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Summary
In many studies with a survival outcome, it is often not feasible to fully observe the primary event
of interest. This often leads to heavy censoring and thus, difficulty in efficiently estimating
survival or comparing survival rates between two groups. In certain diseases, baseline covariates
and the event time of non-fatal intermediate events may be associated with overall survival. In
these settings, incorporating such additional information may lead to gains in efficiency in
estimation of survival and testing for a difference in survival between two treatment groups. If
gains in efficiency can be achieved, it may then be possible to decrease the sample size of patients
required for a study to achieve a particular power level or decrease the duration of the study. Most
existing methods for incorporating intermediate events and covariates to predict survival focus on
estimation of relative risk parameters and/or the joint distribution of events under semiparametric
models. However, in practice, these model assumptions may not hold and hence may lead to
biased estimates of the marginal survival. In this paper, we propose a semi-nonparametric two-
stage procedure to estimate and compare t-year survival rates by incorporating intermediate event
information observed before some landmark time, which serves as a useful approach to overcome
semi-competing risks issues. In a randomized clinical trial setting, we further improve efficiency
through an additional calibration step. Simulation studies demonstrate substantial potential gains
in efficiency in terms of estimation and power. We illustrate our proposed procedures using an
AIDS Clinical Trial Protocol 175 dataset by estimating survival and examining the difference in
survival between two treatment groups: zidovudine and zidovudine plus zalcitabine.
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1 Introduction
In many research settings with an event time outcome, it is often not feasible to fully
observe the primary event of interest as these outcomes are typically subject to censoring. In
the presence of noninformative censoring, the Kaplan Meier (KM) estimator (Kaplan &
Meier, 1958) can provide consistent estimation of the event rate. However, such a simple
estimate may not be extremely precise in settings with heavy censoring. To improve the
efficiency, many novel procedures have been proposed to take advantage of available
auxiliary information. For example, when the auxiliary information consists of a single
discrete variable W, it has been shown that the nonparametric maximum likelihood estimator
of survival is n−1∑i F ̂T|W(t|Wi) where F ̂T|W is the KM estimate of survival based on the
subsample with W = Wi (Rotnitzky & Robins, 2005). Murray & Tsiatis (1996) considered a
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nonparametric estimation procedure to incorporate a single discrete covariate and provided
theoretical results on when such augmentation enables more efficient estimation than the
KM estimate. However, when multiple and/or continuous covariates are available, such fully
nonparametric procedures may not perform well due to the curse of dimensionality.

Additional complications may arise when auxiliary variables include intermediate event
information observed over time. In many clinical studies, information on non-fatal
intermediate events associated with survival may be available in addition to baseline
covariates. For example, in acute leukemia patients, the development of acute graft-versus-
host disease is often monitored as it is predictive of survival following bone marrow or stem
cell transplantation (Lee et al., 2002; Cortese & Andersen, 2010). The occurrence of
bacterial pneumonia provides useful information for predicting death among HIV-positive
patients (Hirschtick et al., 1995). In these settings, incorporating intermediate event
information along with baseline covariates may lead to gains in efficiency for the estimation
and comparison of survival rates.

In the aforementioned examples, the primary outcome of interest is time to a terminal event
such as death and the intermediate event is time to a non-terminal event. This setting is
referred to as a semi-competing risk setting since the occurrence of the terminal event would
censor the non-terminal event but not vice versa. With a single intermediate event and no
baseline covariates, Gray (1994) proposed a kernel smoothing procedure to incorporate such
event information in order to improve estimation of survival. Parast et al. (2011) proposed a
nonparametric procedure for risk prediction of residual life when there is a single
intermediate event and a single discrete marker. Parast et al. (2012) extended this procedure
to incorporate multiple covariates using a flexible varying-coefficient model. However, such
methods cannot be easily extended to allow for both multiple intermediate events and
baseline covariates due to the curse of dimensionality (Robins & Ritov, 1997).

Most existing methods for analyzing semi-competing risk data focus on estimation of
relative risk parameters and/or the joint distribution of events under semiparametric models
(Fine et al., 2001; Siannis et al., 2007; Jiang et al., 2005). These semiparametric models,
while useful in approximating the relationship between the event times and predictors, may
not be fully accurate given the complexity of the disease process. Therefore, marginal
survival rates derived under such models may be biased and thus lead to invalid conclusions
(Lin & Wei, 1989; Hjort, 1992; Lagakos, 1988). To overcome such limitations, we propose
a two-stage procedure by (i) first using a semiparametric approach to incorporate baseline
covariates and intermediate event information observed before some landmark time; and (ii)
then estimating the marginal survival nonparametrically by smoothing over risk scores
derived from the model in the first stage. The landmarking approach allows us to overcome
semi-competing risk issues and the smoothing procedure in the second stage ensures the
consistency of our survival estimates.

In a randomized clinical trial (RCT) setting, there is often interest in testing for a treatment
difference in terms of survival. Robust methods to incorporate auxiliary information when
testing for a treatment effect have been previously proposed in the literature. Cook &
Lawless (2001) discuss a variety of statistical methods that have been proposed including
parametric and semiparametric models. Gray (1994) adopted kernel estimation methods
which incorporate information on a single intermediate event. To incorporate multiple
baseline covariates, Lu & Tsiatis (2008) used an augmentation procedure to improve the
efficiency of estimating the log hazard ratio, β, from a Cox model and testing for an overall
treatment effect by examining the null hypothesis β = 0 and demonstrated substantial gains
in efficiency. However, if the Cox model does not hold, the hazard ratio estimate converges
to a parameter that may be difficult to interpret and may depend on the censoring
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distribution. It would thus be desirable to use a model-free summary measure to assess
treatment difference. Furthermore, none of the existing procedures incorporate both
intermediate event and baseline covariate information. In this paper, we use our proposed
two-stage estimation procedure, which utilizes all available information, to make more
precise inference about treatment difference as quantified by the difference in t-year survival
rates.

The rest of the paper is organized as follows. Section 2 describes the proposed two-stage
estimation procedure in a one-sample setting. Section 3 presents a testing procedure using
these resulting estimates. We present an additional augmentation step which takes advantage
of treatment randomization to further improve efficiency in an RCT setting. Simulation
studies given in Section 4 demonstrate substantial potential gains in efficiency in terms of
estimation and power. In Section 5 we illustrate our proposed procedures using an AIDS
Clinical Trial comparing the survival rates of HIV patients treated with zidovudine and those
treated with zidovudine plus zalcitabine.

2 Estimation
For the ith subject, let T i denote the time of the primary terminal event of interest, T i
denote the vector of intermediate event times, Zi denote the vector of baseline covariates,
and Ci denote the administrative censoring time assumed independent of (T ,T i,Zi). Due to
censoring, for T i and T i, we could potentially observe X i = min(T i, Ci), X i = min(T i,
Ci) and δ i = I(T i ≤ Ci), δ i = I(T i ≤ Ci). Due to semi-competing risks, T i is additionally
subject to informative censoring by T i, while T i is only subject to administrative
censoring and cannot be censored by T i. Let t0 denote some landmark time prior to t. Our
goal is to estimate S(t) = P(T i > t) using intermediate event collected up to t0 and baseline
covariate information, where t is some pre-specified time point such that P(X  > t | T  ≥ t0)
∈ (0, 1) and P(T  ≤ t0, T  ≤ t0) ∈ (0, 1).

2·1 Two-stage estimation procedure
For t > t0, S(t) = P(T i > t) can be expressed as S(t | t0)S(t0), where

(2·1)

We first consider estimation of S(t | t0) with a two-stage procedure using subjects in the
subset Ωt0 = {i : X i > t0} as illustrated in Figure 1. Note that conditional on X i > t0, T i is
observable up to T i ∧ t0 and I(T i ≤ t0) is always observable. Let

 for all subjects in Ωt0. Note that for any function of
W, ζ(·),

(2·2)

where Sζ(W)(t | t0) = P{T i > t | X i > t0, ζ(Wi)}. Hence if Ŝζ(W)(t | t0) is a consistent

estimator of Sζ(W)(t | t0), S(t | t0) can be estimated consistently with 

where . When T i consists of a single intermediate event and Z
consists of a single discrete marker, the nonparametric estimation procedure proposed in
Parast et al. (2011) can be used to obtain a consistent estimator of SW(t | t0) with ζ(W) = W.
However, when the dimension of W is not small, such nonparametric estimation of SW(t | t0)
may not behave well (Robins & Ritov, 1997). Instead, we propose to reduce the dimension
of W by first approximating SW(t | t0) where ζ(W) = W with a working semiparametric
model and use the model to construct a low dimensional function that is then used to derive
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an estimator for S(t | t0). A useful example of such a model is the landmark proportional
hazards model (Van Houwelingen & Putter, 2008; Van Houwelingen, 2007; Van
Houwelingen & Putter, 2012)

(2·3)

where  is the unspecified baseline cumulative hazard function for T i among Ωt0 and β
is an unknown vector of coefficients. This is referred to as our Stage 1. Let β̂ be the

maximizer of the corresponding log partial likelihood function and  be the Breslow-
type estimate of baseline hazard (Breslow, 1972). When (2·3) is correctly specified,

 could consistently estimate SW(t | t0). However, if (2·3)
is not correctly specified, ŜW(t | t0) would not longer be a consistent estimator of SW(t | t0)

and thus  may be a biased estimate of S(t | t0) (Lagakos, 1988; O’neill,
1986). On the other hand, the risk score Ûi ≡ β̂𝖳Wi may still be highly predictive of T i.
This motivates us to overcome the difficulty arising from model misspecification and multi-

dimensionality of Wi by using . Therefore, S(t | t0) = E{SUi(t | t0)}, where Su(t |

t0) = P(T i > t | T i > t0, Ui = u),  and β0 is the limit of β̂, which always exists
(Hjort, 1992). In essence, we use the working Cox model as a tool to construct

 in stage 1 and estimate S(t | t0) as , where
Ŝu(t | t0) is a consistent estimator of Su(t | t0) obtained in stage 2.

To estimate Su(t | t0) in stage 2, we use a nonparametric conditional Nelson-Aalen estimator
(Beran, 1981) based on subjects in Ωt0. Specifically for any given t and u, we use the
synthetic data {(X i, δ i, Ûi), i ∈ Ωt0} to obtain a local constant estimator for the conditional
hazard Λu(t | t0) = −log Su(t | t0) as

as in Cai et al. (2010), where Yi(t) = I(T i ≥ t), Ni(t) = I(T i ≤ t)δ i, D̂ui = Ûi − u, K(·) is a
smooth symmetric density function, Kh(x) = K(x/h)/h, and h = O(n−υ) is a bandwidth with
1/2 > υ > 1/4. The resulting estimate for Su(t | t0) is Ŝu(t | t0) = exp{−Λ̂u(t | t0)}. The uniform
consistency of Ŝu(t | t0) in u for Su(t | t0) can be shown using similar arguments as in Cai et
al. (2010) under mild regularity conditions. Note that this consistency still holds when

 is discrete as long as it takes only a finite number of values (Du & Akritas,
2002). Finally, we propose to estimate S(t | t0) as

The uniform consistency of Ŝu(t | t0) along with the consistency of β̂ for β0 ensures the
consistency of Ŝ(t | t0) for S(t | t0). This approach is similar to the semiparametric dimension
reduction estimation procedure proposed in Hu et al. (2011) and Hu et al. (2010) for
estimating the conditional mean response in the presence of missing data.
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Now that we have obtained an estimate of S(t|t0) in (2·1), an estimate for S(t0) follows
similarly from this same two-stage procedure replacing Wi with Zi and Ωt0 with all patients.
More specifically, let β̂* be the maximizer of the partial likelihood function corresponding to
the Cox model:

(2·4)

where Λ0(·) is the baseline cumulative hazard function and β* is a vector of coefficients. We

then define  and use a local constant estimator, Λ̂u(t0), to obtain

 where  is a consistent estimator of
. An estimate for our primary quantity of interest S(t)

incorporating intermediate event and covariate information follows as ŜLM(t) ≡ Ŝ(t | t0)Ŝ(t0)
where LM indicates that we have used a landmark time to decompose our estimate into two
components.

2·2 Theoretical Properties of the Two-Stage Estimator
In this section, we provide theoretical results on how the proposed estimator compares to the
standard KM estimator denoted by ŜKM(t). We also aim to investigate how various
components of the proposed procedure contribute to the gain in efficiency. To this end, we
first show in Supplementary Appendix A that the variability of β̂ and β̂* can be ignored
when making inference about ŜLM(t). In Appendix I, we show that the influence functions of
Ŝ(t0), Ŝ(t|t0), and ŜLM(t) can be decomposed as the influence function corresponding to the
full data without censoring plus an additional component accounting for variation due to
censoring.

To examine the potential gain in efficiency of our proposed estimator over the KM
estimator, in Appendix II, we show that the reduction in variance is always non-negative
taking the form

as defined in Appendix II. Obviously, there would not be any gain in the absence of
censoring with G(t) ≡ 1. The maximum reduction is achieved when SUi(t | t0) = P(T i ≥ t |

T i ≥ t0, Wi) and . This condition for optimal efficiency is parallel to
the recoverability condition described in Hu et al. (2010) for conditional mean response
estimation, and is satisfied when the working models in (2·3) and (2·4) are correctly
specified. It is important to note that the optimality of the proposed estimator is within the
class of estimators constructed based on the specific choice of W and thus depends on t0. In
Sections 4 and 5, we examine the sensitivity of our estimator to the choice of t0 and propose
data-driven rules to further improve the robustness of our approach by combining
information from multiple t0s.

To shed light on where the gain in efficiency is coming from, we show in Supplementary
Appendix B.1 that ŜLM(t) ≈ ŜKM(t) + ℛ̂(t), where
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That is, our proposed estimator can also be expressed as the KM estimator augmented by a
mean zero martingale ℛ̂(t) corresponding to censoring weighted by baseline covariate and
intermediate event information. The term ℛ̂(t) is negatively correlated with ŜKM(t) and
improves efficiency by leveraging independent censoring and the correlation between T i
and {T i, Zi}. The proposed two-stage modeling framework allows us to optimally use this
additional information while protecting us against model misspecification. This
decomposition also connects our proposed estimator to the existing augmentation
procedures such as those considered in Lu & Tsiatis (2008). The advantage of our proposal
is that the modeling step naturally estimates the optimal bases without necessitating the
correct specification of the model. Variance estimates can be obtained using a perturbation-
resampling procedure as described in Supplementary Appendix C.

3 Comparing Survival Between Two Treatment Groups
Consider a two-arm RCT setting where we use  to denote treatment assignment with 
taking a value B with probability p and A otherwise. For  ∈ {A, B}, let S (t) denote the
survival rate of T  at time t in group  and ŜLM, (t) denote the aforementioned two-stage
estimator based on data from treatment group . An estimator for the risk difference, Δ(t) =
SA(t) − SB(t), may be obtained as Δ̂LM(t) = ŜLM,A(t) − ŜLM,B(t). The standard error of Δ̂LM(t)
can be estimated as σ̂(Δ̂LM(t)) using a perturbation-resampling procedure as described in
Supplementary Appendix C. A normal confidence interval (CI) for Δ(t) may be constructed
accordingly. To test the null hypothesis of H0 : Δ(t) = 0, a Wald-type test may be performed
based on ZLM(t) = Δ̂LM(t)/σ̂(Δ̂LM(t)). To compare this testing procedure to a test based on
ŜKM(t) let Δ̂KM(t) = ŜKM,A(t)− ŜKM,B(t) denote the KM estimate for Δ(t) where ŜKM, (t) is
the KM estimate of survival at time t in group .

Through an augmentation procedure in a RCT setting, Lu & Tsiatis (2008) demonstrated
substantial gains in power when testing the log hazard ratio under a Cox model. Though Lu
& Tsiatis (2008) does not offer procedures to estimate or test for a difference in t-year
survival rates, the investigation of their useful and effective procedure is worthwhile in our
setting. The augmentation procedure in Lu & Tsiatis (2008) (LT) leads to significant gains
in efficiency by leveraging two key sets of assumptions: (1) C is independent of {T , Z}
given  and (2)  is independent of Z. The LT procedure takes advantage of such
information by explicitly creating functional bases and augmenting over both censoring
martingales and I(  = B) − p, weighted by these specified bases. Similar to the arguments
given in Section 2 and Supplementary Appendix B.1, one may interpret Δ̂LM(t) as
augmenting Δ̂KM(t) with an optimal basis of censoring martingales approximated by the
working models. However, our procedure does not require explicit specification of the basis
and also leverages information on C being independent of T .

However, Δ̂LM(t) does not yet leverage information on the randomization of treatment
assignment (that is,  is independent of Z)and hence it is possible to further improve this
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estimator via augmentation. One may follow similar strategies as the LT procedure by
explicitly augmenting over certain basis functions of Z. Specifically, let H(Z) be any
arbitrary vector of basis functions. An augmented estimator can be obtained as Δ̂LM(t; ε, H)
= Δ̂LM(t) + ε𝖳 ∑i{I( i = B) − p}H(Zi), where ε is chosen to minimize the variance of Δ̂LM(t;
ε, H). However, a poor choice of bases and/or a large number of non-informative bases
might result in a loss of efficiency in finite samples (Tian et al., 2012). Here, we propose to
explicitly derive an optimal basis using the form of the influence function for Δ̂LM(t) and
subsequently use our two-stage procedure to estimate the basis. Specifically, in
Supplementary Appendix B.2 we derive an explicit form for the optimal choice for H(Z) in
this setting as

(3·1)

where SZi, (t) ≡ P(T i > t | Zi, i = ) for  = A, B. There are various ways one may
estimate (3·1). We choose to guard against possible model misspecification and consider a
robust estimate using the proposed two-stage procedure. Specifically, we first fit a Cox
model to treatment group  using only Z information to obtain an estimated log hazard ratio,

, and then approximate −log SZ, (t) as , where Λ̂u, (β, t) is obtained
similarly to Λ̂u(β, t) but only using data in the treatment group . We denote the resulting
estimated basis as Ĥopt(Zi, t). We then obtain an augmented estimator for Δ(t) as Δ̂AUG(t) =
Δ̂LM(t) − ε̂∑i{I( i = B) − p}Ĥopt(Zi, t),where ε̂ is an estimate of cov{Δ̂LM(t), ∑i{I( i = B) −
p}Ĥopt(Zi, t)}var{∑i{I( i = B) − p}Ĥopt(Zi, t)}}−1 which can be approximated using the
perturbation procedure as described in Supplementary Appendix C. Note that we use the
proposed two-stage procedure to approximate the optimal basis for augmentation. Therefore,
when the working models do not hold, the estimated basis may not be optimal but can still
improve efficiency empirically by capturing important associations between T i and Zi. In
addition, we estimate ε empirically as ε̂ to guard against model misspecification. Since the
variability due to Ĥopt and ε̂ has a negligible contribution asymptotically to the variance of
Δ̂AUG(t), such calibration and weighting improve the robustness of our proposed approach.
Hence, this approach could ultimately improve the efficiency of Δ̂AUG(t) even in the
presence of model misspecification.

4 Simulations
We conducted simulation studies to examine the finite sample properties of the proposed
estimation procedures. If a gain in efficiency is observed over the KM estimate, one may
consider whether this advantage is due in part to incorporating covariate information or
incorporating T  information or both. To address this question, let

 denote an estimate of S(t) incorporating only T  information
where ŜT (t | t0) is obtained using the two-stage procedure with W = [I(T i ≤ t0), min(T i,
t0)]𝖳. In addition, let ŜZ(t) denote an estimate of S(t) incorporating only Z information. In
our numerical examples, we additionally estimate these quantities for comparison. In an
effort to compare our results to those examined previously in the literature, we apply our
method to similar simulation settings as in Gray (1994). Three settings were considered: (i) a
no treatment effect setting i.e. null setting (ii) a small treatment effect setting (iii) a large
treatment effect setting. For illustration, t0 =1 year and t = 2 years i.e. we are interested in
the probability of survival past 2 years. In all settings, censoring, Ci, was generated from a
Uniform(0.5,2.5) distribution. For each treatment group, n=1000 and results summarize
2000 replications under the null setting (i) and 1000 replications under settings (ii) and (iii).
Variance estimates are obtained using the perturbation-resampling method. Under the null
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setting (i), the event times for each treatment group (Treatment A and Treatment B) were

generated from a Weibull distribution with scale parameter  and shape parameter 1/a1

i.e. as  where a1 = 1.5, b1 = 1, and U1 ~ Uniform(0,1). The
conditional distribution T  − T  | T  was generated from a Weibull distribution with scale

parameter  and shape parameter 1/a2 i.e. as  where a2 = 1.5, b2
= exp(g(T )), g(t) = 0.15−0.5t2 and U2 ~ Uniform(0,1). We take the covariate Z to be
0.75U2 + .25U3 where U3 ~ Uniform(0,1). Note that in these simulations, T  must occur
before T  though our procedures do not require this assumption to hold. In this setting,
P(X i < t, δ i = 1) = 0.37 and P(X i < t0, δ i = 1) = 0.59 in each group. In setting (ii) the
Treatment A event times were generated as shown above and the Treatment B event times
were generated similarly but with b1 = 1.2. In this setting, P(X i < t, δ i = 1) = 0.39 and
P(X i < t0, δ i = 1) = 0.65 in the Treatment B group. Finally, in setting (iii) the Treatment A
event times were generated as shown above and the Treatment B event times were generated
similarly but with b1 = 1.4. In this setting, P(X i < t, δ i = 1) = 0.43 and P(X i < t0, δ i = 1)
= 0.70 in the Treatment B group.

As in most nonparametric functional estimation procedures, the choice of the smoothing
parameter h is critical. In our setting, the ultimate quantity of interest is the marginal
survival and the estimator is effectively an integral of the conditional survival estimates. To
eliminate the impact of the bias of the conditional survival function on the resulting
estimator, we also require the standard undersmoothing assumption of h = O(n−δ) with δ ∈
(1/4, 1/2). To obtain an appropriate h we first use the bandwidth selection procedure given
by Scott (1992) to obtain hopt, and then we let h = hoptn−c0 for some c0 ∈ (1/20, 3/10) to
ensure the desired rate for h. In all numerical examples, we chose c0 = 0.10.

Results from estimation of S(t) are shown in Table 1. The standard error estimates obtained
by the perturbation-resampling procedure approximate the empirical standard error estimates
well. While all estimators have negligible bias and satisfactory coverage levels, our
proposed estimate which incorporates both Z and T  information is more efficient than that
from the standard Kaplan Meier estimate with relative efficiencies with respect to mean
squared error (MSE) around 1.20. Though extensive simulation studies may be performed,
we expect that such efficiency gains would not be seen in settings with little censoring or
with weak correlation between the intermediate and terminal event (Cook & Lawless, 2001).
Note that in all three settings, Ci ~ Uniform(0.5, 2.5) and thus P(C < t0) = 0.25 and P(C < t)
= 0.75. To examine efficiency gains under varying degrees of censoring, we simulated data
as in setting (i) but with (a) more censoring where Ci ~ Uniform(0.5, 2.15) and (b) less
censoring Ci ~ Uniform(0.5, 3.5). In (a) P(C < t0) = 0.30 and P(C < t) = 0.90 and the relative
efficiency with respect to MSE was 1.40 (not shown). In (b) P(C < t0) = 0.17 and P(C < t) =
0.50 and the relative efficiency with respect to MSE was 1.10 (not shown).

To examine the sensitivity of our estimator to the choice of t0 and to further improve the
robustness of our procedure by combining information from multiple t0s, we estimate S(t)
with t0 ∈ ℧ = {k0.25, k0.50, k0.75}, where kp is the pth percentile of {X i : δ i = 1}, in setting
(i). We denote the resulting estimators and corresponding standard errors estimated using the
perturbation-resampling procedure as Ŝk0.25(t), Ŝk0.50(t), Ŝk0.75(t) and σ̂k0.25, σ̂k0.50, σ̂k0.75,
respectively. One potential data-driven approach to choose t0 would be to set t0 as

 and let  denote the corresponding estimator of S(t). Alternatively,
one could consider an optimal linear combination of Ŝt0(t) = (Ŝk0.25(t), Ŝk0.50(t), Ŝk0.75(t))𝖳,

, where wcomb = 1𝖳∑̂−1[1𝖳∑̂−11]−1 and ∑̂ is the estimated covariance
matrix of Ŝt0(t) estimated using the perturbation-resampling procedure. The variance of
Ŝcomb(t) can be estimated as 1𝖳∑̂−11. Due to the high collinearity of Ŝt0(t), we expect that in
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finite samples, ∑̂−1 may be an unstable estimate of var{Ŝt0(t)}−1. Consequently Ŝcomb(t) may
not perform well and 1𝖳∑̂−11 may be under-estimating the true variance of Ŝcomb(t). Another
alternative would be an inverse variance weighted (IVW) estimator of S(t),

 where wIVW = 1𝖳diag(Σ̂)−1[1𝖳diag(Σ̂)−11]−1. Under the current

simulation setting (ii), the empirical standard errors of Ŝk0.25(t), Ŝk0.50(t), Ŝk0.75(t), ,
Ŝcomb(t), and ŜIVW(t) are 0.0215, 0.0210, 0.0207, 0.0210, 0.0206,and 0.0206 respectively.

Although asymptotically the variance of  should be the same as that of Ŝk0.75(t), due to

the similarity among {σ̂t0, t0 ∈ ℧}, the variability in  does contribute additional noise to

. As expected, using 1𝖳∑̂−11, the average variance of Ŝcomb(t) is estimated as 0.0202,
which is slightly lower than the empirical variance of Ŝcomb(t). For ŜIVW(t), the average of
the estimated variance is 0.0204, which is close to the empirical variance. The empirical
coverage levels of the 95% confidence intervals using Ŝcomb(t) and ŜIVW(t) are 0.945 and
0.943, respectively, indicating that such estimators perform well when combining across a
small number of choices for t0. This suggests that our proposed estimators are not overly
sensitive to the choice of t0 and a reasonable approach in practice may be to estimate S(t)
using the proposed combined or IVW estimator.

For comparing treatment groups, we show results on the estimation precision and power in
testing in Table 2. Similar to above, let Δ̂Z(t) denote the estimate of Δ(t) using Z information

only and  denote the estimate using T  information only. Corresponding test
statistics can then be constructed similar to Δ̂LM(t). With respect to estimation precision for
the treatment difference in survival rate, our proposed procedure yields about 49% gain in
efficiency compared to the KM estimator. For testing for a treatment difference, under the

null setting (i), the type I error is close to the nominal level of 0.05 with  having a
slightly higher value of 0.0538. When there is a small treatment difference, setting (ii), the
power to detect a difference in survival at time t = 2 is 0.374 using a standard Kaplan Meier
estimate and 0.457 when using the proposed procedure incorporating Z and T  information.
We gain more power through additional augmentation which results in a power of 0.520.
Similarly, in setting (iii), when there is a large treatment difference, power increases from
0.846 to 0.941 after incorporating Z and T  information and augmentation. These results
suggest that in this setting, we can gain substantial efficiency by using the proposed
procedures.

5 Example
We illustrate the proposed procedures using a dataset from the AIDS Clinical Trial Group
(ACTG) Protocol 175 (Hammer et al., 1996). This dataset consists of 2467 patients
randomized to 4 different treatments: zidovudine only, zidovudine + didanosine, zidovudine
+ zalcitabine, and didanosine only. The long term event of interest, T , is the time to death
and intermediate event information consists of two intermediate events, T  = (T , T )𝖳

where T  = time to an AIDS-defining event e.g. pneumocystis pneumonia and T  = time to
a 50% decline in CD4. If a patient experienced multiple intermediate events of one kind, for
example multiple AIDS-defining events, the earliest occurrence of the event was used. For
illustration, t0 = 1 year and t = 2.5 years and we examine survival in patients from the
zidovudine only (mono group, n=619) and zidovudine + zalcitabine (combo group, n=620)
groups. Figure 2 displays the KM estimate of survival in each group. Baseline covariates, Z,
include the mean of two baseline CD4 counts, Karnofsky score, age at randomization,
weight, symptomatic status, use of zidovudine in the 30 days prior to randomization, and
days of antiretroviral therapy before randomization. Results are shown in Table 3. Our
proposed procedure leads to a t-year survival rate estimate of 0.926 for the mono group and
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0.953 for the combo group. The KM estimate of survival is similar though smaller in both
groups.

To examine the sensitivity of our estimator to the choice of t0 in this example, we estimate
S(t) with t0 ∈ ℧ = {k0.25, k0.50, k0.75} = {392, 582, 818}, where kp is the pth percentile of
{X i : δ i = 1, X i : δ i = 1}, X ji = min(T ji,Ci) and δ ji = I(T ji ≤ Ci) for j = 1, 2 in the
zidovudine only group. Note that when t0 = 365 as used above, Ŝ(t) = 0.9260 with estimated
standard error equal to 0.0105. With t0 ∈ ℧, our estimates of S(t) are 0.9272, 0.9262, and
0.9262 and estimates of standard error are 0.0106, 0.0105, and 0.0107, respectively. As
suggested above, a reasonable alternative approach would be to estimate S(t) using the
proposed combined or IVW estimator. Here, Ŝcomb(t) = 0.9265 and ŜIVW(t) = 0.9266 with
standard error estimates 0.0105 and 0.0105, respectively. Therefore, we find that our
estimates of survival and corresponding standard error are not sensitive to the choice of t0 in
this example and that both of the combined procedures give similar results on both the point
and interval estimators.

We are interested in testing H0 : Δ(2.5) ≡ Smono(2.5) − Scombo(2.5) = 0. Results for
comparing the two treatment groups are shown in Table 4. Point estimates of Δ(2.5) from
various procedures are reasonably close to each other with the KM estimator being 0.0255
and our proposed estimators being 0.0271 and 0.0278 without and with further
augmentation, respectively. The proposed procedure provides an estimate which is roughly
19% more efficient than that from the KM estimate. The p-value for this test decreased from
0.0942 to 0.0533 after incorporating information on baseline covariates and T .
Furthermore, augmentation in addition to the two-stage procedure provides an estimate
approximately 49% more efficient than the KM estimate and a p-value of 0.0267.

6 Remarks
We have proposed a semi-nonparametric two-stage procedure to improve the efficiency in
estimating S(t) in a RCT setting. We demonstrate with both theoretical and numerical
studies that there are substantial potential efficiency gains in both estimation and testing of t-
year survival. Our approach can easily incorporate multiple intermediate events, which is
appealing when multiple recurrent event information is useful for predicting the terminal
events.

This procedure uses the landmark concept developed in Van Houwelingen (2007), Van
Houwelingen & Putter (2012) and Parast et al. (2012) to leverage information on multiple
intermediate events and baseline covariates, which overcomes complications that arise in a
semi-competing risk setting. Existing work on landmark prediction has focused primarily on
the prediction of residual life while this paper focuses on improving the estimation of
marginal survival. Model misspecification may lead to inaccurate prediction, but would not
void the validity of many of the previously proposed prediction procedures. On the contrary,
model misspecification of the conditional survival could lead to a biased estimate of the
marginal survival. To guard against model misspecification, we use working models to
estimate the conditional survival with an additional layer of calibration which ensures the
consistency of the marginal survival estimates. We derive asymptotic expansions of the
proposed estimator to provide insight into why this method would always improve
efficiency compared to the KM estimator and when we would expect to achieve optimal
efficiency. The proposed approach can be seen as being related to Bang & Tsiatis (2000)
which proposes a partitioned estimator that makes use of the cost history for censored
observations to estimate overall medical costs and to Hu et al. (2011) and Hu et al. (2010)
which use a semiparametric dimension reduction procedure to estimate the conditional mean
response in the presence of missing data.
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To avoid any bias due to model specification we use the Cox model only as a tool for
dimension reduction followed by a nonparametric kernel Nelson-Aalen estimator of survival
to obtain a consistent final estimate of survival. Two conditions required for the consistency
of Ŝu(t|t0) are independent censoring and the score derived under a given working model, Û
= β̂′W, must converge to a deterministic score U = β′W. This convergence would require the
objective function used to derive β̂ to have a unique optimizer. Such an objective function
could involve convex functions such as a partial likelihood or an estimating functions with a
unique solution such as those considered in Tian et al. (2007) and Uno et al. (2007). In this
paper, we have used the Cox model as a working model to obtain β̂ and it has been shown
that the Cox partial likelihood has a unique solution even under model misspecification
(Hjort, 1992; Van Houwelingen, 2007). Though misspecification of the working model will
not affect consistency, it may affect the efficiency of the proposed estimator.

In general, our methods are not restricted to the Cox model being the working model; any
working model with this property along with providing root-n convergence of β̂ would be
valid and ensure consistency of the final estimate. For example, a proportional odds model
or other semi-parametric transformation model could be considered as long as this property
holds. However, it is unclear if the maximizer of the rank correlation under the single-index
models or the non-parametric transformation model for survival data (Khan & Tamer, 2009)
is unique under model misspecification. Therefore, some care should be taken in the choice
of the working models. It is interesting to note that it has been shown in some non-survival
settings that generalized linear model-type estimators are robust to misspecification of the
link function and that the resulting coefficients can be estimated consistently up to a scalar
(Li & Duan, 1989). In such settings, even under model misspecification, we would not
expect any loss of efficiency due to the link misspecification. Further investigation of this
property in a survival setting would be valuable for future research.

The ability to include multiple intermediate events is a desirable property of this proposed
procedure. In settings with a small number of potential intermediate events, including all
intermediate event information in stage 1 would not affect the efficiency of the overall
estimate due to the fact that the variability in β̂ does not contribute to the asymptotic
variance (shown in Supplementary Appendix A). However, in finite samples, this additional
noise could be problematic and in settings with many potential intermediate events, a
regularization procedure (Friedman et al., 2001; Tian et al., 2012) may be considered for
variable selection in stage 1.

As in most nonparametric functional estimation procedures, a sufficiently large sample size
is needed to obtain stable estimation performance and observe efficiency gains. The degree
of efficiency gain using this proposed procedure may be less than expected in small sample
sizes. Alternative robust methods should be considered in such settings.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Asymptotic properties of ŜLM(t)
We explicitly examine the asymptotic properties of our estimate of survival compared to the
KM estimate of survival. Recall that our proposed estimate ŜLM(t) = Ŝ(t | t0)Ŝ(t0). Let β̂ and
β̂* be the maximizers of the log partial likelihood functions corresponding to the
proportional hazards working models (2·3) and (2·4), respectively. In addition, let β0 and 
denote the limits of β̂ and β̂*, respectively. Let

, and ŜLM(β*, β, t) =
Ŝ(β*, t0)Ŝ(β, t | t0), where Ŝu(β*, t0) = e−Λ̂u(β*,t0) Ŝυ(β, t | t0) = e−Λ̂υ(β,t|t0), Λ̂u(β*, t0) and Λ̂υ(β,
t | t0) are obtained by replacing β̂* and β̂ in Λ̂u(t0) and Λ̂υ(t | t0) by β* and β, respectively.
Then Ŝ(β̂*, t0) = Ŝ(t0), Ŝ (β̂*, t | t0) = Ŝ(t | t0), and ŜLM(β̂*, β̂, t) = ŜLM(t). Furthermore, with a

slight abuse of notation, we define  and

 Hence  and Sv(t | t0)
= Sυ(β0, t | t0). We will derive asymptotic expansions for

, which can be decomposed as

In Appendix I below we will express

 and 𝒲 ̂LM(t, t0) in
martingale notation. Using these martingale representations, in Appendix II we examine the
variance of ŜLM(β̂*, β̂, t) and show that this variance is always less than or equal to the
variance of ŜKM(t) and the reduction is maximized when the assumed working models in
(2·3) and (2·4) are true.

Assumption A.1 Censoring, C, is independent of {T , Z} given treatment assignment, .

Assumption A.2 Treatment assignment, , is independent of Z.

Regularity Conditions (C.1) Throughout, we assume several regularity conditions: (1) the
joint density of {T , T , C} is continuously differentiable with density function bounded

away from 0 on [0, t], (2)  and W𝖳β0 have continuously differentiable densities and Z
is bounded, (3) h = O(n−υ) with 1/4 < υ < 1/2, (4) K(x) is a symmetric smooth kernel
function with continuous second derivative on its support and ∫ K̇ (x)2dx < ∞, where K̇ (x) =
dK(x)/dx.

Appendix I

Martingale Representation
In Supplementary Appendix A we show that the variability of β̂* and β̂ is negligible and can

be ignored in making inferences on Ŝ(β̂*, t0), Ŝ(β̂*, t|t0) and . Therefore, we
focus on the asymptotic expansions of 𝒲 ̃Z (t0), 𝒲 ̃(t | t0), and 𝒲 ̃LM(t, t0) with  and β0 and
express these quantities in martingale notation. Throughout, we will repeatedly use the fact
that nt0/n ≈ SC(t0)S(t0), where SC(t0) = P(C > t0).
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Theorem 1. Assume A.1, A.2 and Regularity Conditions (C.1) hold. Note that in
Supplementary Appendix A it was shown that 𝒲 ̃LM(t)) ≈ 𝒲 ̃LM(t, t0).

(I·1)

(I·2)

(I·3)

and 𝒲 ̃LM(t) converges to a Gaussian process indexed by t ∈ [t0, τ].

Proof of Theorem 1. Using a Taylor series expansion and Lemma A.3 of Bilias et al. (1997),

Let  Ni(s) = I(X i ≤ s, δ i = 1), Yi(s) = I(X i ≥ s) and
. By a martingale representation,

. Using a change

of variable where , and a Taylor series expansion, let  and

, where f(·) is the probability density
function corresponding to S(·),

It then follows that

(I·4)

To understand how Ŝ(β̂*, t0) can be viewed as a KM estimator augmented by censoring
martingales, we next express the influence function of Z(t0) in such a form. From (A.2) in
Supplementary Appendix A and using martingale representation once again and integration
by parts,
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(I·5)

where  and ΛC(s) = −log SC(s). Using similar arguments, it
can be shown that

(I·6)

(I·7)

where  and πUi(s|t0) = P(X i ≥ υ|Ui = u, X i
> t0).

Using (I·5), (I·7) and (A.2) in Supplementary Appendix A, we now examine the form of our
complete proposed estimator for S(t), ŜLM(β̂*,β̂, t), and obtain

(I·8)

(I·9)

(I·10)

It is interesting to note that these two terms,  and ,
converge to two independent normal distributions and that E{ϕ1i(t, t0)ϕ2i(t, t0)} = 0. Since

SUi(t|t0) is a bounded smooth monotone function in t and  is a martingale

process,  is Donsker. This coupled with the fact that the
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simple class {I(X i > t)|t} is Donsker, implies that {ϕji(t, t0)|t}, j = 1, 2 are Donsker by
Theorem 9.30 of Kosorok (2008). Therefore 𝒲 ̂LM(t)) converges to a Gaussian process
indexed by t ∈ [t0, τ].

Appendix II

Variance of ŜKM(β ̂*,β ̂, t)
In this section we compare the variance of the proposed estimator to that of the KM
estimator, as described in the next theorem.

Theorem 2. Assume A.1, A.2, and Regularity Conditions (C.1) hold. The proposed
estimator, ŜLM(β̂*, β̂, t), is always at least as efficient as the Kaplan Meier estimate.
Specifically,

where ΔVarLM denotes the difference in variance.

Proof of Theorem 2. We first note that it can be shown that Ŝ(β̂*, t0) and Ŝ(β̂, t) are
asymptotically independent and hence can be handled separately. From (I·4), we can easily
examine the variance of Ŝ(β̂*, t0) and compare it to the variance of ŜKM(t0). The resulting
form of the difference in variance allows us to make some interesting conclusions regarding
the reduction in variance when using the proposed marginal estimate. Note that this result
only concerns one component of our complete estimate since ŜLM(β̂*,β̂, t0) = Ŝ(β̂*, t0)Ŝ(β̂, t|
t0), however we consider the results and conclusions worthy of discussion. Similar to
Murray & Tsiatis (1996), we use a simple application of the conditional variance formula
along with martingale properties, integration by parts and independent censoring,

(II·1)
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where G(s) = 1/Sc(s). Murray & Tsiatis (1996) showed that

. Comparing these two
variances, we have

Here and in the sequel, for any random variable , we use notation S (t | s) to denote P(T
> t | T  > s, ) and S(t | s) = P(T  > t | T  > s). Provided that

 is always more efficient than ŜKM(t0), asymptotically.
Furthermore, ΔVar is maximized when the model used to obtain the score, , is the true

model. To see this, we note that if  is replaced with the true conditional survival SZi(t),
the corresponding variance reduction over the KM estimator is

. Comparing the variance
reduction using SZi(t) versus using an arbitrary function of Zi, denoted by i, we have

Since E{SZi(t0|s) | Ti > s, i} = E{E(I(T i > t)|T i > s,Zi)|T i > s, i} = E{T i > t|T i > s,

i} = S i(t0|s), and hence E{[S i(t0|s) − S(t|s)][SZi(t0|s) − S i(t0|s)]|T i > s} = 0. Therefore,

ΔVar(Z) − ΔVar( ) ≥ 0. Since  under the correct specification of the
working model, ŜZ(t) achieves maximal efficiency when the fitted Cox model holds.

We next derive the variance form of our complete estimate, 𝒲 ̃LM(t, t0). From (I·8),
Var{𝒲 ̃LM(t, t0)} ≈ E [{ϕ1i(t, t0) + ϕ2i(t, t0)}2] = E{ϕ1i(t, t0)2}+E {ϕ2i(t, t0)2} since it can be
shown that E{ϕ1i(t, t0)ϕ2i(t, t0)} = 0. It follows from (I·5) and (II·1), that

Using similar arguments as above and the expression in (I·6), we can show that

where G(s|t0) = 1/P(Ci > s|t0). It follows along with (I·7) that
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Therefore, Var{𝒲 ̂LM(t, t0)} ≈

Note that ŜKM(t) = ŜKM(t|t0)ŜKM(t0) where ŜKM(t|t0) is the KM estimate of survival at t
using only Ωt0. Similarly to (A.2) in Supplementary Appendix A, using a Taylor series
expansion, one can show that ŜKM(t) − S(t) ≈ S(t0)[ŜKM(t|t0) − S(t|t0)] + S(t|t0)[ŜKM(t0) −
S(t0)] and thus,

where we have used the independence of ŜKM(t|t0) and ŜKM(t0), and KM variance estimates
from Murray & Tsiatis (1996). Examining the difference which we denote by ΔVarLM,

Thus, the proposed estimator, ŜLM(β̂*, β̂, t), is at least as efficient as the Kaplan Meier
estimate. In addition, the reduction is maximized when the assumed working models in (2·3)
and (2·4) are true. Note that the gain in efficiency depends on t0 and the true values of β and
β*. The maximum reduction is within the class of estimators constructed using W and t0.
The amount of reduction would also depend on the magnitude of β and β*. In particular, if β
and β* are equal to zero, there would be no efficiency gain, but the larger β and β* are, the

more variation we would expect in SUi(t|s) and  which would lead to a larger
expected reduction in variance.
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Figure 1.
Illustration of proposed two-stage procedure
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Figure 2.
Kaplan Meier estimate of survival for the mono group (thin black line) and combo group
(thick black line) with corresponding 95% confidence intervals (dashed lines).
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Table 1

Estimates of S(t) for t = 2 years in treatment group B in settings (i),(ii) and (iii) using a Kaplan Meier
estimator, ŜKM(t), the proposed estimator using Z information only, ŜZ(t), T  information only, ŜZ(t), and Z

and T  information, , with corresponding empirical standard error (ESE), average of the standard error
estimates from the perturbation-resampling method (ASE), efficiency relative to ŜKM(t) with respect to mean
squared error (MSE) (REMSE), and empirical coverage (Cov) of the 95% CIs.

ŜKM(t) ŜZ(t)

Setting (i)

Estimate 0.4205 0.4267 0.4238 0.4246

Bias −0.0004 0.0060 0.0031 0.0039

ESE 0.0225 0.0220 0.0220 0.0207

ASE 0.0231 0.0218 0.0218 0.0206

REMSE - 1.07 1.04 1.20

Cov 0.95 0.95 0.94 0.95

Setting (ii)

Estimate 0.3676 0.3745 0.3716 0.3720

Bias −0.0008 0.006 0.0032 0.0036

ESE 0.0224 0.0222 0.0219 0.0210

ASE 0.0227 0.0213 0.0215 0.0201

REMSE - 1.07 1.03 1.19

Cov 0.96 0.94 0.94 0.93

Setting (iii)

Estimate 0.3248 0.3322 0.3289 0.3292

Bias 0.0001 0.0074 0.0040 0.0043

ESE 0.0224 0.0222 0.0218 0.0206

ASE 0.0222 0.0208 0.0210 0.0196

REMSE - 1.06 1.01 1.20

Cov 0.94 0.94 0.91 0.93
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Table 3

Estimates of S(t) for t = 2.5 years in two treatment groups from ACTG Protocol 175 using a Kaplan Meier
estimator, ŜKM(t), the proposed estimator using Z information only, ŜZ(t), T  information only, ŜZ(t), and Z

and T  information, , with corresponding standard error from the perturbation-resampling method (SE).

ŜKM(t) Ŝz(t)

Treatment: Zidovudine

Estimate 0.92 0.93 0.93 0.93

SE 0.0114 0.0108 0.0107 0.0105

Treatment: Zidovudine and Zalcitabine

Estimate 0.95 0.96 0.95 0.95

SE 0.0101 0.0091 0.0094 0.0091
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