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Abstract
Recently, increasing attention has focused on making causal inference when interference is
possible. In the presence of interference, treatment may have several types of effects. In this paper,
we consider inference about such effects when the population consists of groups of individuals
where interference is possible within groups but not between groups. A two stage randomization
design is assumed where in the first stage groups are randomized to different treatment allocation
strategies and in the second stage individuals are randomized to treatment or control conditional
on the strategy assigned to their group in the first stage. For this design, the asymptotic
distributions of estimators of the causal effects are derived when either the number of individuals
per group or the number of groups grows large. Under certain homogeneity assumptions, the
asymptotic distributions provide justification for Wald-type confidence intervals (CIs) and tests.
Empirical results demonstrate the Wald CIs have good coverage in finite samples and are
narrower than CIs based on either the Chebyshev or Hoeffding inequalities provided the number
of groups is not too small. The methods are illustrated by two examples which consider the effects
of cholera vaccination and an intervention to encourage voting.
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1 Introduction
When assessing the causal effect of a treatment or exposure, it is typically assumed that
individuals (or units) do not interfere with each other (Cox 1958). This assumption is part of
the stable unit treatment value assumption (SUTVA) (Rubin 1980). Under the no
interference assumption, the potential outcomes of any individual are assumed to be
determined solely by the treatment of that individual, unaffected by the treatment of other
individuals under study. However, in many settings this assumption may not hold. For
example, in vaccine studies, the outcome of an individual may depend not only on that
individual's vaccine status but also on the vaccination status of other individuals (Halloran
and Struchiner 1995). In educational studies, a student's academic performance may depend
on the retention or promotion of that student as well as of fellow classmates (Hong and
Raudenbush 2006). In econometric studies, interference may be present between households
in the same neighborhood (Sobel 2006) or other settings where individuals interact socially
(Manski 2012). Interference can occur within an individual over time, e.g., as in functional
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MRI studies (Luo et al. 2012), or between units that are proximal spatially (e.g., Zigler et al.
2012). Rosenbaum (2007) presents several other examples where interference may be
present.

Increasing attention has been placed on relaxing the no interference assumption (see
Tchetgen Tchetgen and VanderWeele (2012) and references therein). Inference in this
setting is particularly interesting because a treatment may have different types of effects, but
challenging because individuals may have many potential outcomes due to interference. One
approach has been to consider settings where individuals can be partitioned into groups such
that interference is possible between individuals within the same group but not across
groups. This is sometimes called `partial interference' (Sobel 2006), a terminology adopted
here. In the nomenclature of Manski (2012), partial interference is an example of a `constant
treatment response' assumption where the `reference groups' are `treatment invariant' and
`symmetric'. The partial interference assumption will be reasonable when groups are
sufficiently separate socially, temporally, or spatially.

Drawing inference about treatment effects often relies on knowledge or modeling of the
mechanism by which individuals are assigned or select treatment. Assuming partial
interference, one possible assignment mechanism is a two stage randomization design,
where in the first stage groups are randomized to different treatment allocation strategies and
in the second stage individuals are randomized to treatment or control conditional on the
strategy assigned to their group in the first stage. For example, schools might be randomized
to high or low vaccine coverage, and then students in the schools randomized to vaccine or
control with vaccination probability dependent on whether their school was assigned to high
or low coverage (Longini et al. 1998). Similarly, Borm et al. (2005) described a trial where
general practitioners were randomized to two allocation strategies and then different
proportions of each practitioner's patients were randomly assigned either a traditional or new
method of care. Sinclair et al. (2012) conducted a two stage randomization experiment to
determine the direct and indirect (or `spillover') effects of social pressure mailings on voter
mobilization in a special election in 2009. In that study zip-codes were randomly assigned to
one of four allocation strategies, and then households within a zip-code were randomly
assigned to receive mailings (postcards) conditional on the allocation strategy assigned to
that zip-code. For other examples, see Duflo and Saez (2003) and Ichino and Schündeln
(2012). This two-stage randomization design has been referred to as split-plot or pseudo-
cluster randomization.

Assuming partial interference and a two stage randomization design, Hudgens and Halloran
(2008) proposed unbiased estimators for different causal effects of treatment. They also
derived variance estimators which under certain assumptions are conservative unless the
corresponding causal effect is additive. These results can be viewed as generalizations of the
classic results of Splawa-Neyman (1923) to the setting of interference. In this paper, the
large sample distributions of the causal effect estimators proposed by Hudgens and Halloran
(2008) are derived for two stage randomization studies. The outline of the remainder of this
paper is as follows. In Section 2 we introduce notation and define various causal effects.
Unbiased estimators of these effects and the corresponding variance estimators are reviewed
briefly in Section 3.1. The asymptotic distributions of these estimators are then derived
when either the number of individuals within the groups grows large (Section 3.2.1), or the
number of groups grows large (Section 3.2.2). These results can be utilized to construct
Wald type confidence intervals (CIs) or tests for the different treatment effects. In Section 4
a simulation study is presented comparing Wald CIs with CIs based on Hoeffding and
Chebyshev inequalities. Section 5 includes two applications which consider the various
effects of a cholera vaccine and an intervention to encourage voting. Proofs of the results in
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Section 3 and some technical details regarding the voting encouragement analysis are given
in the Appendix.

2 Notation, Assumptions and Estimands
Consider a population of m groups with ni individuals in group i for i = 1, …, m. Suppose
individuals can receive treatment or control, denoted by 1 or 0. Let zij denote the treatment
indicator for individual j in group i, where zij = 1 indicates treatment and zij = 0 denotes
control. Let zi(−j) denote the vector of treatment indicators for the individuals in group i
other than individual j and let zi = (zij, zi(−j)) denote the vector of treatment indicators for all
individuals in group i. Let yij(zi) = yij(zij, zi(−j)) denote the potential outcome of individual j
when individuals in group i receive treatment zi. Randomization based inference is
employed in this paper wherein the potential outcomes are viewed as fixed (i.e., non-

random) features of the population of  individuals. Note the notation yij(zi)
encompasses the partial interference assumption that the outcome for individual j does not
depend on the treatment of individuals in groups i′ ≠ i.

Just as individuals can receive treatment or control, suppose groups can take on different
treatment allocation strategies corresponding to the proportion of individuals within the
group that receive treatment. For simplicity we consider only two allocation strategies,
denoted by α1 and α0. For instance, α1 could correspond to assigning treatment to 50% of
individuals in a group and α0 could correspond to assigning treatment to 10% of individuals
in a group. Let gi = s when the allocation strategy for group i is αs and let g = (g1, …, gm)
denote the vector of group level allocation strategies.

Assume a two-stage randomization design where in the first stage groups are assigned
allocation strategies α1 or α0. Denote the random assignment indicator for group i by Gi and

let G = (G1, …, Gm). Let  denote the number of groups assigned α1. Assume
allocation strategies are assigned using permutation randomization such that l is fixed for

some integer l ∈ {1, …, m − 1}, i.e.,  for all g such that  and
Pr(G = g) = 0 otherwise. In the second stage of randomization, individuals are randomly
assigned treatment or control conditional on Gi = gi from the first stage. Let the individual
treatment assignment of individual j in group i be denoted by Zij and let Zi = (Zi1, …, Zini)
such that the observed outcome for individual j is yij(Zi). Throughout, it is assumed that the
assignment of an individual to a particular treatment is equivalent to receipt of that
treatment, i.e., there is perfect compliance. Likewise, it is assumed groups are always

compliant with their assigned allocation strategy. Let  denote the number of
individuals in group i assigned treatment when group i is assigned allocation strategy αs.
Assume that treatment is assigned using permutation randomization such that kiαs is fixed
given Gi. Let  denote the set of vectors of length n with elements 0 or 1 that sum to k, i.e.,

. Under the two stage randomization design described above,

,  and  when Gi = s.

Define the average potential outcome for individual j in group i when individual j is
assigned treatment z and group i is assigned allocation strategy α1 by
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. See VanderWeele and Tchetgen Tchetgen (2011) for alternative approaches to defining
average potential outcomes for an individual. Averaging over individuals, define the group
average potential outcome under group allocation α1 and individual treatment assignment z

as . Similarly, averaging over groups, define the population

average potential outcome as . Define the marginal

individual average potential outcome by , that is,
the average potential outcome for individual j in group i when group i is assigned α1.
Similarly, define the marginal group and population average potential outcomes by

 and .

Various causal effects can be defined by considering contrasts of different average potential
outcomes. For example, at the group level, a direct effect can be defined as

. That is,  is the difference between the average
potential outcome when group i receives allocation strategy α1 and an individual in that
group receives treatment compared to when an individual in that group receives control. At

the population level define the direct effect  for s = 0, 1, the

indirect effect , the total effect

, and the overall effect .
In words, the indirect (or spillover) effect compares the average potential outcome when an
individual receives control and their group receives allocation strategy α1 compared to when
their group receives α0. Because the individual treatment assignment is held fixed, the
indirect effect will be non-zero only if interference is present. Note that the indirect effect

can also be defined for individuals who receive treatment, i.e., in terms of  for s = 0,
1, but for simplicity we do not consider this other indirect effect here. The total effect equals
the sum of the direct and indirect effects, while the overall effect provides a single summary
measure of the effect of allocation strategy α1 versus α0. See Tchetgen Tchetgen and
VanderWeele (2012) for further discussion about these estimands.

Assuming only partial interference, an individual in a group with ni individuals will have 2ni

potential outcomes. For groups of even moderate size the large number of potential
outcomes per individual makes inference challenging. One possible additional assumption
about the structure of interference that reduces the number of potential outcomes
considerably is:

(1)

Assumption (1) has been referred to as `stratified interference' (Hudgens and Halloran 2008)
and `anonymous interaction' (Manski 2012). Under this assumption the potential outcome of
any individual in a group may be affected only by that individual's treatment and the
aggregate treatment assignment of others in the same group. For example, consider a study
of vaccines in children attending school and assume no interference between schools.
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Assumption (1) implies the outcome for an individual vaccinated child will be the same
when k — 1 schoolmates receive vaccine regardless of which particular k — 1 schoolmates
are actually vaccinated. Under (1), the number of potential outcomes reduces from 2ni to 2ni
for any individual in a group of size ni. Given permutation allocation strategy αs is assigned
to group i, individual j will have only two potential outcomes depending on whether zij = 1

or zij = 0. That is,  for all . In the sequel, the stratified

interference assumption (1) is made throughout. Thus for notational simplicity 
will be denoted by yij(z, αs) for z, s = 0, 1.

3 Inference
3.1 Estimators

Hudgens and Halloran (2008) derived unbiased estimators for the causal estimands defined
in Section 2 above. Specifically, assuming partial interference and two stage permutation

randomization, a conditionally unbiased estimator for  given Gi = s is

 and an unbiased estimator for

 is , where 1(·) is the usual
indicator function. At the group level a conditionally unbiased estimator given Gi = s of the

direct effect is , and at the population level unbiased
estimators for the direct, indirect, total, and overall effects are

 for s = 0, 1, ,

 and  where

,  and  is
defined analogously.

Hudgens and Halloran also proposed estimators of the variances of these estimators. In

particular, under (1) unbiased estimators for  and  are

given by  where

 and

 where

. They also proposed estimators of the
variance of the various causal effect estimators which are positively biased unless certain
additivity conditions hold. For example, if there exist constants η1, …, ηm such that yij(1, αs)
= yij(0, αs) + ηi for all i = 1, …, m and j = 1, …, ni, then their estimator for the variance of

 is unbiased; otherwise their estimator is positively biased. Similar additivity
conditions exist for the variance estimators of the other causal effect estimators.

3.2 Asymptotic Distributions
Below the asymptotic distributions of the causal effect estimators defined in Section 3.1 are
derived. In Section 3.2.1, the setting where the numbers of individuals per group n1, …, nm
grow large is considered. These results might be applicable, for instance, when groups are
defined to be all individuals in a particular geographic region. For example, Sur et al. (2009)
estimated the indirect, total, and overall effects of typhoid vaccination in groups of people
within contiguous geographic areas in India, where the average group size was over 700.
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The results in Section 3.2.1 do not require the number of groups to be large. On the other
hand, Section 3.2.2 considers the setting where the number of groups m grows large. These
results do not require that the number of individuals per group is large and could be applied,
for instance, in household based studies when the households (i.e., groups) are small but the
number of households in the study is large. For example, Millar et al. (2008) studied the
indirect effect of vaccination against pneumococcal disease in over 900 households
containing on average fewer than four individuals per household.

3.2.1 Large Groups—Propositions 1 – 3 below show that under certain conditions the
group average potential outcome estimators, group average direct effect estimator and the
marginal group average potential outcome estimators are asymptotically Normal (i.e.,

Gaussian). The notation  will be used to denote convergence in distribution to a
standard Normal random variable.

Proposition 1. Let νij = yij(z, αs) and νi. = (νi1 + … + νi,ni)/ni for z, s ∈ {0, 1}. If

(2)

and

(3)

where max(νij − νi.)2 = max{(νij − νi.)2 : j = 1, …, ni}, then

where .

Proposition 2. Assume (2) and that (3) holds for νij = yij(1, αs)/kiαs +yij(0, αs)/(ni − kiαs).
Then

where .

Proposition 3. Assume(2) and that (3) holds for νij = yij(1, αs) − yij(0, αs). Then

where .

Liu and Hudgens Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Propositions 4.1 – 4.4 below show that, under certain conditions, the population direct,
indirect, total and overall effect estimators are asymptotically distributed as a mixture of
Normal random variables as the numbers of individuals per group grow large, i.e., as nmin =
min{n1, …, nm} → ∞. Recall a random variable X follows a finite Normal mixture
distribution (McLachlan et al. 1988) if there exists a discrete random variable U with
support u1, …, uh and parameter vectors μ = (μ(1), …, μ(h)) and σ = (σ(1), …, σ(h)) such that
the density of X satisfies

where ω(i) = Pr(U = ui) and f(x | μ(i), σ(i)) is the density of a Normal random variable with

mean μ(i) and standard deviation σ(i). Equivalently,  for i = 1,
…, h. Define a sequence of random variables {Xn} to have an asymptotically Normal
mixture distribution if there exists a discrete random variable U with support u1, …, uh and
sequences of parameter vectors {μn} and {σn} such that

(4)

for i = 1, …, h, where  and  denote the ith components of μn and σn. When (4) holds,

for notational convenience we suppress the subscript n and write .
The following proposition is stated in terms of α1; the analogous result holds for α0.

Proposition 4.1. Assume (2) and that (3) holds for νij = yij(1, α1)/kiα1+yij(0, α1)/(ni− kiα1)
for i = 1, …, m. Assume for any simple random sample {i1, …, il} drawn without

replacement from {1, …, m} that lim  as

nmin → ∞ exists for i ∈ {i1, …, il}. Then for m < ∞,  has an asymptotically Normal
mixture distribution, i.e.,

as nmin → ∞. The parameter vectors, each of length , are given by ,

 and , where the elements of the vectors correspond to all
possible simple random sample {i1, …, il} without replacement from {1, …, m}, with

 and .

Note in Proposition 4.1 and below the dependence of the parameters μDE and σDE on αs and
nmin are suppressed for notational convenience. From a single experiment or trial, only one
element from each of the vectors μDE and σDE is identifiable from the observed data; in

particular, only the parameters  and  are identifiable where {i1, …, il} = {i ∈

{1, …, m} : Gi = 1}. Hence the asymptotic distribution of  as the groups grow large
is not identifiable without additional assumptions. One special case of Proposition 4.1
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occurs when the groups are homogeneous in a certain sense as described by the following
corollary.

Corollary. If the assumptions of Proposition 4.1 hold and there exists  and  such that

 and  for all simple random samples {i1, …, il}, then

,  and for m < ∞,

(5)

as nmin → ∞.

Note that the condition  and  for all simple random samples {i1,

…, il} is equivalent to  and

. In other words, if the group level direct
effect estimators have the same mean and variance, then (5) holds.

The next three propositions and corollaries give analogous results for the population average
indirect, total and overall effect estimators.

Proposition 4.2. Assume (2) and that (3) holds for vij = yij(0, αs), s = 0, 1 and i = 1, …, m.
Assume for any simple random sample {i1, …, il} drawn without replacement from {1, …,

m} that  exists for i ∈ {i1, …, il} and

 exists for i ∉ {i1, …, il} as nmin → ∞. Then for
m < ∞,

as nmin → ∞. The parameter vectors, each of length , are given by ,

, , where
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Corollary. If the assumptions of Proposition 4.2 hold and there exists  and  such that

 and  for all {i1, …, il}, then ,

 and for m < ∞,

(6)

as nmin → ∞.

Proposition 4.3. Assume (2) and that (3) holds for vij = yij(z, αs), (z, s) ∈ {(1, 1), (0, 0)} and
i = 1, …, m. Assume for any simple random sample {i1, …, il} drawn without replacement

from {1, …, m} that  exists for i ∈ {i1, …, il} and

 exists for i ∉ {i1, …, il} as nmin → ∞. Then for
m < ∞,

as nmin → ∞. The parameter vectors, each of length , are given by ,

, , where

Corollary. If the assumptions of Proposition 4.3 hold and there exists  and  such that

 and  for all {i1, …, il}, then ,

 and for m < ∞,

(7)

as nmin → ∞.

Proposition 4.4. Assume (2) and that (3) holds for vij = yij(1, αs) − yij(0, αs), s = 0, 1 and i =
1, …, m. Assume for any simple random sample {i1, …, il} drawn without replacement from
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{1, …, m} that  exists for i ∈ {i1, …, il} and

 exists for i ∉ {i1, …, il} as nmin → ∞. Then for m
< ∞,

as nmin → ∞. The parameter vectors, each of length , are given by ,

, , where

Corollary. If the assumptions of Proposition 4.4 hold and there exists  and  such that

 and  for all {i1, …, il}, then ,

 and for m < ∞,

(8)

as nmin → ∞.

3.2.2 Large Number of Groups—In this section the asymptotic distributions of the
causal effect estimators are derived when the number of groups m grows large, in particular
when l → ∞ and m − l − ∞. These results rely on the following Lindeberg condition
(Lehmann 1998, eq. A.128): Let {Wh} be a sequence of independent random variables, each

having finite expected value μh and variance . Define . If for every ε > 0

(9)

then  as t → ∞. The propositions below indicate that, under
different versions of (9), the distributions of the causal effect estimators are approximately
Normal as m grows large. These results will have applicability in studies with large numbers
of groups even if the groups are small (e.g., households). Unlike in Section 3.2.1, here the
mean homogeneity assumption is not needed to justify the Normal approximation.
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Proposition 5.1. Suppose for any simple random sample {i1, …, il} that (9) holds for the

sequence {Wh} defined by  for h = 1, …, l and there

exists  such that . Let  and . If

 exists and

(10)

where , then (5) holds as m → ∞.

Proposition 5.2. Suppose for any simple random sample {i1, …, il} that (9) holds for the
sequence {Wh} defined by

 for h =

1, …, l and there exists  such that . If (10) holds for

 and  exists, then
(6) holds as m → ∞.

Proposition 5.3. Suppose for any simple random sample {i1, …, il} that (9) holds for the
sequence {Wh} defined by

 for h =

1, …, l and there exists  such that . If (10) holds for

 and  exists, then
(7) holds as m → ∞.

Proposition 5.4. Suppose for any simple random sample {i1, …, il} that (9) holds for the
sequence {Wh} defined by

 for h = 1,

…, l and there exists  such that . If (10) holds for

 and  exists, then (8)
holds as m → ∞.

3.3 Confidence intervals and testing
3.3.1 Large sample approximations—The results in the previous two sections
establish the limiting distributions of the different effect estimators when either the number
of individuals per group or the number of groups grows large. These results can be used to
construct CIs when the limiting distribution is a single Normal. For example, under the
conditions stated in the Corollary to Proposition 4.1, we have

. Thus, by Slutsky's theorem, for γ

∈ (0, 1) an asymptotic 1 − γ CI of  is
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where z1−γ/2 is the 1−/2 quantile of the standard Normal distribution and  is a

consistent estimator of .

These CIs can be used in the large sample setting to test various null hypotheses about the
different treatment effects by examining whether the CI for a particular effect contains the
corresponding null value. Equivalently, test statistics can be constructed to directly assess
the null hypothesis of interest. For example, consider testing the null hypothesis that the

group level direct effects are all zero, i.e., . Under the

assumption that , the statistic

 will be approximately  under H0, provided either
nmin or l is large.

The Wald CIs are applicable when the groups are homogeneous. Certain of these
homogeneity assumptions can be tested. For instance, the assumption that the direct effects
are homogeneous across groups can be tested as follows. Suppose

, where  is an unknown constant

and the goal is to test . Let

, where  is a consistent estimator for

. Then based on Proposition 2,  under H0h as nmin → ∞. Without further
assumptions about the potential outcomes, tests of mean homogeneity cannot be developed
for indirect, total and overall effects. To see this, consider the homogeneity assumptions
given in the Corollary to Proposition 4.2 that are sufficient for the indirect effect estimator to
have a single Normal distribution asymptotically. The mean homogeneity assumption that

there exists  such that  for all simple random samples {i1, …, il} is
equivalent to assuming

. Because only one

element of each pair  is identifiable from the observable data, this
assumption is not subject to empirical test.

In the absence of homogeneity, the observed data do provide some information about the
asymptotic distributions such that inference relying on large sample approximations may
still be possible. For instance, CIs can be constructed using Chebyshev's inequality. For

example, for the direct effect the interval  will contain

 with at least probability 1 – γ. Because the Chebyshev inequality holds for all
distributions, such CIs are expected to often be conservative, i.e., have coverage probability

greater than 1 – γ. In practice  will be unknown and can be replaced with a

consistent estimator  which asymptotically will still give a 1 – γ CI.
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3.3.2 Exact method—Rather than relying on large sample approximations, Tchetgen
Tchetgen and VanderWeele (2012) derived exact CIs for various casual effects in the setting
where the outcome is binary based on the Hoeffding inequality. In particular, they showed
under two-stage permutation randomization that for any γ ∊ (0, 1), the interval

 is a (1 - γ) CI of , where

q = Pr(Gi = 1) l/m and  for i = 1, …, m. Similarly, the

interval  is a (1 – γ) CI of , where

and  for i =

1, …, m. Likewise, exact (1–γ) CIs of  and  can be constructed by

 and  respectively. These
CIs are exact in the sense that the probability the interval contains the true parameter is at
least 1 – γ for any m and n1, …, nm. The exact CIs are appealing in that the only assumptions
required for the intervals to be valid are partial interference and two-stage permutation
randomization. However, in the simulation study in Section 4 below it is demonstrated these
CIs tend to be conservative, i.e., the exact CIs tend to be very wide and cover the target
parameter with probability greater than 1 – γ. The form of the exact CIs suggests several
reasons why they are conservative. First, the widths of the CIs are not data dependent, i.e.,
they do not depend on the observed outcomes yij(Zi). Second, the widths of these CIs do not
go to 0 as γ → 1. Finally, for any given data set and fixed γ, the widths of the CIs for the
indirect, overall, and total effects will be the same.

4 Simulations
Simulations were conducted to verify the asymptotic distributions of the causal e ect
estimators derived in Sections 3.2.1 and 3.2.2 as well as to evaluate the finite sample
performance of the CIs described in Section 3.3. Simulations were conducted under four
scenarios: (i) continuous outcomes with heterogeneity between groups, (ii) continuous
outcomes, homogeneous groups, (iii) binary outcomes, heterogeneous groups, and (iv)
binary outcomes, homogeneous groups. For scenario (i), the simulation study was conducted
in the following steps:

Step 1: A hypothetical population with m = 4 groups and n1 = ⋯ = n4 = 1000
individuals within each group was created as follows. For i = 1, …, 4 and j = 1, …,
1000, bij was randomly sampled from . Then for zij = 0, 1 and gi = 0, 1 the
potential outcomes for individual j in group i were set to yij(zij, αgi) = gi + 0.7zij + bij +
bijzij for i = 1, 2 and yij(zij, αgi) = gi + bij + bijzij for i = 3, 4.
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Step 2: Groups were assigned α1 or α0 and individuals assigned z = 1 or z = 0 using
two-stage permutation randomization with l = 2, kiα1 = 500, and kiα0 = 200.

Step 3: The various causal effect estimators defined in Section 3.1 were calculated
based on the observed data from Step 2. The corresponding Wald and Chebyshev CIs as
described in Section 3.3.1 were also computed, using the variance estimators proposed
by Hudgens and Halloran (2008).

Step 4: Steps 2 – 3 were repeated 5000 times.

Note the model used to generate the potential outcomes in Step 1 assumes partial and
stratified interference, such that under two-stage permutation randomization each individual
has four potential outcomes. The true causal effects for the simulated population were

, , , .

For these simulation n1 = ⋯ = n4 = 1000, such that the asymptotic results for large groups
derived in Section 3.2.1 apply. Figure 1 shows the accuracy of the Normal mixture
approximation to the distribution of the direct, indirect, total and overall effect estimators.

For simplicity, here and in the sequel results for  are omitted. The histograms give
the empirical distributions of the estimators based on the 5000 simulated data sets. The solid
lines, created using the R package nor1mix (Mächler 2011), show the density of the Normal
mixtures used to approximate the distributions of the estimators. For the direct effect

estimator the  conditional means of the Normal mixture were 0.71, 0.36,
0.35, 0.35, 0.34, −0.01. Because four of these means are nearly identical, the approximate

distribution of  is trimodal (Figure 1 upper left panel). The distributions of the total
and overall effect estimators are similar. From the model in Step 1 above the simulated
groups were approximately homogeneous with respect to the indirect effect. For instance,
the indirect effect conditional means were 1.02, 1.01, 1.00, 1.00, 0.98 and 0.98. Thus, in

accordance with the Corollary to Proposition 4.2, the distribution of  for large
groups is approximately Normal (Figure 1 upper right panel).

Additional simulations were conducted under scenario (i) for various values of m and n1 =
… = nm. In each case we let l = m/2, kiα1 = 0.5ni, and kiα0 = 0.2ni, with non-integer values
rounded up to the nearest integer. Table 1 shows the empirical coverage and width (i.e.,
average length) of the Wald and Chebyshev 95% CIs. Recall that justification of the Wald
CIs for small m requires certain mean homogeneity assumptions as stated in the corollaries
in Section 3.2.1. Therefore, because of the mean heterogeneity between groups for the
direct, total, and overall effects in scenario (i), the Wald CIs were not necessarily expected
to perform well for small m. Indeed, Table 1 shows the Wald CIs for these effects tend to
under-cover for m ≤ 10. These results demonstrate the Wald CIs may not be particularly
robust to violation of the mean homogeneity assumption when m is small. On the other
hand, the Wald CIs perform well for m ≥ 30, corroborating the results in Section 3.2.2. In
contrast to the other effects, the mean homogeneity assumption does approximately hold for
the indirect effect in scenario (i), suggesting that the corresponding Wald CIs should
perform well for small m provided ni is suffciently large. To the contrary, the results in the
bottom of Table 1 show the Wald CIs of the indirect effect under-cover for ni = 1000 when
m is small. Further investigation revealed this under-coverage was attributable to the
estimated variance of the indirect effect estimator; when the true variance was used to
construct the Wald CIs, the coverage was approximately 95% (results not shown). The
Chebyshev CIs tended to perform better than the Wald CIs for small m, although for ni =
1000 and m = 4 the Chebyshev CIs also under-covered due to using the estimated variance.
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For m ≥ 30 the Chebyshev CIs were overly conservative, with 100% coverage for all effects
for both ni = 6 and ni = 1000.

For scenario (ii), potential outcomes were simulated as above except in Step 1 we let yij(zij,
αgi) = gi + bij + bijzij for j = 1,…, ni, i = 1,…, m. Various values of m and n1 = … = nm were
considered for scenario (ii) as in scenario (i). In this scenario the groups were approximately

homogeneous; for example, the direct effects  for i = 1,…, m were all

approximately 0 and the variances of the estimators V arα1  were all
approximately the same. Table 2 gives the empirical coverage and width of the Wald and
Chebyshev CIs for scenario (ii). Results for the indirect effect are identical to those in Table
1 because the same values were generated for yij(0, α0) and yij(0, α1) in scenarios (i) and (ii).
For the other effects, coverage for the Wald CIs tends to be slightly better in Table 2
compared to Table 1 for small m and large ni, but under-coverage persists despite mean
homogeneity; this anti-conservative performance of the Wald CIs can again be attributed to
use of the estimated variances. Coverage of the Chebyshev CIs was approximately 0.95 or
greater for all effects and all values of ni and m considered.

For scenario (iii), simulations were conducted as in scenario (i) with m = 4 groups each
having ni = 1000 individuals but with the first step replaced by the following:

Step 1: Of the 4000 individuals in the population, 480 were randomly sampled to have
xij = 0, another 480 were randomly sampled to have xij = 1, and xij = 2 for the remaining
individuals. If xij = 2, the potential outcomes were set to yij(zij, αgi) = gizij for i = 1, 2
and yij(zij, αgi) = gi(1 − zij) for i = 3, 4; otherwise yij(zij, αgi) = xij for i = 1,…, 4.

For this scenario there was heterogeneity between groups for the direct, indirect and total
effects. Similar to Figure 1 for scenario (i), the Normal mixture distributions provided an
excellent approximation to the empirical distributions of the estimators (not shown).
Simulations were also conducted under scenario (iii) for populations of 1000m individuals
where 120m individuals had xij = 0, 120m individuals had xij = 1, and the remaining
individuals had xij = 2 for m = 6, 10, 30, 100. Because the outcomes in scenario (iii) were
binary, for each simulated data set the exact CIs described in Section 3.3.2 were computed
in addition to the Wald and Chebyshev CIs. Empirical coverage and width of the three types
of CIs are given in Table 3. Coverage of the Wald and Chebyshev CIs was similar to
scenario (i), which also entailed heterogeneous effects. The exact CIs were very
conservative, with 100% coverage for all effects and all values of m considered. Compared
to the Wald and Chebyshev CIs, the exact CIs tended to be as wide or wider, especially for
the overall effect where the exact CIs were at least an order of magnitude wider than the
other CIs.

For scenario (iv), simulations were repeated as in scenario (iii) but the potential outcomes
were set to yij(zij, αgi) = gizij if xij = 2 and yij(zij, αgi) = xij otherwise. In this scenario the
groups were approximately homogeneous. Empirical coverage and width of the three CIs are
given in Table 4. For m ≥ 30 the Wald CIs gave the correct coverage and were the
narrowest. For small m the Chebyshev and exact CIs both provided at least 95% coverage,
but the Chebyshev CIs were substantially narrower. The widths of the exact CIs depend only
on m, l, kiα1, kiα0, ni, γ and thus are the same for the simulations carried out in scenario (iii)
and (iv). Coverage of the exact CIs was always 100% in scenario (iv), as in scenario (iii).

In summary, the simulation results suggest for m ≥ 30 the Wald CIs tend to yield nominal
coverage levels while being narrower than the Chebyshev and exact CIs. For m < 30 and
continuous outcomes, the simulations suggest the Chebyshev CIs may be preferred, although
for m = 10 the Wald CIs tend to be narrower while still providing approximately correct
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coverage. For m < 30 and binary outcomes, only the exact CIs tend to provide the correct
coverage when the effects are heterogeneous (scenario (iii)), whereas the Chebyshev CIs
tend to provide the correct coverage and are narrower than the exact CIs when the effects are
homogeneous (scenario (iv)).

5 Examples
5.1 Cholera Vaccine Trial

The indirect effects of vaccination have important public health implications. In an analysis
of data from an individually-randomized, placebo-controlled trial of two oral cholera
vaccines in Matlab, Bangladesh, Ali et al. (2005) found a significant association between the
level of vaccine coverage (i.e., the proportion of individuals vaccinated) and the incidence of
cholera in unvaccinated individuals, suggesting an indirect effect of the vaccines. Motivated
by the results given in Ali et al., Hudgens and Halloran (2008, Table 2) provided data from a
hypothetical two-stage randomized vaccine trial wherein the first stage l = 3 of m = 5
geographically separate groups were randomly assigned α1 and the other two groups α0, and
in the second stage 50% of individuals in groups assigned α1 were randomly assigned
vaccine and 30% of individuals in groups assigned α0 were randomly assigned vaccine. The
number of individuals in the five groups n1, …, n5 ranged from roughly 19,000 to 36,000
such that the results from Section 3.2.1 apply.

Table 5 gives point estimates and Wald, Chebyshev, and exact 95% CIs for the different
vaccine effects (cases of cholera per 1000 individuals per year) based on the data from
Hudgens and Halloran (2008) (see also VanderWeele and Tchetgen Tchetgen (2011) for an
analysis of these data). To obtain the results in Table 5 we let yij(Zi) = 1 if individual j in
group i did not develop cholera and yij(Zi) = 0 otherwise, such that positive values of the

estimates reflect beneficial effects of the vaccine. For example,  indicates 1.30 fewer
cases of cholera per 1000 person-years would be expected among vaccinated individuals
compared to unvaccinated individuals when vaccine coverage is 50%. Wald CIs for the α0
direct effect, the total effect, and the overall effect all exclude zero. However, the empirical
results from Section 4 suggest Wald CIs should be interpreted with caution when m = 5. The
test for mean homogeneity of the direct effect based on  indicates significant heterogeneity
for α1 (p = 0.01) but not for α0 (p = 0.54), providing additional reason to interpret the Wald

CI for  skeptically. The Chebyshev CI for the α0 direct effect excludes zero,
suggesting the risk of cholera is significantly lower when vaccinated compared to when not
vaccinated if the group level coverage is low. The Chebyshev CI for the total effect also
excludes zero. In contrast to the Wald and Chebyshev CIs, the exact CIs are very wide and
uninformative. As pointed out by Tchetgen Tchetgen and VanderWeele (2012), the exact CI

width is proportional to  and thus these CIs are expected to be wide when m is small.

5.2 Voting Encouragement Experiment
Assessing the indirect effects on an intervention is important in many areas beyond public
health, including econometrics and political science. Nickerson (2008) described an
experiment where households in Denver and Minneapolis with two registered voters were
randomly assigned to one of three conditions: (i) receive encouragement to vote; (ii) receive
encouragement to recycle; or (iii) receive nothing. Households assigned to (i) or (ii) were
contacted one week prior to the 2002 primaries by canvassers knocking on the households'
doors. In households where the door was answered, the canvassers provided either voting or
recycling encouragement to whichever individual of voting age answered the door and
recorded the name of that individual. Whether each registered member of the household
subsequently voted in the 2002 primary was then determined by voter turnout records.
Nickerson found that individuals not directly contacted by the canvassers tended to vote
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more often if the individuals belonged to households assigned to voting encouragement
compared to households assigned to recycling encouragement. This suggests an indirect
effect of the voting encouragement intervention, which Nickerson referred to as a
`secondary effect.'

For the analysis here we take the m = 392 households contacted in Minneapolis (excluding
one household where apparently both voters in the household were contacted by canvassers)
as the finite population of interest. Of these 392 households, 201 or 51.2% were randomly
assigned to voting encouragement. The randomization process by which these households
were assigned to receive encouragement to vote or recycle was complicated (see Nickerson
(2005), (2008) for details); for simplicity we assume each household was independently
assigned to receive voting encouragement with probability 0.5. In the nomenclature of
Tchetgen Tchetgen and VanderWeele (2012), this corresponds to Bernoulli randomization at
the group level. By design, at the individual level exactly one (α1) or none (α0) of the ni = 2
registered voters in each of the households received voting encouragement. Although the
experimenters did not randomly assign one of the two individuals in the household to
receive the intervention, for illustrative purposes assume among households assigned to α1
that each individual received the intervention with equal probability. Under these
assumptions, Wald and Chebyshev CIs can be computed as described in Section 3.3.1, with
slight modifications owing to Bernoulli randomization at the group level (see the Appendix
for details). Here we let yij(Zi) = 1 if individual j in group i voted in the election and yij(Zi) =
0 otherwise, such that positive values of the effects indicate increased voter turnout due to
the encouragement intervention. Point estimates as well as Wald and Chebyshev 90% CIs
for the different voting encouragement effects are given in Table 5 (90% CIs were computed
following Nickerson (2008), who interpreted p-values of hypothesis tests for secondary
effects at the γ = 0.1 level). The exact CIs were not computed because permutation
randomization was not employed at the group level. The Wald CIs indicate the presence of
indirect, total and overall effects. Based on a similar result in the Denver experiment,
Nickerson concluded the null hypothesis of no indirect effect was unlikely. That is, there is
likely interference between individuals within the same household. The indirect effect
estimate suggests that for every 100 households that receive the encouragement intervention,
on average an additional eight individuals will vote despite never coming into direct contact
with a canvasser.

6 Discussion
In this paper, we consider inference about treatment effects when the population consists of
groups of individuals where interference is possible within groups but not between groups.
The asymptotic distributions of effect estimators were derived when either the number of
individuals per group or the number of groups grows large. Under certain assumptions about
homogeneity across groups, the asymptotic distributions provide justification for Wald type
CIs and tests. Empirical results suggest the Wald CIs may be preferred provided there are a
large number of groups; otherwise, for a small number of groups, the Chebyshev CIs tend to
provide correct coverage while being narrower than the exact CIs.

The asymptotic distributions were derived under several key assumptions, such as partial
and stratified interference. The partial interference assumption may be reasonable when
groups are suffciently separated in space, in time, or socially. Methods for assessing the
stratified interference assumption are needed in future research, perhaps building upon
VanderWeele et al. (2012). The results in this paper also rely on the assumption that certain
two-stage randomization designs are employed to assign groups to allocation strategies and
individuals to treatment. Further research remains to be conducted for other randomization
designs and for observational studies where interference may be present.
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Appendix

Proof of Propositions 1–3
Proposition 1 follows directly from Lehmann (1998) Appendix 4 Theorem 6. To prove

Proposition 2, set  and note the same theorem from Lehmann
(1998) implies

(11)

where Eα1{Sni(α1)} = E{Sni(α1)|Gi = 1}. Next note that

implying

such that . Also note

, i.e.,  and Sni(α1) differ by a

constant. Therefore , implying

which by (11) completes the proof of Proposition 2. Using the fact that

, Proposition
3 can be proved similarly to Proposition 2.
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Proof of Propositions 4.1–4.4
To prove Proposition 4.1, let {i1, …, il} = {i ∈ {1, …, m} : Gi = 1} and let

 as nmin → ∞ for i ∈ {i1,
…, il}. By assumption ci1, …, cil exist. Then conditional on G1 = g1, …, Gm = gm,

where Zi1, …, Zil are i.i.d  and the last line follows from Proposition 2 and that

.

To prove Proposition 4.2, note that

Thus conditional on {Gi = 1 : i ∈ {i1, …, il},

where Z1, …, Zm are i.i.d.  and the penultimate step follows from Proposition 1. The
proofs for Propositions 4.3 and 4.4 are similar.
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Proof of Propositions 5.1–5.4

To prove Proposition 5.1, let  and . Note

 and the assumptions of Proposition 5.1 imply that

. Therefore, because we assume that (9) holds for the

sequence  for any i1 ≠ … ≠ il, it follows that

 for any i1 ≠ … ≠ il. Because the
limiting distribution is the same regardless of G1, …, Gm, it follows that

. Note also this indicates that  is
asymptotically independent of G1, …, Gm and thus asymptotically independent of

, which is a function of G1, …, Gm. Next note that because we

assume  satisfies (10), Lehmann (1998) Appendix 4 Theorem 6 implies

. Note  such that

Following Slutsky's theorem, (5) is obtained. The proofs of Propositions 5.2–5.4 can be
derived along the same lines.

Details for Voting Experiment Analysis
For the voting experiment described in Section 5.2, we assume households were
independently assigned encouragement to vote with probability 0.5. This group-level
Bernoulli type randomization is different from the permutation randomization assumed
throughout the rest of the paper and therefore some adaptations of the various results are
needed. First, it is helpful to re-express the estimators in an inverse probability weighted

(IPW) form. Namely, now define  and

, where  and  are defined as
before. When the group-level assignment entails permutation randomization, these IPW
estimators are equivalent to those presented in Section 3.1. Assuming group-level Bernoulli
randomization, it is straightforward to show the IPW estimators are unbiased. Deriving the
limiting distributions of the IPW estimators is also straightforward because G1, …, Gn are
independent under group-level Bernoulli randomization. For example, if (9) holds for

, h = 1, …, m, then it follows immediately that (5)
holds as m → ∞; similarly, if (9) holds for

, then it follows
immediately that (6) holds as m → ∞. Similar results can be obtained for the total and
overall effect IPW estimators. Note that no homogeneity assumptions are required here, in
contrast to when there is permutation group-level randomization.

Computing Wald and Chebyshev CIs requires estimating the variances of the different IPW
estimators. For the direct effect one possible estimator is
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, which is a positively biased

estimator for  with bias . To see this, note

where . Similarly, one can define

,

and

, as positively biased estimators for ,  and

 with bias ,

 and  respectively.
Because these variance estimators are positively biased, Wald and Chebyshev CIs
constructed using these estimators (as in the lower part of Table 5) are expected in practice
to be conservative, i.e., cover with probability greater 1 − γ.
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Figure 1.

Empirical distribution of the direct effect , indirect effect , total effect

 and overall effect  estimators for simulations in scenario (i) with m
= 4 groups, ni = 1000 individuals per group, and continuous outcomes. The solid line is the
density of the approximating distribution.
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Table 1

Empirical width and coverage [in brackets] of Wald (W) and Chebyshev
(C) 95% CIs of the direct effect , indirect effect , total effect  and overall effect

 for simulations under scenario (i) with numbers of groups m, number of individuals per group ni,
and continuous outcomes.

m

4 6 10 30 100

ni = 6 W 3.70[0.88] 2.67[0.91] 2.03[0.93] 1.27[0.95] 0.73[0.95]

C 8.04[1.00] 5.92[1.00] 4.54[1.00] 2.88[1.00] 1.66[1.00]

W 1.89[0.80] 1.60[0.87] 1.26[0.91] 0.88[0.93] 0.42[0.95]

C 3.92[0.94] 3.49[0.99] 2.82[1.00] 2.01[1.00] 0.96[1.00]

W 3.79 [0.76] 2.31 [0.87] 2.32[0.91] 1.40[0.94] 0.74[0.96]

C 7.57[0.93] 4.95[0.98] 5.14[1.00] 3.17[1.00] 1.69[1.00]

W 2.54[0.77] 1.44[0.88] 1.69[0.90] 1.04[0.94] 0.51 [0.94]

C 5.46[0.94] 3.21[1.00] 3.83[1.00] 2.37[1.00] 1.17[1.00]

ni = 1000 W 0.86[0.66] 0.65[0.90] 0.50[0.90] 0.28[0.94] 0.15[0.95]

C 1.75[0.74] 1.44[0.91] 1.12[0.99] 0.63[1.00] 0.34[1.00]

W 0.12[0.80] 0.10[0.88] 0.11[0.91] 0.06[0.94] 0.03[0.95]

C 0.24[0.95] 0.22[0.99] 0.25[1.00] 0.14[1.00] 0.08[1.00]

W 1.21[0.66] 0.89[0.90] 0.69[0.97] 0.38[0.98] 0.20[0.99]

C 2.35[0.69] 1.95[0.90] 1.56[0.99] 0.87[1.00] 0.46[1.00]

W 0.68[0.66] 0.48[0.90] 0.39[0.92] 0.21[0.96] 0.11[0.97]

C 1.31[0.66] 1.06[0.90] 0.88[0.99] 0.49[1.00] 0.26[1.00]
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Table 2

Empirical width and coverage [in brackets] of Wald (W) and Chebyshev
(C) 95% CIs of the direct effect , indirect effect , total effect  and overall effect

 for simulations under scenario (ii) with numbers of groups m, number of individuals per group ni,
and continuous outcomes.

m

4 6 10 30 100

ni = 6 W 3.51[0.89] 2.72[0.92] 1.92[0.94] 1.27[0.95] 0.71[0.95]

C 7.66[1.00] 6.05[1.00] 4.32[1.00] 2.87[1.00] 1.62[1.00]

W 1.89[0.80] 1.60[0.87] 1.26[0.91] 0.88[0.93] 0.42[0.95]

C 3.92[0.94] 3.49[0.99] 2.82[1.00] 2.01[1.00] 0.96[1.00]

W 3.14[0.78] 2.66[0.87] 2.06[0.91] 1.44[0.95] 1.44[0.95]

C 6.30[0.94] 5.73[0.98] 4.56[1.00] 3.25[1.00] 1.58[1.00]

W 2.01[0.84] 1.81 [0.88] 1.50[0.91] 1.09[0.95] 0.48[0.94]

C 4.38[0.97] 4.05[0.99] 3.40[1.00] 2.47[1.00] 1.10[1.00]

ni = 1000 W 0.27[0.93] 0.22[0.93] 0.18[0.94] 0.10[0.95] 0.06[0.95]

C 0.60[1.00] 0.49[1.00] 0.40[1.00] 0.23[1.00] 0.13[1.00]

W 0.12[0.80] 0.10[0.88] 0.11[0.91] 0.06[0.94] 0.03[0.95]

C 0.24[0.95] 0.22[0.99] 0.25[1.00] 0.14[1.00] 0.08[1.00]

W 0.21[0.78] 0.18[0.85] 0.19[0.91] 0.11[0.94] 0.06[0.95]

C 0.41[0.93] 0.37[0.98] 0.41[1.00] 0.24[1.00] 0.13[1.00]

W 0.11[0.82] 0.10[0.88] 0.13[0.91] 0.07[0.93] 0.04[0.95]

C 0.23[0.96] 0.22[0.99] 0.30[1.00] 0.17[1.00] 0.09[1.00]
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Table 3

Empirical width and coverage [in brackets] of Wald (W), Chebyshev (C) and exact (E) 95% CIs of the direct
effect , indirect effect , total effect  and overall effect  for
simulations under scenario (iii) with m groups, ni = 1000 individuals per group, and binary outcomes.

m

4 6 10 30 100

W 1.73[0.67] 1.33[0.90] 0.99[0.79] 0.55[0.98] 0.30[0.93]

C 3.26[0.67] 2.89[0.90] 2.25[0.99] 1.26[1.00] 0.68[1.00]

E 6.07[1.00] 4.96[1.00] 3.84[1.00] 2.22[1.00] 1.21[1.00]

W 1.22[0.67] 0.93[0.90] 0.70[0.99] 0.39[0.98] 0.21[0.99]

C 2.31[0.67] 2.02[0.90] 1.59[0.99] 0.89[1.00] 0.48[1.00]

E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

W 1.22[0.67] 0.96[0.90] 0.70[0.99] 0.39[0.98] 0.21[0.99]

C 2.31[0.67] 2.08[0.90] 1.59[0.99] 0.90[1.00] 0.48[1.00]

E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

W 0.03[0.85] 0.04[0.87] 0.02[0.92] 0.01[0.95] 0.01[0.96]

C 0.06[0.98] 0.09[1.00] 0.05[1.00] 0.03[1.00] 0.02[1.00]

E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]
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Table 4

Empirical width and coverage [in brackets] of Wald (W), Chebyshev (C) and exact (E) 95% CIs of the direct
effect , indirect effect , total effect  and overall effect  for
simulations under scenario (iv) with m groups, ni = 1000 individuals per group, and binary outcomes.

m

4 6 10 30 100

W 0.06[0.94] 0.04[0.96] 0.03[0.97] 0.02[0.97] 0.01[0.97]

C 0.12[1.00] 0.09[1.00] 0.08[1.00] 0.05[1.00] 0.03[1.00]

E 6.07[1.00] 4.96[1.00] 3.84[1.00] 2.22[1.00] 1.21[1.00]

W 0.04[0.80] 0.05[0.87] 0.03[0.90] 0.02[0.94] 0.01[0.94]

C 0.08[0.95] 0.10[0.99] 0.07[1.00] 0.04[1.00] 0.02[1.00]

E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

W 0.04[0.87] 0.04[0.88] 0.03[0.93] 0.02[0.95] 0.01[0.98]

C 0.09[0.97] 0.10[0.99] 0.06[1.00] 0.04[1.00] 0.02[1.00]

E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

W 0.03[0.85] 0.04[0.87] 0.02[0.92] 0.01[0.95] 0.01[0.96]

C 0.06[0.98] 0.09[1.00] 0.05[1.00] 0.03[1.00] 0.02[1.00]

E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]
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Table 5

Wald (W), Chebyshev (C) and exact (E) 1 − γ CIs of the direct effect , indirect effect , total
effect  and overall effect  for the cholera vaccine trial described in Section 5.1 and the
voting encouragement experiment discussed in Section 5.2

Estimate W C E

Vaccine 1.30 [−0.52, 3.11] [−2.84, 5.43] [−3540, 3543]

Trial 3.64 [2.81, 4.46] [1.75, 5.52] [−2177, 2184]

γ = 0.05
2.81 [−0.63, 6.25] [−5.03, 10.7] [−2145, 2150]

4.11 [2.50, 5.71] [0.44, 7.77] [−2143, 2151]

2.37 [0.03, 4.71] [−2.98, 7.72] [−2145, 2150]

Voting 0.04 [−2.7e–3, 0.07] [−0.04, 0.11]

Experiment 0.08 [0.01, 0.15] [−0.06, 0.22]

γ = 0.1
0.12 [0.04, 0.19] [−0.03, 0.26]

0.09 [0.02, 0.16] [−0.05, 0.22]
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