Snyder-
Mackler for the invitation to participate in the International Primatological Society symposium leading to this
special issue.

References
Adams, MJ. Evolutionary genetics of personality in nonhuman primates. In: Inoue-Murayama, M.;

Kawamura, S.; Weiss, A., editors. From genes to animal behavior. New York: Springer; 2011. p.
137-164.

Adams MJ, King JE, Weiss A. The majority of genetic variation in orangutan personality and
subjective well-being is nonadditive. Behavior Genetics. 2012; 42:675–686. [PubMed: 22460560]

Arnold, SJ. Multivariate inheritance and evolution: A review of concepts. In: Boake, CRB., editor.
Quantitative genetic studies of behavioral evolution. Chicago: University of Chicago Press; 1994. p.
17-48.

Bell AM, Hankison SJ, Laskowski KL. The repeatability of behaviour: A meta-analysis. Animal
Behaviour. 2009; 77(4):771–783.

Bennett, AJ.; Pierre, PJ. Nonhuman primate research contributions to understanding genetic and
environmental influences on phenotypic outcomes across development. In: Hood, KE.; Halpern,
CT.; Greenberg, G.; Lerner, RM., editors. Handbook of developmental science, behavior, and
genetics. New York: Blackwell; 2010. p. 353-399.

Blomquist GE. Environmental and genetic causes of maturational differences among rhesus macaque
matrilines. Behavioral Ecology and Sociobiology. 2009a; 63(9):1345–1352.

Blomquist GE. Fitness-related patterns of genetic variation in rhesus macaques. Genetica. 2009b;
135:209–219. [PubMed: 18470623]

Boake, CRB. Quantitative genetic studies of behavioral evolution. Chicago: University of Chicago
Press; 1994.

Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ, Wolf JB, Moore AJ. Genetic
tools for studying adaptation and the evolution of behavior. American Naturalist. 2002; 160:S143–
S159.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, Simone S, White J.
Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology
and Evolution. 2009; 24(3):127–135. [PubMed: 19185386]

Bradley BJ, Lawler RR. Linking genotypes, phenotypes, and fitness in wild primate populations.
Evolutionary Anthropology. 2011; 20(3):104–119. [PubMed: 22034168]

Brent LJN, Heilbronner SR, Horvath JE, Gonzalez-Martinez J, Ruiz-Lambides A, Robinson AG,
Skene JHP, Platt ML. Genetic origins of social networks in rhesus macaques. Scientific Reports.
2013a; 3:1042. [PubMed: 23304433]

Brent LJN, MacLarnon A, Platt ML, Semple S. Seasonal changes in the structure of rhesus macaque
social networks. Behavioral Ecology and Sociobiology. 2013b; 67:349–359. [PubMed: 23565026]

Brommer JE. Whither PST? the approximation of QST by PSTin evolutionary and conservation
biology. Journal of Evolutionary Biology. 2011; 24:1160–1168. [PubMed: 21457173]

Blomquist and Brent Page 13

Int J Primatol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Brommer JE, Kontiainen P, Pietiäinen H. Selection on plasticity of seasonal life-history traits using
random regression mixed model analysis. Ecology and Evolution. 2012; 2:695–704. [PubMed:
22837818]

Burnham, KP.; Anderson, DR. Model selection and multimodel inference: A practical information-
theoretic approach. 2. New York: Springer; 2002.

Campbell, CJ.; Fuentes, A.; MacKinnon, KC.; Bearder, S.; Stumpf, R., editors. Primates in
perspective. New York: Oxford University Press; 2011.

Carrasco JL. A generalized concordance correlation coefficient based on the variance components
generalized linear mixed models for overdispersed count data. Biometrics. 2010; 66:897–904.
[PubMed: 19817740]

Charmantier A, Garant D. Environmental quality and evolutionary potential: Lessons from wild
populations. Proceedings of the Royal Society of London B: Biological Sciences. 2005; 272:1415–
1425.

Cheverud JM, Dittus WPJ. Primate population studies at Polonnaruwa II. Heritability of body
measurements in a natural population of toque macaques. American Journal of Primatology. 1992;
27:145–156.

Cheverud, JM.; Moore, AJ. Quantitative genetics and the role of the environment provided by relatives
in behavioral evolution. In: Boake, CRB., editor. Quantitative genetic studies of behavioral
evolution. Chicago: University of Chicago Press; 1994. p. 67-100.

Cheverud, JM.; Wolf, JB. The genetics and evolutionary consequences of maternal effects. In:
Maestripieri, D.; Mateo, JM., editors. Maternal effects in mammals. Chicago: University of
Chicago Press; 2009. p. 11-37.

Clutton-Brock T, Janson C. Primate socioecology at the crossroads: Past, present, and future.
Evolutionary Anthropology. 2012; 21:136–150. [PubMed: 22907867]

Dingemanse NJ, Dochtermann NA. Quantifying individual variation in behaviour: Mixed-effect
modelling approaches. Journal of Animal Ecology. 2013; 82:39–54. [PubMed: 23171297]

Dingemanse NJ, Kazem AJN, Réale D, Wright J. Behavioural reaction norms: Animal personality
meets individual plasticity. Trends in Ecology and Evolution. 2010; 25:81–89. [PubMed:
19748700]

Dingemanse NJ, Réale D. Natural selection and animal personality. Behaviour. 2005; 142:1165–1190.

Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X. Analysis of aggregation, a worked
example: Numbers of ticks on red grouse chicks. Parasitology. 2001; 122:563–569. [PubMed:
11393830]

Foulley JL, Gianola D, Im S. Genetic evaluation of traits distributed as poisson-binomial with
reference to reproductive characters. Theoretical and Applied Genetics. 1987; 73:870–877.
[PubMed: 24241297]

Fox J. Effect displays in R for generalised linear models. Journal of Statistical Software. 2003; 8(15):
1–27.

Fox, J. Applied regression analysis and generalized linear models. 2. Thousand Oaks, CA: SAGE;
2008.

Fox J, Hong J. Effect displays in R for multinomial and proportional-odds logit models: Extensions to
the effects package. Journal of Statistical Software. 2009; 32(1):1–24. Available at: http://
www.jstatsoft.org/v32/i01/.

Freckleton RP. The seven deadly sins of comparative analysis. Journal of Evolutionary Biology. 2009;
22(7):1367–1375. [PubMed: 19508410]

Frentiu FD, Clegg SM, Chittock J, Burke T, Blows MW, Owens IPF. Pedigree-free animal models:
The relatedness matrix reloaded. Proceedings of the Royal Society of London B: Biological
Sciences. 2008; 275:639–647.

Gelman, A.; Shirley, K. Inference from simulations and monitoring convergence. In: Brooks, S.;
Gelman, A.; Jones, GL.; Meng, X., editors. Handbook of Markov Chain Monte Carlo. Vol. 6. CRC
Press; London: 2011. p. 163-174.

Geyer, CJ. Introduction to Markov chain Monte Carlo. In: Brooks, S.; Gelman, A.; Jones, GL.; Meng,
X., editors. Handbook of Markov Chain Monte Carlo. London: CRC Press; 2011. p. 3-48.

Blomquist and Brent Page 14

Int J Primatol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.jstatsoft.org/v32/i01/
http://www.jstatsoft.org/v32/i01/


Grafen, A. Natural selection, kin selection and group selection. In: Krebs, JR.; Davies, NB., editors.
Behavioural ecology: An evolutionary approach. 2. New York: Blackwell; 1984. p. 62-84.

Hadfield JD. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm
R package. Journal of Statistical Software. 2010; 33(2):1–22. [PubMed: 20808728]

Hadfield JD, Nakagawa S. General quantitative genetic methods for comparative biology:
Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal
of Evolutionary Biology. 2010; 23(3):494–508. [PubMed: 20070460]

Hadfield JD, Nutall A, Osorio D, Owens IP. Testing the phenotypic gambit: Phenotypic, genetic and
environmental correlations of colour. Journal of Evolutionary Biology. 2007; 20:549–557.
[PubMed: 17305821]

Hilbe, JM. Negative binomial regression. 2. New York: Cambridge University Press; 2011.

Housworth EA, Martins EP, Lynch M. The phylogenetic mixed model. American Naturalist. 2004;
163(1):84–96.

Jones, CB. Behavioral flexibility in primates: Causes and consequences. New York: Springer; 2005.

Klingenberg, CP. Multivariate allometry. In: Marcus, LF.; Corti, M.; Loy, A.; Naylor, GJP.; Slice,
DE., editors. Advances in morphometrics. New York: Plenum Press; 1996. p. 23-49.

Korsgaard IR, Andersen AH, Jensen J. Prediction error variance and expected response to selection,
when selection is based on the best predictor—for Gaussian and threshold characters, traits
following a Poisson mixed model and survival traits. Genetics, Selection, Evolution. 2002;
34:307–333.

Kruschke, J. Doing Bayesian data analysis: A tutorial introduction with R and BUGS. Burlington, MA:
Academic Press; 2011.

Kruuk LEB. Estimating genetic parameters in natural populations using the ‘animal model.
Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2004;
359(1446):873–890.

Kruuk LEB, Slate J, Wilson AJ. New answers for old questions: The evolutionary quantitative genetics
of wild animal populations. Ecology. 2008; 39:525–548.

Lande R. A quantitative genetic theory of life history evolution. Ecology. 1982; 63(3):607–615.

Lawler RR. Sifaka positional behavior: Ontogenetic and quantitative genetic approaches. American
Journal of Physical Anthropology. 2006; 131:261–271. [PubMed: 16596593]

Leigh SR. Evolution of human growth. Evolutionary Anthropology. 2001; 10:223–236.

Loeys T, Moerkerke B, De Smet O, Buysse A. The analysis of zero-inflated count data: Beyond zero-
inflated Poisson regression. British Journal of Mathematical and Statistical Psychology. 2012;
65:163–180. [PubMed: 21950803]

Lynch, M.; Walsh, B. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer
Associates; 1998.

Maestripieri, D. Maternal influences on offspring growth, reproduction, and behavior in primates. In:
Maestripieri, D.; Mateo, JM., editors. Maternal effects in mammals. Chicago: University of
Chicago Press; 2009. p. 256-291.

Martin JGA, Nussey DH, Wilson AJ, Réale D. Measuring individual differences in reaction norms in
field and experimental studies: A power analysis of random regression models. Methods in
Ecology and Evolution. 2011; 2:362–374.

McCulloch, CE.; Searle, SR. Generalized, linear, and mixed models. New York: John Wiley & Sons;
2001.

Meyer K. Random regression analyses using B-splines to model growth of Australian Angus cattle.
Genetics, Selection, Evolution. 2005; 37:473–500.

Moore AJ, Haynes KF, Preziosi RF, Moore PJ. The evolution of interacting phenotypes: Genetics and
evolution of social dominance. American Naturalist. 2002; 160:S186–S197.

Morrissey MB, Wilson AJ. pedantics: An r package for pedigree-based genetic simulation and
pedigree manipulation, characterization and viewing. Molecular Ecology Resources. 2010;
10:711–719. [PubMed: 21565076]

Blomquist and Brent Page 15

Int J Primatol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: A practical guide for
biologists. Biological Reviews of the Cambridge Philosophical Society. 2010; 85:935–956.
[PubMed: 20569253]

Nee S, Colegrave N, West SA, Grafen A. The illusion of invariant quantities in life histories. Science.
2005; 309:1236–1239. [PubMed: 16109879]

O’Hara RB, Cano JM, Ovaskainen O, Teplitsky C, Ahlo JS. Bayesian approaches in evolutionary
quantitative genetics. Journal of Evolutionary Biology. 2008; 21:949–957. [PubMed: 18373658]

Olesen I, Perez-Enciso M, Gianola D, Thomas DL. A comparison of normal and nonnormal mixed
models for number of lambs born in Norwegian sheep. Journal of Animal Science. 1994; 72:1166–
1173. [PubMed: 8056660]

Pemberton JM. Wild pedigrees: The way forward. Proceedings of the Royal Society of London B:
Biological Sciences. 2008; 275:613–621.

Peters, RH. A critique for ecology. New York: Cambridge University Press; 1991.

Plomin, R.; DeFries, JC.; McClearn, GE.; McGuffin, P. Behavioral genetics. 5. New York: Worth;
2009.

Price T, Schluter D. On the low heritability of life history traits. Evolution. 1991; 45:853–861.

Quinn JL, Charmantier A, Garant D, Sheldon BC. Data depth, data completeness, and their influence
on quantitative genetic estimation in two contrasting bird populations. Journal of Evolutionary
Biology. 2006; 19:994–1002. [PubMed: 16674594]

R Development Core Team. R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2012. Available at: http://www.R-project.org

Rawlins, RG.; Kessler, MJ., editors. The Cayo Santiago macaques: History, behavior, and biology.
Albany: SUNY Press; 1986.

Roff, DA. Optimality modeling and quantitative genetics: A comparison of the two approaches. In:
Boake, CRB., editor. Quantitative genetic studies of behavioral evolution. Chicago: University of
Chicago Press; 1994. p. 49-66.

Roff, DA. Evolutionary quantitative genetics. New York: Chapman and Hall; 1997.

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods in
Ecology and Evolution. 2010; 1:103–113.

Schlichting, CD.; Pigliucci, M. Phenotypic evolution: A reaction norm perspective. Sunderland, MA:
Sinauer Associates; 1998.

Silk JB. Measurement of the relative importance of individual selection and kin selection among
females of the genus Macaca. Evolution. 1984; 38(3):553–559.

Silk JB. Using the “f”-word in primatology. Behaviour. 2002; 139:421–446.

Sillanpää MJ. On statistical methods for estimating heritability in wild populations. Molecular
Ecology. 2011; 20(7):1324–1332. [PubMed: 21426431]

Sorensen, D.; Gianola, D. Likelihood, Bayesian, and MCMC methods in quantitative genetics. New
York: Springer; 2002.

Spencer HG. Effects of genomic imprinting on quantitative traits. Genetica. 2009; 136:285–293.
[PubMed: 18690543]

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and
fit. Journal of the Royal Statistical Society B: Statistical Methodology. 2002; 64:583–639.

Stirling DG, Reale D, Roff DA. Selection, structure and the heritability of behaviour. Journal of
Evolutionary Biology. 2002; 15:277–289.

Tung J, Alberts SC, Wray GA. Evolutionary genetics in wild primates: Combining genetic approaches
with field studies of natural populations. Trends in Genetics. 2010; 26:353–362. [PubMed:
20580115]

van Oers, K.; Sinn, DL. Toward a basis for the phenotypic gambit: Advances in the evolutionary
genetics of animal personality. In: Inoue-Murayama, M.; Kawamura, S.; Weiss, A., editors. From
genes to animal behavior. New York: Springer; 2011. p. 165-183.

Visscher PM, Hill WG, Wray NR. Heritability in the genomics era—concepts and misconceptions.
Nature Reviews Genetics. 2008; 9:255–266.

Blomquist and Brent Page 16

Int J Primatol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.R-project.org


Visscher PM, McEvoy B, Yang J. From Galton to GWAS: Quantitative genetics of human height.
Genetical Research. 2010; 92:371–379.

Vitzthum VJ. A number no greater than the sum of its parts: The use and abuse of heritability. Human
Biology. 2003; 75:539–558. [PubMed: 14655876]

Wainer H. The suspended rootogram and other visual displays: An empirical validation. American
Statistician. 1974; 28:143–145.

Weiss A, King JE, Enns RM. Subjective well-being is heritable and genetically correlated with
dominance in chimpanzees (Pan troglodytes). Journal of Personality and Social Psychology. 2002;
83(5):1141–1149. [PubMed: 12416918]

Williamson DE, Coleman K, Bacanu S, Devlin BJ, Rogers J, Ryan ND, Cameron JL. Heritability of
fearful-anxious endophenotypes in infant rhesus macaques: A preliminary report. Biological
Psychiatry. 2003; 53:284–291. [PubMed: 12586447]

Wilson AJ. Why h2 does not always equal VA/VP? Journal of Evolutionary Biology. 2008; 21(3):647–
650. [PubMed: 18266683]

Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH.
An ecologist’s guide to the animal model. Journal of Animal Ecology. 2010; 79:13–26. [PubMed:
20409158]

Zuur, A.; Ieno, EN.; Walker, N.; Saveliev, AA.; Smith, GM. Mixed effects models and extensions in
ecology with R. New York: Springer; 2009.

Blomquist and Brent Page 17

Int J Primatol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
A “rootogram” of the raw proximity data frequencies as grey bars (Wainer, 1974) for Cayo
Santiago, PR rhesus macaques (Macaca mulatta). Expected frequencies if the counts
conformed to a Poisson distribution with the same rate parameter (λ) are shown with the
black line and dots. Bars for the observed frequencies are shifted up or down to match the
Poisson line, making their overlap with the horizontal axis a simple check on whether the
frequency is greater or less than expected. There is an excess at counts ≥3 and at 0, and
deficiency at counts 1 and 2.
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Fig. 2.
Fixed effect predictions of proximity in the full heritability model Cayo Santiago, PR rhesus
macaques (Macaca mulatta). The upper panels show the observation date*sex interaction
and the lower panels give the rank*sex interaction. Random effects are marginalized in all
panels. Points correspond to predictions for each record (middle curve/line) using the
posterior mean coefficients and posterior mode of the sum of the variance components while
the outer curves give quantiles (2.5% and 97.5%) from the individual MCMC samples.
These mimic plots produced by the effects package (Fox 2003; Fox and Hong 2009).
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Fig. 3.
Posterior distributions of repeatabilities and heritabilities from the intercept only and full
models Cayo Santiago, PR rhesus macaques (Macaca mulatta). Posterior modes and
credible intervals are given in Table II.
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Fig. 4.
Diagnostic q–q and p–p plots from the full heritability model for Cayo Santiago, PR rhesus
macaques (Macaca mulatta). Each row shows a single randomly selected MCMC sample.
Each column displays q–q plots for the animal additive genetic effects, q–q plots for the
permanent environment effect, and p–p plots for the predicted Poisson counts (Elston et al.
2001). In each plot, points are expected to fall along the diagonal line. Departures would
indicate a poor fit of the Poisson log-normal GLMM. Deviation in these plots and those for
other samples are quite small.
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Table I

Description of the pedigree used in the heritability models for Cayo Santiago, PR rhesus macaques (Macaca
mulatta)

Phenotyped IDs 107

Pedigree members 428

Maximum generations 8

Founders 13

Maternities 415

Paternities 160

F>0 33

F≥1/16 0

% largest family 100

Āij 0.013

% Aij>0 26.440

% Aij≥1/16 6.870

Int J Primatol. Author manuscript; available in PMC 2015 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Blomquist and Brent Page 23

Table II

Results of repeatability and heritability models for Cayo Santiago, PR rhesus macaques (Macaca mulatta)
with either a full set of fixed effects or an intercept only

Repeatability Heritability Repeatability Heritability

Intercept −0.751 (−0.878,−0.623) −0.854 (−1.050,−0.669) −0.452 (−0.660,−0.208) −0.480 (−0.720,0.240)

Rank −0.122 (−0.294,0.029) −0.084 (−0.272,0.102)

Male −0.659 (−1.087,−0.187) −0.642 (−1.082,−0.185)

Male: rank −0.877 (−1.203,−0.596) −0.912 (−1.223,−0.613)

σa
2 0.304 (0.144,0.455) 0.114 (0.013,0.175)

σm
2 0.351 (0.246,0.497) 0.010 (0.000,0.163) 0.123 (0.082,0.194) 0.016 (0.000,0.108)

σe
2 0.371 (0.312,0.452) 0.377 (0.305,0.452) 0.362 (0.313,0.448) 0.380 (0.308,0.446)

μ 0.662 (0.606,0.783) 0.614 (0.499,0.732) 0.743 (0.681,0.819) 0.722 (0.640,0.846)

Ro 0.157 (0.112,0.228) 0.062 (0.040,0.102)

ho
2 0.139 (0.057,0.198) 0.057 (0.009,0.093)

Posterior means of the fixed effect coefficients and 95% credible intervals are reported. Variance components and ratios have posterior modes and
credible intervals reported. In the full models, the intercept is mid-ranked female from the mean observation date. Natural cubic spline coefficients
for sex*observation date effects are omitted because they are easiest to interpret graphically (Fig. 2). μ is the posterior mode of the MCMC sample
marginal medians.

Int J Primatol. Author manuscript; available in PMC 2015 February 01.


