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Abstract

The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents
and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the
One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed
models that attempted to predict a disease event, not merely its transmission dynamics and we considered models
involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched
commercial and government databases and harvested Google search results for eligible models, using terms and phrases
provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and
ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was
established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As
a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models,
classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6),
spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources
(e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A
component of this review is the identification of verification and validation (V&V) methods applied to each model, if any
V&V method was reported. All models were classified as either having undergone Some Verification or Validation method,
or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease
prediction models based upon established Technology Readiness Level definitions.
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Introduction

A rich and diverse field of infectious disease modeling has

emerged in the past 60 years and has advanced our understanding

of population- and individual-level disease transmission dynamics,

including risk factors, virulence, and spatio-temporal patterns of

disease spread [1–4]. These modeling techniques span domains

from biostatistical methods to massive agent-based, biophysical,

ordinary differential equation (ODE), to ecological-niche models

[5–8]. Diverse data sources are being integrated into these models

as well, such as demographics, remotely sensed measurements and

imaging, environmental measurements, and surrogate data such as

news alerts and social media [9–11]. Moreover, nascent research is

occurring at the omics-level to aid in forecasting future epidemics;

such research includes phylogenetic techniques for predicting

pathogen mutations, algorithms for microbial identification in

next-generation technologies, meta-genomics, and multi-scale

systems biology [12,13]. Yet emerging infectious diseases continue

to impact the health and economic security across the globe.

There remains a gap in the sensitivity and specificity of these

modeling forecasts designed not only to track infectious disease

events but also predict disease occurrence [14–16]. For an

example one needs to look no further than the 2009 H1N1

influenza pandemic. The latency between identification and

characterization of the virus pathogenicity and transmissibility

caused, perhaps, unnecessary mitigation measures such as school

and business closures [17–19]. Moreover, there are strong

indicators that dynamics and emergence of vector-borne diseases

are in flux because of, among other factors, changes in land use,

human behavior, and climate [20–22].

The goal of this systematic review was to identify areas for

research to characterize the viability of biosurveillance models to

provide operationally relevant information to decision makers

about disease events. We define a disease event to be a biological

event characterized by evidence of infection and or disease in

humans, animals, and plants (i.e. the One Health paradigm).

These disease events are neither mutually exclusive nor limited to

the following examples for evidence of infection: person-to-person

transmission (e.g., Mycobacterium tuberculosis), zoonoses (e.g., Franci-

sella tularensis), food-borne pathogens (e.g., Salmonella), vector-borne

pathogens (e.g., equine encephalitis virus), waterborne pathogens

(e.g., Vibrio cholerae), airborne pathogens (e.g., influenza), veterinary
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pathogens (e.g., Aphtae epizooticae), and plant pathogens (e.g.,

soybean and wheat rusts). Examples for evidence of condition

include accidental or deliberate events affecting air or water

quality (e.g., volcanic ash, pesticide runoff), economically motivat-

ed adulteration of the food and pharmaceutical supply, and

intentional exposure. In the context of this article, a biosurveil-

lance model is broadly defined as an abstract computational,

algorithmic, statistical, or mathematical representation that

produces informative output related to event detection or event

risk [23]. The model is formulated with a priori knowledge and

may ingest, process, and analyze data. A biosurveillance model

may be proactive or anticipatory (e.g., used to detect or forecast an

event, respectively), it may assess risk, or it may be descriptive (e.g.,

used to understand the dynamics or drivers of an event) [23].

There also is a true lack of implementation of such models in

routine surveillance and control activities; as a result there is not

an active effort to build and improve capacity for such model

implementation in the future [24–27]. When it comes to emerging

infectious disease events, or the intentional or accidental release of

a bioterrorism agent, most such pathogens are zoonotic (trans-

mitted from animal to human) in origin [28–30]. Therefore, in

assessing disease prediction models for biosurveillance prepared-

ness, it is reasonable to include a focus on agents of zoonotic origin

that could arise from wildlife or domestic animal populations or

could affect such animal populations concurrently with human

populations [31]. To date, the development of surveillance systems

for tracking disease events in animals and humans have arisen

largely in isolation, leading to calls for better integration of human

and animal disease surveillance data streams [32], to better

prepare for emerging and existing disease threats. Recent reports

have shown some utility for such linkage [26,33].

Two critical characteristics differentiate this work from other

infectious disease modeling systematic reviews (e.g., [34–38]). First,

we reviewed models that attempted to predict or forecast the

disease event (not simply predict transmission dynamics). Second,

we considered models involving pathogens of concern as

determined by the U.S. National Select Agent Registry as of June

2011 (http://www.selectagents.gov).

Methods

Subject matter experts were asked to supply keywords and

phrases salient to the research topic. A sample of keywords and

phrases used is shown in Table 1. Multiple searches were

conducted in bibliographic databases covering the broad areas

of medicine, physical and life sciences, the physical environment,

government and security. There were no restrictions placed on

publication date or language of publication. Abstracts and

citations of journal articles, books, books in a series, book sections

or chapters, edited books, theses and dissertations, conference

proceedings and abstracts, and technical reports containing the

keywords and phrases were reviewed. The publication date of

search results returned are bound by the dates of coverage of each

database and the date in which the search was performed,

however all searching was completed by December 31, 2010. The

databases queried resulted in 12,152 citations being collected.

Irrelevant citations on the topic of sexually transmitted diseases,

cancer and diabetes were retrieved. We de-duplicated and

removed extraneous studies resulting in a collection of 6,503

publications. We also collected 13,767 web documents based on

Google queries, often referred to as Google harvesting. We down

selected the web documents for theses and dissertations, reducing

this number to 21. Citations not relevant to the study of select

agents, such as sexually transmitted diseases, cancer and diabetes,

were identified and removed, leaving 6,524 documents. See

Checklist S1 for a list of information sources used in this study.

Next, we filtered citations by hand based upon the definition of

a biosurveillance model presented in the introduction and for

select agents, which resulted in a 117 curated papers. Of these 117

papers, 54 were considered relevant to the study based on our

selection criteria; however, 10 of these dealt purely with disease

spread models, inactivation of bacteria, or the modeling of human

immune system responses to pathogens. As a result, we

systematically reviewed 44 papers and the results are presented

in this analysis. See Figure S1 for a graphic summary of the data

reduction methodology and Checklist S1 for the PRISMA

guidelines used for the evaluation of the 44 papers. To enable

real-time collaboration and sharing of the literature, the citations

were exported to the Biosurveillance Model Catalog housed at

http://BioCat.pnnl.gov.

The models in the selected publications were classified in the

categories listed below. These categories are not mutually

exclusive and publications involving multiple modeling and

analytic approaches were assigned to multiple categories.

Risk Assessment models correlate risk factors for a specific

location based upon weather and other covariates to calculate

disease risk, similar to a forest fire warning. This type of model is

commonly referred to as ecological niche modeling or disease risk

mapping [39–41].

Event Prediction models will assign a probability for when

and where the disease event is likely to occur based upon specific

data sources and variables. The difference between event

prediction and risk assessment is the end product of the model;

in the former, the output is the location and a time period a disease

outbreak will occur, while the risk assessment model provides the

risk of an outbreak occurring under specified conditions [42–44].

Spatial models forecast the geographic spread of a disease after

it occurs based upon the relationship between the outbreak and

primarily geospatial factors. It should be noted that spatial models

can be considered dynamical models in that they change in time,

e.g., spatial patch models. [45–47].

Dynamical models examine how a specific disease moves

through a population. These models may include parameters, such

Table 1. A Sampling of Keywords and Phrases.

Keywords and Phrases Used (not exhaustive):

Biosurveillance Disease forecast Infectious disease surveillance Remote sensing + disease forecast Biosurveillance

Bioterror* and model Disease outbreak origin Pathogen detection Spatial disease model Bioterror* and model

CBRN model* Epidemic model* Population dynamic + outbreak Vector-borne disease model CBRN model*

+ Is used to link phrases or keywords with the Boolean operator ‘‘and’’.
* Is used as truncation to search for words that begin with the same letters or to replace any number of characters.
doi:10.1371/journal.pone.0091989.t001
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as movement restrictions, that have the effect of interventions on

the severity of an epidemic or epizootic. These models may be

used to predict and understand the dynamics of how a disease will

spread through a naı̈ve population or when the pathogenicity will

change [48,49].

Event Detection models attempt to identify outbreaks either

through sentinel groups or through the collection of real-time

diagnostic, clinical, or syndromic data and to detect spikes in signs,

symptoms or syndromes that are indicative of an event (e.g., event-

based biosurveillance) [50,51].

The disease agents examined in this study were taken from the

U.S. National Select Agent Registry and include human, plant,

and animal pathogens. The agents described within these models

are grouped non-exclusively by their mode of transmission: direct

contact, vector-borne, water- or soil-borne and non-specific.

Next, we analyzed the data sources in order to find ways to

improve operational use of biosurveillance models. These non-

mutually exclusive data source categories were: ‘‘Epidemiological

Data from the Same Location’’; ‘‘Epidemiological Data from a

Different Location’’; ‘‘Governmental and Non-Governmental

Organizations’’; ‘‘Satellite (Remote Sensing)’’; ‘‘Simulated’’; ‘‘Lab-

oratory Diagnostic’’; ‘‘Expert Opinion’’; and ‘‘Literature.’’ If a

paper cited any form of literature that was not epidemiological,

weather, or population data, it was categorized within the

literature group. An example of this is references to the preferred

natural habitat or survival requirements for a disease agent. Papers

that cited epidemiological data from a location independent of the

validation data were grouped ‘‘Epidemiological Data from a

Different Location,’’ ‘‘Simulated Data,’’ and ‘‘Experimental

Data.’’ ‘‘Expert Opinion’’ did not explicitly state from whom or

what type of data was used. In addition to the model data sources,

twelve non-mutually exclusive variable categories were identified

to facilitate understanding of how these models could be used

effectively by the research and operational communities. Models

with variables describing location or distance and rainfall or

temperature were categorized as ‘‘Geospatial’’ and ‘‘Climatic,’’

respectively. Models that took into account the epidemiological

(population-level) characteristics of the disease were grouped

together as ‘‘Epidemiological.’’ Variables that dealt specifically

with the agent or etiology were categorized under ‘‘Etiology.’’

Population size, density, and other related variables were grouped

into either ‘‘Affected Population’’ (i.e., the animal, plant, or

human population affected by the disease) or ‘‘Vectors and Other

Populations’’ (i.e., populations of the vector or any other

population that may be considered within the model but that

was not affected by the disease). Models that utilized remote

sensing data such as the ‘‘normalized difference vegetation index’’

(NDVI), a measurement used to determine the amount of living

green vegetation in a targeted area, were grouped within ‘‘Satellite

(Remote Sensing).’’ ‘‘Agricultural’’ techniques, such as tillage

systems, were also identified to be variables in some models as well

as ‘‘Clinical’’ and ‘‘Temporal’’ variables. The final two variable

types identified were ‘‘Topographic and Environmental,’’ such as

altitude or forest type, and ‘‘Social, Cultural, and Behavioral,’’

which included religious affiliations and education.

There are many verification and validation (V&V) standards

(e.g., ISO/IEC 15288-2008 [52], IEEE Std 1012-2012 [53], ISO/

IEEE 12207 [54]) and definitions, including some that are

specifically focused on modeling and simulation: NASA-STD-

7009 [55], Verification, Validation, and Accreditation Recom-

mended Practices Guide from the U.S. Department of Defense

(U.S. DoD) Modeling & Simulation Coordination Office [56],

U.S. Army TRADOC Reg 5-11 [57], U.S. Navy Best Practices

Guide for Verification, Validation, and Accreditation of Legacy

Modeling and Simulation [58], and U.S. DoD MIL-STD-3022

[59]. For instance, the U.S. DoD definition of verification for

modeling and simulation is ‘‘the process of determining that a

model implementation and its associated data accurately represent

the developer’s conceptual description and specifications’’[56].

The US DoD definition of validation for modeling and simulation is

‘‘the process of determining the degree to which a model and its

associated data provide an accurate representation of the real

world from the perspective of the intended uses of the model’’[56].

In the words of Boehm, verification answers the question ‘‘Did we

build the system right?’’ and validation answers, ‘‘Did we build the

right system?’’ [60]. Further, the ‘‘official certification that a

model, simulation, or federation of models and simulations and its

associated data is acceptable for use for a specific purpose’’ is its

accreditation[56], which answers the question of whether the model/

simulation is credible enough to be used.

All models were classified as either a) having undergone Some

V&V method, or b) No V&V based only on the paper(s) cited for

that model. Those models classified as having undergone Some

V&V were further classified based upon the type of V&V

method(s) applied to these models. The V&V method classifica-

tions used were ‘‘Statistical Verification’’; ‘‘Sensitivity Analysis

(verification)’’; ‘‘Specificity and Sensitivity (verification)’’; ‘‘Verifi-

cation using Training Data’’; ‘‘Validation using Temporally

Independent Data’’; and ‘‘Validation using Spatially and Tempo-

rally Independent Data.’’ In general, no conclusions on model

credibility can be based on the types of V&V methods used, given

that a) none of the papers were focused on the model V&V, and b)

seldom are all aspects of V&V reported upon in the types of papers

surveyed. The most frequently used verification method used is

some form of statistical verification. It is important to note that

verification methods do not necessarily imply that a model is

correct. In this type of verification, methods such as Kappa (used

to assess the degree to which two or more persons, examining the

same data, agree on the assignment of data to categories), area

under the receiving operating characteristic (ROC) curve,

goodness of fit, and other statistical values are examined to help

measure the ability of the model to accurately describe or predict

the outbreak. Several models plotted observed data against

predicted data as a V&V technique. This technique was further

delineated, depending on whether the observed data were part the

model’s training data (verification), temporally independent of the

training data (validation), or temporally and spatially independent

of the training data (validation). The remaining models applied

verification methods such as sensitivity analysis, which examined

whether a model functioned as it was believed to when different

values were input into important variables; or specificity and

sensitivity metrics, which measure the ability to determine true

positives and negatives. We acknowledge that not all of these V&V

techniques are applicable to every model type. Also note that the

use of a verification or validation method does not constitute

complete verification or validation of the model. For instance, the

IEEE standard for software verification and validation (IEEE Std

1012-2005) includes five V&V processes, supported by ten V&V

activities, in turn implemented by 79 V&V tasks. To put this in

perspective of the study, the V&V methods noted herein are at or

below the level of task. Assessment of inherent biases present

within these source documents and models reviewed is beyond the

scope of this study.

Results and Analysis

The publications’ models were categorized as follows (see

Table 2): event prediction (n = 4), spatial (n = 26), ecological niche

Disease Prediction Models
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(n = 28), diagnostic or clinical (n = 6), spread or response (n = 9),

and reviews (n = 3). The event prediction type includes only four

models—possibly explained by the difficulty in creating of a model

that truly predicts disease events. In general, these models were

applied to (or involved) small or special populations (e.g.,

populations with chronic diseases). According to Favier et al.,

the lack of prediction models could be addressed by taking a ‘‘toy

model’’ and creating a predictive model [61]. If models that are

similar to predictive models, such as risk assessment, could be

modified into such, the number of predictive models could be

increased.

Transmission Mode
The transmission modes of the models disease agent spanned

the following: direct contact (n = 24), vector-borne (n = 15), water-

or soil-borne (n = 7), and non-specific (n = 3); (see Table 3). Direct

contact and vector-borne models accounted for approximately

84% of all of the evaluated models.

Data Sources and Variables
The data sources (e.g., remote sensing, non-governmental

organizations, expert opinion, epidemiological) and variable

parameters (e.g., etiology, climatic, spatial, cultural) for each

model were recorded and reviewed (see Table 4). The two

categories that contained the most data sources were ‘‘Epidemi-

ological Data from the Same Location’’ (n = 25), such as a previous

outbreak, and data gathered from an organization, such as census

data. Thirty-two models used some type of ‘‘Literature’’ (n = 14)

an important fact is that the majority of data used in the models

were scientifically measured.

Categories of variables and parameters utilized in the models

supplemented the data sources. The two largest groupings were

‘‘Geospatial’’ and ‘‘Climatic’’ variables. According to Eisen et al.

[62], models that do not use epidemiological data produce results

with lower confidence such that users may not trust the results or

may not trust that the findings are relevant. Similarly, users may

not have faith that models are structured in a biologically

meaningful way if biologic or epidemiologic data do not appear

in a model [63]. Nonetheless, before incorporating epidemiolog-

ical data in disease event prediction models, further research is

needed to determine whether such data will increase the model’s

robustness, sensitivity, and specificity. Factors such as accuracy

and precision of epidemiological data will influence this analysis.

To better understand the relationship between the variables and

the disease agent’s mode of transmission, a graph (Figure 1) was

created to show the distribution of different modes of transmission

cited for each variable type used in the evaluated models. Table 5

shows the distribution of citations for each variable type. It was

noted without surprise that, as more research was done on a mode

of transmission, more variables were examined. Furthermore the

variables, ‘‘Vectors or Other Populations’’ and ‘‘Social, Cultural,

Behavioral’’ were underutilized in the evaluated models. This is

unfortunate because these variables typically have a seasonal

abundance pattern. Further, human socio-cultural behaviors

greatly impact the interactions between human and vector

populations and seasonal meteorological variation can strongly

affect vector abundance and competence [64]. Relatively few

disease prediction models were identified in which the causative

agent was water- or soil-borne [20,65].

Verification and Validation Methods
The V&V methods applied to each model, if any, were also

analyzed; see Table 6. Among the types of papers surveyed, few

aspects of V&V are typically reported. The majority of models

selected for this study were subjected some method of verification

or validation. Publications on many applications of predictive

models typically state statistical, sensitivity analysis, and training

data test results. These are necessary, though insufficient methods

Table 2. Citations categorized by model type.

Model Type Citations Total

Dynamical [74–82] 9

Event Detection [80,83–87] 6

Event Prediction [74,88–90] 4

Review Articles [91–93] 3*

Risk Assessment [21,62,75–78,88,91,94–107] 28

Spatial [61,74,75,78,79,83–85,89,94–99,108,109] 26

The categories are not mutually exclusive.
* The authors acknowledge others significant work in event-based biosurveillance, such as the G-7 Global Health Security Action Group [110], which is not cited in this
table because of the selection criteria.
doi:10.1371/journal.pone.0091989.t002

Table 3. The citations placed in each mode of transmission group.

Agent Mode of Transmission Citations Total

Direct Contact [74,75,77–84,88,90,93,97,99–101,104,105,107,108,111–113] 24

Non-Specific [86,92,114] 3

Vector-Borne [61,62,76,85,87,91,94,95,97,102–107,109] 15

Water-, Soil-Borne [21,84,89,91,96,98] 7

If a model involved multiple agents in different categories, the paper was placed in multiple groups.
doi:10.1371/journal.pone.0091989.t003
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to determine the credibility, verification or validation of a model.

For instance, the IEEE standard for software verification and

validation (IEEE Std 1012-2005) includes five V&V processes,

supported by ten V&V activities, which are in turn implemented

by 79 V&V tasks. To put this into perspective, the V&V methods

noted herein are at or below the level of task. The papers reported

the use of V&V methods for many models but not for others, and

for the latter case it is unclear whether V&V methods were not

used or merely unreported. Another positive observation is the

significant use of real epidemiological data to examine aspects of

model validity. Even though ‘‘Validation using Spatially and

Temporally Independent Data’’ was used for one of the smallest

sets of models, use of actual data versus predicted data for

validation tests was reported for approximately 33% of the models.

The reader is encouraged to understand that the use of a

verification or validation method does not constitute complete

verification or validation of the model [66–68].

Operational Readiness
Given the importance of these models to national and

international health security [69], we note the importance of a

categorization scheme that defines a model’s viability for use in an

operational setting. To our knowledge, none exists, but below we

illustrate one possibility, based upon the ‘‘technology readiness

level’’ (TRL) originally defined by NASA [70], to evaluate the

technology readiness of space development programs. Important

to note: NASA TRL levels were not developed to cover modeling

and simulation, much less biosurveillance models, so the

definitions require modification. In the public health domain,

TRLs can assist decision makers in understanding the operational

Table 4. Citation categorized by Data Source.

Data Source Citation Total

Epidemiological Data Different Location [79,93] 2

Epidemiological Data Same Location [21,75,77,79,81–83,85,87,89,90,94–97,99,101,102,104,105,108,111–113] 25

Expert Opinion [93,115] 2

Governmental or Non-Governmental Organization [21,74–76,78,80,83,84,87–89,93,94,96,97,99–102,105,106,111,113,115] 25

Laboratory Diagnostic [82,84,95] 3

Literature [61,62,77,82,83,86,88,90,92,94,98,103,106,109] 14

Satellite (Remote Sensing) [21,87,88,94,95,99,102–105,107,115] 12

Simulated [74,82,93,108] 4

If a model utilized data from multiple categories, it was placed in each.
doi:10.1371/journal.pone.0091989.t004

Figure 1. The Percentage of Citations Placed in Each Variable Group by Transmission Mode (if a model contained variables from
multiple groups, it was placed in each respective group).
doi:10.1371/journal.pone.0091989.g001
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readiness level, maturity and utility of a disease event or prediction

model. Advantages of utilizing the TRL paradigm are that it can

provide a common understanding of biosurveillance model

maturity, inform risk management, support decision making

concerning government funded research and technology invest-

ments, and support decisions concerning transition of technology.

We also point out the characteristics of TRLs that may limit their

utility, such as the operational readiness of a model does not

necessarily fit with technology maturity (V&V), a mature disease

prediction or forecasting model may possess a greater or lesser

degree of readiness for use in a particular geographic region than

one of lower maturity, and numerous additional factors must be

considered, including the relevance of the models’ operational

environment, the cost, technological accessibility, sustainability,

etc.

"Operational readiness" is a concept that is user and intended

use dependent. A model that one user may consider ready may not

suffice for readiness with another user. Different users have

different needs according to their missions. For example, in the

case of surveillance models, some will need to see everything

reported by event-based surveillance systems (i.e., they are

unconcerned with specificity but sensitivity is of high value to

them), while other users may demand low false alarm rates (i.e.,

specificity is important for their needs) [71,72]. The Operational

Readiness Level rating of any given model will thus depend upon

the diverse questions and purposes to which any given model is

applied.

An initial scheme modifying these definitions is shown in

Table 7. In such a scheme, the models would be characterized

based on how the model was validated, what type of data was used

to validate the model, and the validity of data used to create the

model. The V&V of predictive models, regardless of realm of

application, is an area that requires better definition and

techniques. The results of model V&V can be used in the

definition of model operational readiness; however the readiness

level definitions must also be accompanied by data validation,

uncertainty quantification, and model fitness for use evaluations,

many of which are areas of active research [73].

Discussion

Our study was conducted to characterize published select-agent

pathogen models that are capable of predicting disease events in

order to determine opportunities for expanded research and to

define operational readiness levels [38]. Out of an initial collection

of 6,524 items 44 papers met inclusion criteria and were

systematically reviewed. Models were classified as one or more

of the following: event prediction, spatial, ecological niche,

Table 5. Citations Organized by Variable Group.

Variables Group Citations Total

Affected Population [61,75,76,79,82–85,88,93,95,99,101,115] 14

Agricultural [74,79,83,90,95] 5

Climatic [21,75,76,78,80,85,87,89–91,94,97,98,100,102,106,107,111,115] 19

Clinical [62,76,79,92,93,101,112–114] 10

Epidemiological [61,79,81,89,92,99,111] 7

Etiology [61,62,74,77,81,82,89,111,113,114] 13

Geospatial [62,74,75,79,80,83,84,91,93–96,102,104–106,108,109,111,115] 20

Remote Sensing [21,83,87,88,94,99,102–105,107] 11

Social, Cultural, Behavioral [75,93,96,98] 4

Time [74,82,87,94,99,100,102,108,112,113] 12

Topography or Environment [78,85,88,91,95,98–100,102–106] 13

Vector or Other Populations [61,62,75,85,87,95,115] 7

If a model contained variables from multiple groups, it was placed in each respective group.
doi:10.1371/journal.pone.0091989.t005

Table 6. Grouping of Citations by Verification and Validation (V&V) Methods.

V&V Method Citations Total

No V&V [61,78,86,92,109] 5

Sensitivity Analysis (verification) [79–82,94,99,112,113] 8

Specificity and Sensitivity (verification) [1,75,84,95] 4

Statistical Verification [21,75,77,79,82,83,88,94–97,99–106,108,115] 21

Validation using Spatially and Temporally Independent Data [79,90] 2

Validation using Temporally Independent Data [84,88,97,102,103,111] 6

Verification using Training Data [21,75,81,85,89,97,104,105,107,112,115] 11

If a model used multiple methods for its verification or validation, it was categorized in each respective group.
doi:10.1371/journal.pone.0091989.t006
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diagnostic or clinical, spread or response, and reviews. Model

parameters (e.g., etiology, climatic, spatial, cultural), data sources

(e.g., remote sensing, non-governmental organizations, expert

opinion, epidemiological), and V&V methods applied to each

model, if any, were identified. Moreover, an initial set of

operational readiness level guidelines for disease prediction

models, based upon established Technology Readiness Level

definitions, were suggested.

In the majority of the models we examined, few aspects of V&V

were reported. Although many models underwent some level of

V&V, few if any demonstrated validation, and thus readiness, in a

general sense that would find credibility with operational users.

Such V&V is difficult to implement in general, for the reasons

discussed in the previous section. However, if users are to apply the

models and have confidence in model results, it is imperative to

advance model V&V. Similarly, the suggested operational

readiness level guidelines are meant to spur additional investiga-

tion, as our literature review uncovered no operational model

readiness metrics. Given better definition of readiness levels,

providing clear means to achieve upper operational readiness

levels, and the ability to consistently assign confidence in readiness

level assignment will lead to enhanced value to the decision

makers. In order to test operational readiness levels, we suggest

further development of the criteria and application of the levels to

existing disease prediction models to evaluate their usefulness in an

operational environment. Public health analysts and decision

makers are in need of evidenced-based advice, and the value of

operational readiness levels for the models on which they depend

cannot be overstated.
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