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Abstract

Air quality is known to be a key factor in affecting the wellbeing and quality of life of the general populous and there is a
large body of knowledge indicating that certain underrepresented groups may be overexposed to air pollution. Therefore, a
more precise understanding of air pollution exposure as a driving cause of health disparities between and among ethnic
and racial groups is necessary. Utilizing 52,613 urban census tracts across the United States, this study investigates age,
racial, educational attainment and income differences in exposure to benzene pollution in 1999 as a case. The study
examines spatial clustering patterns of these inequities using logistic regression modeling and spatial autocorrelation
methods such as the Global Moran’s I index and the Anselin Local Moran’s I index. Results show that the age groups of 0 to
14 and those over 60 years old, individuals with less than 12 years of education, racial minorities including Blacks, American
Indians, Asians, some other races, and those with low income were exposed to higher levels of benzene pollution in some
census tracts. Clustering analyses stratified by age, education, and race revealed a clear case of disparities in spatial
distribution of exposure to benzene pollution across the entire United States. For example, people aged less than 4 years
from the western south and the Pacific coastal areas exhibit statistically significant clusters. The findings confirmed that
there are geographical-location based disproportionate pattern of exposures to benzene air pollution by various socio-
demographic factors across the United States and this type of disproportionate exposure pattern can be effectively
detected by a spatial autocorrelation based cluster analysis method. It is suggested that there is a clear and present need for
programs and services that will reduce inequities and ultimately improve environmental conditions for all underrepresented
groups in the United States.
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Introduction

Environmental injustice may be defined as a type of injustice

when a particular social group is disproportionately burdened with

environmental hazards [1]. The underlying contributors to

environmental injustices can be political, economic, historical,

and social [2].

Air pollution, the most common type of pollutant in environ-

mental injustice studies, can be traced back to the industrializa-

tion-urbanization nexus beginning in the 19th century. Evidence

indicates that air pollution exposure is more serious than

previously thought, in terms of adverse health impacts such as

reduced life expectancy, increased daily mortality and hospital

admissions, birth outcomes, and asthma [3]. These effects have

been shown to exist in both economically developing and

developed countries [4]. Systematic efforts to control air pollution

and to protect public health commenced mostly in the second half

of the 20th century and have intensified since the 1960s [5].

Exposure to air pollution, however, may vary spatially within a

city [6] and these variations may follow social gradients that

influence susceptibility to environmental exposures [7]. Residents

of poorer neighborhoods may live closer to point sources of

industrial pollution or roadways with higher traffic density [8].

International research has shown that air pollution exposure varies

by socio-economic status, with lower socio-economic groups being

disproportionately exposed to air pollution and to environmental

mechanisms that lead to inequities in health [9]. For example,

there is consistent evidence in California that patterns of

disproportionate exposure to air pollution among minority and

lower-income communities exists [10]. These communities also

face other challenges associated with low socioeconomic status,

including psychosocial stressors, which make it more difficult to

cope with these exposures [9].

Meanwhile, although current research has confirmed the

relations between social-demographic characteristics (e.g., educa-

tion, age, race etc.) and disease [11], they are still inadequate in

explaining the underlying reasons for disease disparities. Thus,
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further understanding of the role of socio-demographic status as a

component of susceptibility to the adverse health effects of air

pollution is necessary in the process of setting ambient air quality

standards and implementing programs and policy that lead to

adherence to these standards.

Today, air pollution is still a major environmental health issue

in the United States, directly affecting people’s wellbeing and

quality of life with adverse health impacts such as excess

respiratory, cardiovascular morbidity and higher mortality [12].

International survey data showed a 7–10% premature birth rate in

industrialized countries, and specifically 9–12% in United States in

Figure 1. United States census divisions of urban-designated counties containing 52, 613 tracts used in this study. The study area
focuses on all urban census tracts within the United States, which is further classified into nine divisions. It consists of an aggregate number of 52,613
census tracts within 48 contiguous states and Washington DC.
doi:10.1371/journal.pone.0091917.g001

Figure 2. Annual exposure concentrations of total benzene at the census tract level in the United States. Annual exposure
concentrations of census tracts have been utilized to calculate county level mean exposure concentration values, which was used as a ‘relative
exposure level’ metric to evaluate benzene pollution exposure inequities. Division 1 is New England; Division 2 is Mid-Atlantic; Division 3 is East North
Central; Division 4 is West North Central; Division 5 is South Atlantic; Division 6 is East South Central; Division 7 is West South Central; Division 8 is
Mountain; Division 9 is Pacific.
doi:10.1371/journal.pone.0091917.g002
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recent years, with the trend for both showing an increase [13]. In

this way, a broader understanding of the causes of population

health disparities by race/ethnicity, socioeconomic status, and

geographic location is necessary for achieving better solutions to

population health problems caused by the complex cocktail of air

pollution found in the United States. This study aims to investigate

Table 1. Standards of categorization and reference categories for socio-demographic measurements.

Characteristics Level 1 Level 2 Level 3 Level 4 Level 5

Age 0–14 14–60* .60 — —

Race White* black American Indian Asian Other races

Education attainment (years) 0–4 5–8 9–12 .12* —

Income (US$) ,19000 . = 19000** — — —

*Reference category for comparison based on existing studies in the environmental justice literature.
**The classification standard for income is detailed in the text.
doi:10.1371/journal.pone.0091917.t001

Figure 3. Population percentiles based on socio-demographic characteristics in the nine divisions. (A): Population percentile based on
age characteristic in the nine divisions. Age group 15 to 60 have the highest population percentage. (B): Population percentile pertaining to
educational attainment characteristic in the nine divisions. Educational attainment more than 12 years have the highest population percentage. (C):
Population percentile of race characteristic in the nine divisions, the white have the highest population percentage. (D): Population percentile of
income characteristic in the nine divisions. Division 1 is New England; Division 2 is Mid-Atlantic; Division 3 is East North Central; Division 4 is West
North Central; Division 5 is South Atlantic; Division 6 is East South Central; Division 7 is West South Central; Division 8 is Mountain; Division 9 is Pacific.
doi:10.1371/journal.pone.0091917.g003
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census tract level exposure to air pollution by these factors and to

examine the spatial clustering patterns of the disparities at county

level.

Data and Methods

Study Area
This study focuses on all urban census tracts within the United

States, which is further classified into four census regions (e.g.

Northeast, Midwest, West, South), and nine divisions [14]. This

regional and divisional classification, as defined by the United

States Census Bureau, is based upon factors such as employment,

crime, health, consumer expenditures, and housing. The demo-

graphic differences between these divisions are suitable to be

utilized for analyzing the air pollution exposure inequities across

the entire country. We chose to use census tracts because this was

the smallest level of aggregation at which air quality information

for benzene was available and it was generally utilized as the

standard spatial scale for environmental justice studies due to its

relatively homogeneous characteristics relative to socio-demo-

graphic status and living conditions [15], [16]. The study area

consists of an aggregate number of 64,890 census tracts, 3,109

counties within 48 contiguous states and Washington DC. The

number of counties included in our study is 29 for New England

(Division 1), 81 for Mid-Atlantic (Division 2), 174 for East North

Central (Division 3), 187 for West North Central (Division 4), 214

for South Atlantic (Division 5), 97 for East South Central (Division

6), 194 for West South Central (Division 7), 101 for Mountain

(Division 8), and 69 for Pacific (Division 9) (Fig. 1). After filtering

out rural census tracks, we were left with 52,613 urban census

tracts that account for 80.5% of the total 64,890 census tracts in

the United States.

Data Sources and Analysis
The Environmental Hazard Data were ascertained from the US

Environmental Protection Agency’s (EPA) NATA (National Air

Toxics Assessments) website [17]. The NATA data is the EPA’s

ongoing comprehensive evaluation of air toxics in the U.S. EPA

developed the NATA as a state-of-the-science screening tool for

state, local, and tribal agencies to prioritize pollutants, emission

sources, and locations of interest and for researchers to gain a

better understanding of environmental risks. These datasets are

particularly suitable for environmental justice research, not only

because they allow researchers to estimate the potential health

risks associated with specific environmental hazards and analytical

spatial units, but also because the data modeling takes into account

a number of factors such as wind speed, wind direction, air

turbulence, smokestack height and the rate of chemical decay and

deposition [18]. Another important advantage of the NATA data

is their spatial compatibility with socio-demographic census data:

the modeled risk estimates are available for census units (e.g.,

tracts), which also include demographic characteristics of residen-

tial population.

The annual benzene pollution concentration for census tracts

was used to represent air pollution. Benzene is a ubiquitous

chemical in the environment that causes acute leukemia and

probably other hematological cancers [19]. Meanwhile, recent

studies reported an association between higher benzene exposure

concentrations with lower social economy status and social class

[20], [21]. While other air pollutants (e.g. sulfur dioxide) have

experienced a downward trend in use over the past few decades,

benzene is still one of the key toxic air pollutants produced by

today’s petrochemical industry and can be found in gasoline

petroleum tanks throughout urban areas. Benzene exposure data

from 1999 NATA have been utilized for air pollution exposure

equity analysis [22], [23]. We calculated county level mean

exposure concentration values based on exposure concentrations

of census tracts (Fig. 2). Because recent studies have focused on the

effects of continuous exposure to low concentrations of benzene

[24], [25], [26], we used a ‘relative exposure level’ metric to

evaluate benzene pollution exposure inequities in this study [27].

In this way, population in census tracts with exposure concentra-

tions higher than a county level mean exposure concentration

value are recognized as ‘high’ exposure concentration, whereas as

low exposure concentration is assigned to census tracts below

average.

The population data at census tract and county levels in this

study were retrieved from the US Census 2000 Summary File 1

[28], while the geographic boundaries of spatial scale were

acquired from the Census 2000 Topologically Integrated Geo-

graphic Encoding and Referencing (TIGER)/Line dataset [29].

Following previous studies [30], [31], [32], [33], we selected age,

race, educational attainment, and income as the socio-demo-

graphic indicators in this study. These characteristics were

Table 2. Global Moran’s I statistic values by age, race, and educational attainment in the United States and the nine divisions.

Age Race Educational attainment Income

,14 .60 Black American Indian Asian Other races ,4 5–8 9–12 Low income

United States 0.046* 0.021* 0.033* 0.031* 0.003 0.028* 0.036* 0.021* 0.011 0.022*

Division 1 20.071 20.062 20.105 20.060 20.061 20.091 20.065 0.083 20.057 20.007

Division 2 20.118 0.084* 0.070* 20.073 0.120* 20.003 20.019 0.213* 0.035 20.069

Division 3 0.012 0.042 0.041* 20.004 0.016 20.002 0.026 20.022 20.018 20.063

Division 4 20.019 20.010 0.032 0.025 0.054* 0.010 20.005 0.050 0.007 0.051

Division 5 0.010 20.022 20.006 0.035* 0.044* 0.031 0.025 20.022 20.034 0.0004

Division 6 20.007 0.159* 0.024 20.175* 20.005 20.048 20.016 0.090 0.088 0.033

Division 7 0.090* 0.050* 0.008 0.021 0.020 0.104* 0.026 0.114* 0.058* 20.108

Division 8 20.020 20.019 0.009 0.053 0.004 20.060 0.034 0.027 20.000 20.114

Division 9 0.110* 20.027 0.051 0.226* 20.015 0.088 20.016 0.078 0.195* 20.073

* p,0.05.
doi:10.1371/journal.pone.0091917.t002

Spatial Cluster Detection of Exposure Inequities

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91917



categorized into different levels based on the reference categories

of existing studies [34] (Table 1). We reclassified the census tract

level individual incomes into high or low levels (groups) by using

the computed national wide median income values as standards.

Population in census tracts with income values higher than the

nation-wide median income value were categorized in the ‘high’

income group, whereas the ‘low income’ group was assigned to

census tracts below that national average. Figure 3 shows the

population percentiles based on socio-demographic characteristics

in the nine divisions. It can be seen that the socio-demographic

characteristics including age, race, education attainment, and

income fluctuate significantly across the nine divisions. This again

emphasizes the necessity of conducting demography-based anal-

ysis of air pollution exposure inequities.

Spatial Cluster Analysis
Spatial autocorrelation is an optimal method for systematically

ascertaining spatial patterns of air pollution exposure inequities

[35]. For the purpose of detecting spatial clusters of environmental

inequity across the United States, the spatial cluster analytical

strategy used in this study is designed to include three sub-

processes, including global autocorrelation analysis, logistic

regression modeling, and local hot spot detection. Since we are

interested in spatial patterns based on a large data set in the study

area, it is reasonable that spatial dependence exists at the global

scale because of the continuous characteristic of terrain in

developed or open areas. Global autocorrelation analysis is

therefore adopted to preliminarily explore the spatial autocorre-

lations of benzene pollution concentration as well as socio-

demographic indicators. Odds ratios (ORs) were calculated for

each county across the entire study area to further diagnose

whether the environmental inequities were caused by the

interactions among these different global scale spatial autocorre-

lations. Logistic regression modeling was used to calculate the

ORs. Finally, local hotpot detection was employed to pinpoint the

statistically significant hot spots or cluster areas based on the ORs

of counties. The methodological principles and implementation

details of these sub-processes are described as follows:

1. Global autocorrelation analysis. At present, there are

many ways to test the global autocorrelations of events. The most

popular one among them is Moran’s I statistic, which has been

used to test the null hypothesis that the spatial autocorrelation of a

variable is zero [36], [37]. If the null hypothesis is rejected, the

variable would be considered spatially autocorrelated. Moran’s I

statistic of spatial autocorrelation is presented by Cliff and Ord

1981 as formulas (1–2) [38]:

I~
Xn

i

xi {X
� �Xn

j~1

wij xj {X
� �,

S
2
i

Xn

i

Xn

j~1

wij ð1Þ

S
2
i ~

Xn

i

xi {X
� �2

,
n ð2Þ

where the global Moran’s I index indicates the extent of global

spatial autocorrelation of a variable, with the value ranging from

21.0 to +1.0, n denotes the number of all spatial units, xi and xj are

the attribute values of a variable at spatial unit i and j, respectively,

X is the mean of attribute values of x, Si is the deviation of an

attribute value at spatial unit i from its mean xi {X
� �

, w denotes

Table 3. Frequency of ORs greater than 1 by age characteristic at the county level in the United States and the nine divisions.

Age Count (percentage) Minimum (95%CI) Maximum (95%CI) Mean

United States 0–14 306(26.7%) 1.017(1.006,1.029) 5.911(4.935,7.081) 1.189

.60 537(46.9%) 1.010(1.001,1.019) 5.400(4.856,6.005) 1.285

Division 1 0–14 10(31.0%) 1.018(1.005,1.032) 1.322(1.286,1.359) 1.131

.60 11(37.9%) 1.027(1.004,1.050) 1.451(1.415,1.488) 1.184

Division 2 0–14 10(12.3%) 1.028(1.008,1.049) 1.180(1.125,1.237) 1.098

.60 44(54.3%) 1.010(1.001,1.019) 1.407(1.383,1.431) 1.183

Division 3 0–14 52(29.9%) 1.020(1.005,1.034) 1.472(1.404,1.543) 1.106

.60 84(48.3%) 1.030(1.025,1.035) 1.730(1.505,1.990) 1.220

Division 4 0–14 22(11.8%) 1.043(1.002,1.085) 1.302(1.154,1.470) 1.135

.60 82(43.9%) 1.055(1.009,1.104) 2.243(2.142,2.348) 1.301

Division 5 0–14 66(30.8%) 1.017(1.001,1.032) 5.026(4.502,5.610) 1.209

.60 96(44.9%) 1.029(1.016,1.042) 5.400(4.856,6.005) 1.333

Division 6 0–14 27(27.8%) 1.028(1.013,1.042) 1.334(1.276,1.395) 1.118

.60 57(58.8%) 1.039(1.007,1.073) 1.937(1.866,2.010) 1.293

Division 7 0–14 79(40.7%) 1.034(1.002,1.066) 5.911(4.935,7.081) 1.296

.60 92(47.4%) 1.026(1.011,1.041) 3.406(2.947,3.937) 1.324

Division 8 0–14 11(10.9%) 1.017(1.006,1.029) 1.373(1.264,1.493) 1.141

.60 47(46.5%) 1.047(1.027,1.067) 2.750(2.685,2.817) 1.358

Division 9 0–14 30(43.5%) 1.025(1.017,1.033) 2.611(2.462,2.770) 1.175

.60 24(34.8%) 1.017(1.006,1.028) 1.903(1.779,2.035) 1.187

CI: confident interval;
Percentage was derived by the number of geographic units for each age level divided by the total number of counties at each geographic division.
doi:10.1371/journal.pone.0091917.t003
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Figure 4. Clusters for benzene pollution exposure by age at county level. A local autocorrelation method is used to identify statistically
significant hot spots, or cluster areas. High-High areas indicate high values near high values; Low-Low areas indicate low values near low values; High-
Low areas indicate high values near low values; Low-High areas indicate low values near high values. (A) age (,14); (B) age (.60). Division 1 is New
England; Division 2 is Mid-Atlantic; Division 3 is East North Central; Division 4 is West North Central; Division 5 is South Atlantic; Division 6 is East
South Central; Division 7 is West South Central; Division 8 is Mountain; Division 9 is Pacific.
doi:10.1371/journal.pone.0091917.g004
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the space matrix, and wij represents the spatial weight between

spatial unit i and j.

In this study, we use the census tract as the base spatial unit.

Moran’s I index means the extent of global spatial autocorrelations

of benzene pollution concentration as well as socio-demographic

indicators (i.e. age, race, educational attainment, and income).

The variable x in formulas (1) and (2) is therefore the attribute

value of either ‘benzene pollution concentration’ or ‘a socio-

demographic indicator’ such as ‘age’. wij is determined based on

the adjacency standard. Agency standard is when a shared side

occurs between two adjacent census tracts i and j, then wij = 1,

otherwise wij = 0. In order to verify the necessity of detecting local

spatial clusters of potential environmental inequities, the global

autocorrelation analyses in this study were implemented for entire

Table 4. Frequency of ORs greater than 1 by race at the county level in the United States and the nine divisions.

Race Count (percentage) Minimum (95%CI) Maximum (95%CI) Mean

United States Black 795(69.4%) 1.041(1.021,1.061) 56.589(48.884,65.510) 3.714

American Indian 485(42.3%) 1.040(1.006,1.074) 14.726(10.112,21.445) 1.965

Asian 679(59.2%) 1.044(1.016,1.072) 246.341(89.734,676.264) 3.157

Other races 815(71.1%) 1.017(1.009,1.025) 11.887(8.812,16.034) 2.058

Division 1 Black 25(86.2%) 1.117(1.101,1.133) 9.809(9.470,10.160) 2.866

American Indian 19(65.5%) 1.105(1.020,1.197) 3.161(2.945,3.394) 1.788

Asian 24(82.8%) 1.220(1.185,1.257) 3.444(2.964,4.002) 2.038

Other races 25(86.2%) 1.169(1.064,1.285) 6.110(5.941,6.284) 2.511

Division 2 Black 61(75.3%) 1.101(1.063,1.140) 17.066(16.205,17.973) 3.437

American Indian 40(49.4%) 1.140(1.014,1.281) 2.788(2.497,3.114) 1.827

Asian 63(77.8%) 1.044(1.016,1.072) 6.845(6.200,7.558) 2.009

Other races 64(79.0%) 1.017(1.009,1.025) 7.097(6.915,7.283) 2.502

Division 3 Black 135(77.6%) 1.071(1.051,1.092) 37.255(26.109,53.160) 4.675

American Indian 90(51.7%) 1.040(1.006,1.074) 3.824(1.769,8.269) 1.785

Asian 94(54.0%) 1.049(1.014,1.086) 12.118(5.956,24.652) 2.891

Other races 141(81.0%) 1.053(1.002,1.106) 6.173(4.613,8.261) 2.064

Division 4 Black 128(68.4%) 1.139(1.075,1.207) 50.856(7.124,363.056) 4.898

American Indian 90(48.1%) 1.140(1.037,1.254) 14.726(10.112,21.445) 2.460

Asian 110(58.8%) 1.075(1.023,1.132) 42.609(13.700,132.520) 4.063

Other races 136(72.7%) 1.101(1.020,1.189) 11.886(9.798,14.419) 2.355

Division 5 Black 142(66.4%) 1.059(1.048,1.069) 56.589(48.884,65.510) 2.762

American Indian 76(35.5%) 1.120(1.014,1.238) 14.161(8.893,22.550) 1.990

Asian 130(60.7%) 1.050(1.035,1.066) 9.057(4.871,16.841) 2.061

Other races 132(61.7%) 1.086(1.051,1.123) 7.285(6.750,7.862) 1.901

Division 6 Black 68(70.1%) 1.058(1.029,1.088) 16.902(13.287,21.502 4.093

American Indian 30(30.9%) 1.117(1.005,1.241) 13.214(6.956,25.100) 2.254

Asian 68(70.1%) 1.201(1.067,1.353) 246.341(89.734,676.264) 6.483

Other races 67(69.1%) 1.157(1.021,1.312) 11.887(8.812,16.034) 2.023

Division 7 Black 130(67.0%) 1.060(1.020,1.102) 37.270(5.194,267.413) 3.631

American Indian 60(30.9%) 1.096(1.012,1.188) 8.159(1.089,61.142) 1.817

Asian 86(44.3%) 1.105(1.010,1.210) 20.688(2.850,150.144) 3.389

Other races 126(64.9%) 1.041(1.010,1.073) 5.782(3.813,8.767) 1.939

Division 8 Black 55(54.5%) 1.127(1.098,1.157) 10.894(5.371,22.096) 2.691

American Indian 41(40.6%) 1.200(1.101,1.308) 4.209(2.995,5.913) 1.892

Asian 57 (56.4%) 1.066(1.023,1.111) 24.251(7.696,76.415) 2.845

Other races 67(66.3%) 1.060(1.022,1.101) 4.781(4.079,5.605) 1.768

Division 9 Black 51(73.9%) 1.041(1.021,1.061) 13.205(8.974,19.430) 2.399

American Indian 39(56.5%) 1.062(1.033,1.092) 2.192(2.131,2.255) 1.494

Asian 47(68.1%) 1.064(1.043,1.086) 8.475(7.168,10.021) 1.848

Other races 57(82.6%) 1.039(1.020,1.059) 3.091(3.049,3.133) 1.649

CI: confident interval;
Percentage was derived by the number of geographic units for each race level divided by the total number of counties at each geographic division.
doi:10.1371/journal.pone.0091917.t004
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United States and each Division separately. The analyses were

conducted using the ‘Spatial Statistic Tools’ in ArcGIS 10.0.

2. Logistic regression modeling. Logistic regression is a

mathematical modeling technique that describes the relationship

between several independent variables and a dichotomous

dependent variable [39]. Most environmental justice studies use

logistic regression to derive ORs based on the following formulas

(3–8):

odds~P=(1{P) ð3Þ

log (odds)~ log it(P)~ ln P=(1{P)½ � ð4Þ

ln P=(1{P)½ �~azbX ð5Þ

P=(1{P)~ eazbX ð6Þ

P~eazbX
�

1z eazbX
� �

ð7Þ

OR~ P1= 1{ P1ð Þ½ �= P2= 1{ P2ð Þ½ � ð8Þ

where ‘odds’ is the probability of the dichotomous dependent

variable equals an event (i.e. the case or control group being

exposed to air pollution) (i.e., ‘p’) divided by the probability of the

event not to occur (i.e., ‘p/1-p’). OR denotes odd ratio, indicating

the relative value by which the ‘odds’ of the outcome increases

(i.e., OR greater than 1.0) or decreases (i.e., OR less than 1.0). ‘e’ is

the exponential constant, equal to 2.71828. ‘P1’ denotes the

probability of the case group being exposed to air pollution. ‘P2’

denotes the probability of the control or reference group being

exposed to air pollution. ‘X’ represents the explanatory variables

which are either interval-level or ‘dummy’, a, b represents partial

regression coefficients of the independent variable ‘X’.

The logistic regression modeling in this study was implemented

in SPSS version 17. In this process, the census tract level benzene

pollution concentration was dichotomized as the dependent

variable and coded as either ‘1’ (i.e. above) or ‘0’ (i.e. below)

based on the mean concentrations at the county level. Conse-

quently, age, race, educational attainment, and income were

selected as independent variables and recoded (e.g., the reference

category was coded as ‘0’). Meanwhile, the population amount of

above/below pollution concentrations in each category by

different socio-demographic indicators were input correspondingly

as weight cases while the ‘indicator option’ in SPSS was set first as

the reference category. In addition, we assess whether there is any

significant relationship between the dependent variable Y (i.e.

benzene pollution concentration) and independent variables X

(socio-demographic indicators). More specifically, if any of the null

hypotheses that b = 0 is valid, then X is statistically insignificant in

the logistic regression model. However, it was difficult for us to

eliminate the potential bias of the logistic regression modeling for

each type of demographic variable (e.g., age) by inputting the

remaining variables (e.g., race, education attainment, income) as

confounding factors, because the attribute values for those

variables were aggregated values rather than individual level ones.

3. Local hot spot detection. When underlying global

autocorrelation is detected, the question about how to identify

Figure 5. Clusters for benzene pollution exposure by race at
county level. (A): Black; (B): American Indian; (C): Asian; (D): Other
races. Division 1 is New England; Division 2 is Mid-Atlantic; Division 3 is
East North Central; Division 4 is West North Central; Division 5 is South
Atlantic; Division 6 is East South Central; Division 7 is West South
Central; Division 8 is Mountain; Division 9 is Pacific.
doi:10.1371/journal.pone.0091917.g005
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more local patterns emerges. This leads to the challenge of finding

an appropriate test for local spatial autocorrelations in the

presence of global spatial autocorrelation. Local Moran’s I based

cluster mapping has been suggested as an effective method in

detecting the hot spots or cluster areas of environmental exposure

inequity based on spatial autocorrelation theory [40]. Formulas

(9–11) present the basic principle of local Moran’s I statistic.

Ii ~ xi {X
� ��

S
2
i

� � Xn

j~1,j=i

wij xj {X
� �

ð9Þ

X~
Xn

i~1

xi=n ð10Þ

S
2
i ~

Pn
j~1,j=i

wij

n{1ð Þ { X
2 ð11Þ

where the designations for the letters such as n, xi, xj, Xare similar

to those in formulas 3–8, Si is the deviation between an attribute

value at spatial unit i and its mean X , Ii is the Moran’s I index

which indicates the extent to which neighboring spatial units

congregate with each other in terms of attributes. If the attribute

values in the dataset tend to cluster spatially (i.e., high values near

high values; low values near low values), the Moran’s I index will

be positive. When high values repel other high values, or tend to

be near low values, the index value will be negative. If the values in

the dataset tend to scatter spatially, the index will be near zero.

The range of the index value falls between 21.0 and +1.0 [40].

Table 5. Frequency of ORs greater than 1 by educational attainment at the county level in the United States and the nine
divisions.

Educational attainment Count (percentage) Minimum (95%CI) Maximum (95%CI) Mean

United States 0–4 660(57.6%) 1.075(1.021,1.132) 26.923(6.594,109.924) 2.427

5–8 586(51.1%) 1.045(1.001,1.092) 21.318(13.042,34.847) 1.757

9–12 625(54.5%) 1.023(1.002,1.045) 9.982(8.204,12.146) 1.515

Division 1 0–4 19(65.5%) 1.272(1.099,1.472) 4.294(3.690,4.997) 2.355

5–8 22(75.9%) 1.118(1.025,1.220) 2.606(2.422,2.804) 1.757

9–12 21(72.4%) 1.051(1.014,1.089) 2.052(2.002,2.103) 1.510

Division 2 0–4 61(75.3%) 1.081(1.003,1.166) 4.946(4.790,5.108) 1.906

5–8 51(63.0%) 1.059(1.014,1.105) 2.958(2.890,3.028) 1.566

9–12 51(63.0%) 1.064(1.019,1.110) 2.303(2.257,2.350) 1.479

Division 3 0–4 109(62.6%) 1.167(1.052,1.296) 7.555(5.171,11.039) 2.310

5–8 96(55.2%) 1.092(1.003,1.190) 3.030(2.706,3.394) 1.566

9–12 108(62.1%) 1.041(1.001,1.083) 3.182(3.087,3.280) 1.450

Division 4 0–4 99(52.9%) 1.152(1.008,1.317) 17.858(12.621,25.268) 3.309

5–8 80(42.8%) 1.106(1.021,1.198) 3.308(2.929,3.736) 1.616

9–12 91(48.7%) 1.046(1.023,1.069) 2.685(2.518,2.864) 1.469

Division 5 0–4 117(54.7%) 1.144(1.042,1.255) 11.495(9.706,13.615) 2.120

5–8 112(52.3%) 1.075(1.008,1.146) 21.318(13.042,34.847) 1.905

9–12 120(56.1%) 1.023(1.002,1.045) 9.982(8.204,12.146) 1.590

Division 6 0–4 43(44.3%) 1.093(1.029,1.161) 3.184(2.804,3.616) 1.765

5–8 34(35.1%) 1.112(1.007,1.227) 3.076(2.846,3.323) 1.590

9–12 44(45.4%) 1.064(1.004,1.128) 2.083(1.961,2.213) 1.381

Division 7 0–4 110(56.7%) 1.143(1.004,1.301) 7.281(3.523,15.051) 2.295

5–8 96(49.5%) 1.076(1.001,1.156) 5.169(3.627,7.367) 1.931

9–12 102(52.6%) 1.042(1.010,1.074) 5.187(3.816,7.050) 1.586

Division 8 0–4 56(55.4%) 1.246(1.132,1.371) 26.923(6.594,109.924) 3.333

5–8 48(47.5%) 1.291(1.184,1.408) 3.568(3.492,3.645) 2.038

9–12 49(48.5%) 1.084(1.030,1.140) 2.350(2.049,2.697) 1.604

Division 9 0–4 46(66.7%) 1.075(1.021,1.132) 5.470(4.389,6.816) 2.141

5–8 47(68.1%) 1.045(1.001,1.092) 3.220(3.179,3.262) 1.723

9–12 39(56.5%) 1.068(1.025,1.112) 2.504(2.479,2.529) 1.472

CI: confident interval;
Percentage was derived by the number of geographic units for each education level divided by the total number of counties at each geographic division.
doi:10.1371/journal.pone.0091917.t005
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We utilized cluster and outlier analysis (Anselin Local Moran’s

I) functions in ‘Spatial Statistic Tools’ within ArcGIS 10.0 to

identify the local hot spots or cluster areas of benzene exposure

inequity in this study. In this process, x is the OR value of each

county. wij is determined based on the adjacency standard, where

wij = 1 when there is a shared side between adjacent two counties,

and 0 otherwise. The significance of the hot spots or cluster areas

is determined by the Z-score and P value. That is, a high positive

Z-score for benzene exposure inequities of a county with P value at

0.05 level indicates the surrounding features have the either high

or low OR values (i.e., High-high, or Low-low). Inversely, a low

negative Z-score for benzene exposure inequities of a county with

P value at 0.05 level indicates a significant spatial outlier (i.e.,

High-low, or Low-high).

Results

Global Autocorrelation Analysis of Air Pollution Exposure
Table 2 delineates the values derived from the Global

autocorrelation calculation for the nine divisions and the entire

United States. With Global Moran’s I index, people aged less than

4 years from Divisions 7 (0.090) and 9 (0.110) exhibit statistically

significant clusters and have larger positive index values than the

entire United States (0.046). Furthermore, even though Global

Moran’s I index values for Asians with educational attainment of

9-12 years appeared not to be statistically significant for the United

States, Asians for Divisions 2, 4 and 5 (0.120, 0.054, 0.044), and

education level of 9-12 years for Divisions 7 and 9 (0.058, 0.195)

show significant cluster patterns.

Spatial Clustering of Air Pollution Exposure Inequity by
Age

Table 3 delineates frequency of ORs greater than 1 by age

characteristic at the county level in the United States and by the

nine divisions. From Table 3, it can be seen that people belonging

to age groups 0 to 14 and 60+ years old were exposed to higher

levels of benzene pollution in some counties across the United

States. For the age group of 60 years and older, Division 6 had the

highest proportion (58.8%), followed by Division 2 (54.3%) and

Division 7 (47.4%). The smallest proportion for that age group was

found in Division 9 (34.8%). For the age group of 0–14, Division 9

displayed the greatest exposure (43.5%) followed by Divisions 7

and 1 (40.7%; 31.0% respectively). Division 8 has the lowest

exposure in that age group (10.9%). We also observed that the

proportion of counties exposed to higher levels of benzene

pollution by division is mostly less than 50% for the United States

and the nine divisions, except for the age group of 60 years and

older in Divisions 2 and 6.

Figure 4 delineates the county level spatial clusters of benzene

pollution exposure inequity based on data from Table 3. From

Figure 4, the high-risk areas for the age group of 0–14 are located

in Divisions 1, 3, 4, 6, 7, and 9, which includes the number of

spatial cluster county units of 1, 2, 2, 2, 6, 2 respectively (Fig. 4A).

Figure 4B shows high-risk areas for people age 60 years and over.

It can be seen that these clusters were mainly located in Divisions

2–4 and 6–8, which includes the number of spatial cluster county

units, which was 4, 7, 2, 7, 4, 2 respectively.

Spatial Clustering of Air Pollution Exposure Inequity by
Race

Table 4 delineates frequency of ORs greater than 1 by race

characteristic at the county level in the United States and the nine

divisions. It can be seen that racial minorities such as Blacks,

American Indians, and Asians were exposed to higher levels of

benzene pollution in some counties. For Blacks, Division 1 had the

highest proportion (86.2%), followed by Division 3 (77.6%) and

Division 2 (75.3%). The smallest proportion for Blacks was found

in Division 8 (54.5%). For American Indians, Division 1 had the

highest proportion (65.5%), followed by Division 9 (56.5%) and

Division 3 (51.7%). The smallest proportion for American Indians

was found in Division 6 and Division 7 (30.9%). For Asians,

Division 1 had the highest proportion (82.8%), followed by

Division 2 (77.8%) and Division 6 (70.1%). The smallest

proportion for Asians was found in Division 7 (44.3%). For other

races, Division 1 showed the highest level of exposure with (86.2%)

followed by Divisions 9 and 3 (82.6%; 81.0%). The lowest

exposure in this racial group was in Division 5 (61.7%). It could

also be observed that the proportion of counties exposed to higher

levels of benzene pollution by divisions is mostly more than 50%

for the United States and the nine divisions, except for the

American Indians in Divisions 2, 4, 5, 6, 7, and 8 and Asians in

Division 7.

Figure 5 shows the county level clusters of benzene pollution

exposure inequity based on the results from Table 5. High-risk

areas for Blacks were found in Divisions 3, 4, 5, 6, 9, which

included the number of spatial cluster county units of 5, 3, 1, 3, 2

respectively (Fig. 5A). Figure 5B shows the high-risk clusters for

American Indians. These cluster areas are mainly located in

Divisions 3, 4, 5, 7, 8, 9, which included the number of spatial

cluster county units is 2, 1, 6, 2, 3, 7 respectively. High-risk spatial

cluster areas for Asians are located in Divisions 2, 4, 5, 6, 7, 8, with

spatial cluster county units of 2, 4, 8, 1, 2, and 1 (Fig. 5C). High-

risk spatial cluster areas of other races are located in Divisions 2, 3,

4, 5, 6, 7, 9, which included the spatial cluster county units of 3, 3,

3, 10, 1, 11, and 4 respectively(Fig. 5D).

Spatial Cluster of Air Pollution Exposure Inequity by
Education

Table 5 delineates frequency of ORs greater than 1 by education

characteristic at the county level in the United States and the nine

divisions. Results indicate that individuals with less than 12 years

education were exposed to higher levels of benzene pollution in

some counties of the United States. For those with less than 4 years

education, Division 2 had the highest proportion (75.3%), followed

by Division 9 (66.7%) and Division 1 (65.5%). The smallest

proportion for this same education group was found in Division 6

(44.3%). For the education level of 5 to 8 years, Division 1 had the

highest proportion (75.9%), followed by Division 9 (68.1%) and

Division 2 (63.0%). The smallest proportion for this education

group was found in Division 6 (35.1%). For the education level of

9 to 12 years, Division 1 bore the greatest exposure with (72.4%)

followed by Divisions 2 (63.0%) and 3 (62.1%). The lowest

exposure for this age group was in Division 6 (45.4%). We also

observed that the proportion of the total number of counties

exposed to high levels of benzene pollution by divisions was more

than 50% for the United States and the nine divisions, except for

Figure 6. Clusters for benzene pollution exposure by education at county level. (A): Educational attainment (0–4); (B): Educational
attainment (5–8); (C): Educational attainment (9–12). Division 1 is New England; Division 2 is Mid-Atlantic; Division 3 is East North Central; Division 4 is
West North Central; Division 5 is South Atlantic; Division 6 is East South Central; Division 7 is West South Central; Division 8 is Mountain; Division 9 is
Pacific.
doi:10.1371/journal.pone.0091917.g006
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the education levels of 5 to 8 years in Divisions 4, 6, 7, 8 and the

education levels ranging from 9 to 12 years in Divisions 4, 6, 8.

Figure 6 shows the county levels inequality of benzene pollution

exposure based on information in Table 5. High-risk areas for

education level less than 4 years were located in Divisions 2, 3, 4,

5, 6, 7, which included the number of spatial cluster county units

of 1, 7, 2, 6, 1, 5, respectively (Fig. 6A). Figure 6B shows that high-

risk areas for people of the 5–8 years of education level were

mainly located in Divisions 2, 3, 4, 6, 7, 8, 9, which are associated

with spatial cluster county units of 8, 1, 1, 5, 15, 1, 3 respectively.

High-risk areas for education level between 9 and 12 years were

located in Divisions 2, 3, 4, 6, 7, 9, which included the number of

spatial cluster county units of 10, 2, 2, 5, 6, 7 respectively (Fig. 6C).

Spatial Cluster of Air Pollution Exposure Inequity by
Income

Table 6 delineates frequencies of ORs greater than 1 by income

characteristics at the county level in the United States and by the

nine US Census Bureau divisions. From Table 6, it can be seen

that people belonging to low income groups were exposed to

higher levels of benzene pollution in some counties across the

United States. For the low-income group, Division 1 had the

highest proportion of residents with high exposure (65.5%),

followed by Division 2 (60.5%) and Division 3(42.5%). The

smallest proportion for the low-income group was found in

Division 7 (10.3%). We also observed that the proportion of

counties exposed to higher levels of benzene pollution by Division

is mostly less than 50% for the United States and the nine

divisions, except for the low-income group in Divisions 1 and 2.

Figure 7 details the county level spatial clusters of benzene

pollution exposure inequity based on data from Table 6. As shown

in Figure 7, the high-risk areas for the low-income groups are

located in Divisions 3, 4, 5 and 9, which include the number of

spatial cluster county units of 2, 1, 1, 2 respectively.

Discussion

This study is among the first spatial assessments of the inequities

of air pollution exposure across the entire continental United

States at the census tract scale. The results demonstrated that

disparities in benzene air pollution exposure could help explain

health disparities by age, race, educational attainment, and

income. Although there has been a national decrease in health

disparities between 1990 and 1998 [41], some divisions have

reported an increase in disparities during the same period [42].

Marshall [34] found environmental inequities of air pollution

exposure in California’s South Coast Air Basin, which persisted

even after accounting for covariates such as population density,

travel distance, mean differences between whites and nonwhites

were 16–40% among the five pollutants.

A unique insight of this current study is that it highlighted

spatial clusters of air pollution exposure inequity by race. Previous

studies have shown that hazardous waste and industrial facilities

were commonly located in or close to communities with

populations that are of disproportionately higher proportions of

minority or low-income individuals [43]. Our study extends the

findings of previous studies by incorporating the spatial perspective

of these inequities.

Minority neighborhoods tend to have higher rates of mortality,

morbidity, and are more likely to be influenced by health risk

factors than white neighborhoods, even after accounting for

economic and other characteristics [44]. According to Gee and

Takeuchi [45], differential residential locations come with

differential levels of exposure to health risks. In particular,

neighborhood stressors and pollution sources are related to

adverse health conditions, which are counterbalanced by neigh-

borhood resources. When community stressors and pollution

sources outweigh neighborhood resources, levels of community

stress manifest or increase. Community stress is a state of

ecological vulnerability that may translate into individual stressors,

which in turn may lead to individual stress. Individual stress may

then make individuals more vulnerable to illness when they are

exposed to environmental hazards. Furthermore, compromises in

individual and community health may further weaken community

resources, leading to a vicious cycle [46].

In addition, a key finding in our study is the significant

inequities of air pollution exposure by educational attainment and

income in the United States. For educational attainment based

inequities, the results followed those of a previous study of 20 US

cities which revealed strong (although not statistically significant)

associations between PM10 and mortality for less educated subjects

[47] as well as a study from Shanghai, China that showed an

association between lower education and greater impact of air

pollution-attributed mortality [48]. As to income attainment-based

inequities, although the income in most census tracts across United

States in this study exceeds the national poverty guideline for the

Table 6. Frequency of ORs greater than 1 by income at the county level in the United States and the nine divisions.

Income Count (percentage) Minimum (95%CI) Maximum (95%CI) Mean

United States Low income 346(30.2%) 1.029(1.006, 1.053) 9.809(9.558,10.067) 3.340

Division 1 Low income 19(65.5%) 1.149(1.136,1.163) 9.809(9.558,10.067) 4.116

Division 2 Low income 49(60.5%) 1.040(1.018,1.062) 9.653(9.380,9.935) 3.263

Division 3 Low income 74(42.5%) 1.064(1.041,1.088) 9.497(9.300,9.699) 3.673

Division 4 Low income 47(25.1%) 1.057(1.041,1.073) 9.095(8.680,9.530) 3.437

Division 5 Low income 58(27.1%) 1.056(1.046,1.065) 9.269(9.026,9.520) 9.269

Division 6 Low income 31(32.0%) 1.029(1.006,1.053) 9.436(9.316,9.558) 3.039

Division 7 Low income 20(10.3%) 1.107(1.088,1.127) 8.754(8.393,9.130) 2.642

Division 8 Low income 20(19.8%) 1.087(1.074,1.101) 9.175(9.126,9.224) 3.936

Division 9 Low income 28(40.6%) 1.178(1.150,1.208) 8.609(8.458,8.764) 3.079

CI: confident interval;
Percentage was derived by the number of geographic units for low income level divided by the total number of counties at each geographic division.
doi:10.1371/journal.pone.0091917.t006
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same period, significant and large ORs were observed for counties

with relatively low income. This would indicate that people

belonging to low income groups were more likely to be exposed to

higher levels of benzene pollution in the United States relative to

their higher income counterparts.

It should be noted that as this study is fairly unique in the

methodology employed (e.g. spatial autocorrelation) for investi-

gating environmental and socio-demographic inequities (geo-

graphic unit, methods of statistical analysis, exposure assessment

procedures and definition of deprivation), our results are difficult

to compare to other studies in relativistic terms. As more studies

using this type of methodology are performed, a more compre-

hensive comparison will be possible. However, the results provided

in this study would be highly applicable in other areas of research

such as causal analysis of disease clusters, environmental policy

targeting, and human rights policy making over large geographical

areas.

Similar to previous analyses, the results of this study must be

interpreted with caution. For example, since this study only

examined a single type of air pollutant (i.e. benzene), our findings

may not be generalizable to the cumulative effect of all other types

of air pollutants. Further, our racial disparity analysis was only

restricted to the classification of Blacks, American Indians, Asians

and ‘‘Other races’’. Thus, we do not know if the interactive

relationships uncovered here would hold true for Pacific Islanders

who were probably combined with Asians or whether the results

would change, which might make it be reasonable to identify

Pacific Islanders as ‘Other race’ in the categorization. This study

may also mask rural/urban characteristics when analyzing racial

inequities in air pollution exposure. Similar to other ecological

studies, this paper used aggregate data (e.g. census tract level) and

could not incorporate individual-level information such as

individual migration, time length of residence, and location

exposure differences between work, recreation and living. Finally,

as this study does not test any causal hypotheses, we could not

explain how or why race, age, educational attainment and income

interact to produce air pollution inequity.

Another limitation of our data source is that, in Canada and the

United States, census tracts are often referred to as a represen-

tation of the neighborhood [49]. However, it has been demon-

strated that these census units do not represent underlying social

boundaries and may depict the artifacts of administrative rules of a

putative system [50]. Hence, it is sometimes difficult to tease out if

the results of the analysis are representative of the reality or if they

are the results of using a certain type of geographical unit [51].

To remedy the limitations of current studies, this paper

identifies a set of overarching recommendations. Based on our

results, scientists and community leaders should work in partner-

ship to prioritize research needs, gather data, assess other air

pollutants beyond benzene, and test interventions that will

influence public policy in order to protect the health of all,

including those living in communities of color and places that are

economically deprived. Policy-makers can also enhance existing

services that assist vulnerable groups and/or susceptible individ-

uals to help close the disparity of exposure.

Conclusions

In summary, this study revealed that there are disproportionate

exposures to benzene air pollution by a range of factors including

age, race, education attainment and income in the United States.

Spatial autocorrelation was also shown to be a valuable tool in this

study to analyze how socio-demographic variables can influence

the spatial patterns of air pollution exposure. However, further

work is needed to inform policy-makers so that they can respond

to the challenges and expectations that will improve environmen-

tal conditions for all underrepresented groups in the United States

and beyond.

Figure 7. Clusters for benzene pollution exposure by income at county level. Fig. 7 shows High-High areas are high values cluster areas, in
which people with low income exposed to higher level of benzene pollution than those with high income. Division 1 is New England; Division 2 is
Mid-Atlantic; Division 3 is East North Central; Division 4 is West North Central; Division 5 is South Atlantic; Division 6 is East South Central; Division 7 is
West South Central; Division 8 is Mountain; Division 9 is Pacific.
doi:10.1371/journal.pone.0091917.g007
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