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Abstract

ChxR is an atypical two-component signal transduction response regulator (RR) of the OmpR/PhoB subfamily encoded by
the obligate intracellular bacterial pathogen Chlamydia trachomatis. Despite structural homology within both receiver and
effector domains to prototypical subfamily members, ChxR does not require phosphorylation for dimer formation, DNA
binding or transcriptional activation. Thus, we hypothesized that ChxR is in a conformation optimal for DNA binding with
limited interdomain interactions. To address this hypothesis, the NMR solution structure of the ChxR effector domain was
determined and used in combination with the previously reported ChxR receiver domain structure to generate a full-length
dimer model based upon SAXS analysis. Small-angle scattering of ChxR supported a dimer with minimal interdomain
interactions and effector domains in a conformation that appears to require only subtle reorientation for optimal major/
minor groove DNA interactions. SAXS modeling also supported that the effector domains were in a head-to-tail
conformation, consistent with ChxR recognizing tandem DNA repeats. The effector domain structure was leveraged to
identify key residues that were critical for maintaining protein - nucleic acid interactions. In combination with prior analysis
of the essential location of specific nucleotides for ChxR recognition of DNA, a model of the full-length ChxR dimer bound to
its cognate cis-acting element was generated.
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Introduction

Two-component signal transduction systems (TCS) are a

fundamental mechanism employed by bacteria for rapid adapta-

tion to environmental changes. TCS typically consist of a

membrane-bound sensor histidine kinase (HK) and an associated

response regulator (RR). Upon sensing stimuli, the sensor kinase

undergoes an autophosphorylation event from which the phos-

phoryl group is then transferred to the receiver domain of a

cognate RR. Phosphorylation of the RR promotes oligomeriza-

tion, stabilizing the active form of the protein. The majority of

response regulators contain a DNA-binding domain that alters

gene expression in response to phosphorylation [1]. The functions

of RRs involve a diverse array of responses, including drug

resistance, motility, osmoregulation, pathogenic host invasion and

phosphate uptake, among others [2]. RRs are subdivided into

families based upon the structure/function of their DNA binding

domains. The largest subfamily of RRs (OmpR/PhoB) is

comprised of a winged helix-turn-helix domain [3].

Members of the OmpR/PhoB RR subfamily are composed of a

receiver domain that contains the site of phosphorylation and

homodimerization, and an effector domain that interacts with

DNA through the subfamily-defining winged helix-turn-helix

motif and RNA polymerase machinery through a transactivation

loop [4]. Effector domains of OmpR/PhoB subfamily members

share a common tertiary structure, which results in a conserved

DNA binding mechanism. The typical OmpR/PhoB effector

domain is comprised of an N-terminal four strand b-sheet, a helix-

turn-helix motif and a C-terminal b-hairpin wing [4]. DNA

interaction is achieved primarily through electrostatic interactions

between residues within the helix-turn-helix motif and the DNA

major groove. DNA binding is further stabilized through

interactions between residues within the wing of the effector

domain and the adjacent DNA minor groove. While the overall

topology of effector domains is conserved, the distinct functional

characteristics (e.g. specific DNA binding residues) associated with

individual OmpR/PhoB effector domains are predominately

provided by differences in key residues and side chain orientation.

OmpR/PhoB interdomain interactions and overall conforma-

tions are diverse and appear to reflect the relative DNA ‘on-off’

equilibrium for an individual RR [5]. For instance, full-length

protein structures and functional studies of MtrA [6] and PrrA [7]

from M. tuberculosis and DrrB [8] from T. maritima support that the

receiver domain forms an extensive intramolecular interface with

the effector domain effectively occluding the a4-b5-a5 dimeriza-

tion interface and resulting in an equilibrium skewed towards an

inactive (off) state [5]. In contrast, RegX3 [9] and PhoP [10] from

M. tuberculosis and DrrD [11] from T. maritima, have relatively

limited interdomain interfaces for which the DNA binding regions

are in solvent accessible positions. These structures reflect the

ability of unphosphorylated forms to bind DNA, albeit at lower

affinity than phosphorylated forms, in a weak on-state that is

enhanced by phosphorylation and stabilized by homodimeriza-
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tion. Importantly, these observations are from a collection of full-

length structures of unphosphorylated OmpR/PhoB response regu-

lators limiting our understanding of the structural and functional

diversity employed by this large subfamily.

A relatively new subset of response regulators are the atypical

RRs which do not require phosphorylation for activity and have

been described in a broad range of phylogenetically diverse

organisms. The receiver domain active site typically lacks

conserved residues involved in phosphorylation, yet maintains

structural homology with prototypical OmpR/PhoB RRs [12,13].

Recent reports have revealed that atypical RRs can exist as

monomers [14] or dimers [12] and exhibit a relatively strong

affinity for target DNA in the absence of phosphorylation. It

remains unclear which structural aspects allow atypical RRs to

function in a phosphorylation-independent state, however it is

likely these mechanisms retain a large degree of similarity to

canonical OmpR/PhoB subfamily members. Of note is HP1043

from H. pylori for which a full-length NMR solution structure has

been determined [12]. This solitary atypical OmpR/PhoB

structure revealed that the effector domain is in a distinct, free-

open state with virtually no interactions with the receiver domain.

These structural and functional observations support that this

atypical response regulator is predominantly in an ‘on state’ in the

absence of phosphorylation.

ChxR is an atypical OmpR/PhoB subfamily response regulator

encoded by the medically important bacterial pathogen Chlamydia

[13,15,16]. Similar to HP1043, ChxR lacks several conserved

active site residues, including the phospho-accepting Asp and is

able to activate transcription in a phosphorylation independent

manner, leading to its classification as an atypical RR [13,15].

Additionally, ChxR exists as a stable homodimer in the absence of

phosphorylation, while recognizing multiple sites within its own

promoter [13]. ChxR shares 30% identity across the entire

HP1043 polypeptide and only 22% identity within the effector

domain. Importantly, a contrasting feature between ChxR and

HP1043 is the binding of direct or inverted repeats, respectively,

indicating a difference in DNA binding domain orientation.

Previous studies have suggested that ChxR has a more global role

in Chlamydia gene expression based upon the relatively high

number of potential binding sites [17]. Additionally, ChxR

expression analysis supports that it likely exerts its biological role

during developmental stages that include infectious Chlamydia

formation [17]. Despite previous studies that have characterized

numerous characteristics of ChxR, including DNA recognition

sequences and motif [13,15], the residues and regions critical for

DNA binding have not been identified. Solution structure studies

on both the effector domain and full-length ChxR were carried

out, in order to better understand how ChxR interacts with

cognate DNA. These observations guided additional functional

analyses and the development of a proposed model of full-length

ChxR interacting with its cognate direct repeat DNA.

Materials and Methods

Protein Purification
The effector domain of ChxR (ChxREff) and full-length ChxR

(ChxR) were purified as previously described [17,18]. Briefly, each

protein was expressed in E. coli BL21(DE3) (Invitrogen, Carlsbad,

CA) and initially purified through metal (Co2+) affinity chroma-

tography. Following their elution from the affinity column, each

protein was further purified by size exclusion chromatography and

determined to be .95% pure by Coomassie staining after SDS-

PAGE.

NMR Spectroscopy
ChxREff was overexpressed in E. coli BL21(DE3) cells and

13C/15N labeled using a previously established method [19].

Following expression, ChxREff was purified as described above.

The purified protein was equilibrated in 20 mM Na2HPO4

pH 6.5, 20 mM KH2PO4, 20 mM NaCl, and 1 mM DTT and

then concentrated to 1.5 mM using an Amicon (Millipore,

Billerica, MA) 3,000 molecular weight cut-off centrifugal device.

The sample for NMR spectroscopy experiments was comprised

of 90% 1.5 mM ChxREff and 10% D2O. All NMR spectra were

recorded on a BRUKER AVANCE 800 MHz NMR instrument

equipped with a TCI cryoprobe. All NMR experiments were

recorded at 25uC. Sequential assignments of the backbone

resonances of ChxREff were achieved by 2D and 3D- hetero

nuclear triple resonance NMR experiments, 2D-1H-15N-HSQC,

2D-1H-13C-HSQC, 3D-HNCA, 3D-HNCO, 3D-HNCACB, 3D-

CBCA(CO)NH, 3D-HBHA(CBCACO)NH, 3D-HBHANH. Side

chain assignments were obtained from 3D-H(CCCO)NH, and

3D-HCCH-TOCSY experiments [20]. All NMR spectra were

processed using NMRPipe [21] and analyzed with SPARKY [22].

For the ChxRRec-ChxREff chemical shift titration experiment,

ChxREff was 15N labeled and purified as described herein and

ChxRRec was expressed and purified as described previously [13].

After an initial 2D-1H-15N-HSQC was taken of 1 mM ChxREff,

unlabeled ChxRRec was titrated into the protein sample.

2D-1H-15N-HSQCs were taken at 2:1 and 1:1 molar ratios of

ChxREff to ChxRRec.

NMR Structure Calculation
Structures were calculated by restrained simulated annealing

using NOE based distance restraints and TALOS+ [23] based

dihedral angle restraints. The torsion angle dynamics protocols of

CNS 1.2 [24] were used to calculate 50 structures that were then

refined using Cartesian dynamics. The 25 structures with the

lowest total energies were selected for subsequent analysis. None of

the 25 structures violated any distance restraints more than 0.5 Å

or any dihedral angle restraints more than 5.0u. Structures were

analyzed using PROCHECK-NMR [25]. Approximate interproton

distances were obtained from 15N and 13C edited NOESY-HSQC

experiments. The mixing time was 100 ms for 15N-edited NOESY

and 120 ms for 13C-edited NOESY NMR experiments. The

distance restraints were subdivided into four groups on the basis of

NOE peak intensities: 1.8–2.8 Å for strong NOEs, 1.8–3.4 Å for

medium NOEs, 1.8–5.0 Å for weak NOEs and 1.8–6.0 Å for very

weak NOEs. In addition, backbone dihedral angles Q, and y
determined using TALOS+ were restrained to 260u635u (Q) and

240u630u(y) for a-helical regions. For b-strands the values were

taken as Q=2120u630u and y= 120u630u. Final statistics are

listed in Table 1.

NMR Relaxation Studies
15N T1 and T2 relaxation times and values for the 1H-15N

NOE were measured on a 600 MHz VARIAN INOVA

Spectrometer using standard pulse sequences [26]. Delays of 10,

60, 130, 230, 360, 520, 720, 960 and 1.5 ms for T1 and 10, 30, 50,

70, 90, 110, 130, 150, 170 and 190 ms for T2 values were used.

Values for T1 and T2 were determined by plotting the peak

heights versus delay times and fitting the curve to a mono

exponential nonlinear least squares fit, available in NMR data

analysis software SPARKY [22]. The rotational correlation time

(tC; ns time scale) of a monomeric protein (,25 kDa) in solution is

approximately 0.6 times its molecular weight (kDa). The tC value

was calculated from the following equation [27]:

Solution Structures of Chlamydia ChxR
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Electrophoretic Mobility Shift Assay
Electrophoretic mobility shift assays were performed as

described for ChxR with DNA corresponding to the high-affinity

(DR2) binding site within the chxR promoter [17]. The binding

reactions contained 1 nM DNA and 50 nM, 100 nM, 500 nM,

1 mM, 5 mM or 10 mM ChxREff. The assay was performed in

triplicate and the amount of DNA shifted was visualized and

quantified using the Odyssey Infrared Imaging System (LI-COR

Biosciences, Lincoln, NE).

Site-directed Mutagenesis - Mutations were introduced into the full-

length ChxR plasmid [17,18] using the QuikChange II XL site-

directed mutagenesis kit by following the manufacturer’s protocol

(Agilent Technologies, La Jolla, CA). All clones were verified by

DNA sequencing analysis (ACGT, Inc., Wheeling, IL).

SAXS Data Collection and Evaluation
SAXS data were collected at the ALS beamline 12.3.1 (SIBYLS)

LBNL Berkeley, California [28]. Data were collected using a

wavelength l= 1.0 Å and with the sample-to-detector distance set

to 1.5 m resulting in scattering vectors, q, ranging from 0.01 Å21

to 0.33 Å21. The scattering vector is defined as q = 4p sinh/l,

where 2h is the scattering angle. All experiments were performed

at 20uC and data was processed as previously described [28].

SAXS data at short and long time exposures (0.5, 1 and 4 s)

were merged to define the entire scattering profile. Different

protein concentrations were tested for aggregation and examined

by Guinier plots. The radius of gyration (Rg) was derived by the

Guinier approximation I(q) = I(0)*exp(-q2Rg
2/3) with the limits

qRg ,1.3. The curves measured for different protein concentra-

tions (1.25, 2.5, 5.0 mg/ml) displayed a concentration dependence

arising from inter-particle interaction (attractions) at q ,0.05 Å21

and interference free scattering profiles were estimated by

extrapolating the measured scattering curves to infinity dilution

(see Fig. S4A and [29]). The program SCATTER was used to

compute the pair-distance distribution functions, P(r) and to

perform Porod–Debye analysis to obtain the P coefficient and

Porod Volume [30], which indicated a dimeric state of ChxR with

estimated MW =,62 kDa (calculated MW =,56 kDa).

The overall shape was restored from the experimental data

using the program DAMMIF with P1 symmetry operator [31]. In

our rigid body modeling strategy BILBOMD, molecular dynamics

(MD) simulations were used to explore conformational space

adopted by the ChxR C-terminal effector domain, which we

connected to the N-terminal receiver domain via an 8 residue-long

flexible linker. For each registered conformation, the theoretical

Table 1. Structural statistics of the 25 lowest energy NMR structures of ChxREff.

Distance Restraints

Total NOE 1637

Intraresidue (|i2j| = 0) 130

Sequential (|i2j| = 1) 531

Medium-range (1,|i2j|#5) 406

Long-range (|i2j|$5) 570

Dihedral restraints

Q (TALOS+)a 94

y (TALOS+) 94

R.m.s. deviations from experimental restraintsa

NOE-based distance restraints (Å) 0.01660.0008

Dihedral angle restraints (u) 0.20960.0270

R.m.s. deviations from idealized geometry

Bonds (Å) 0.002060.0000

Angles (u) 0.349560.0099

Impropers (u) 0.216660.0131

R.m.s. deviations from the mean structure (Å)b

Backbone atoms (N, Ca, C’) 0.7660.14

All Heavy Atoms 1.6260.13

Ramachandran plotc

Residues in most favored regions, % 68.3

Residues in additional allowed regions, % 29.1

Residues in generously allowed regions, % 2.5

Residues in disallowed regions, % 0.1

PDB ID 2M1B

aThese values are for 25 lowest energy structures out of 50 structures.
bOnly secondary structural elements are superimposed.
cFor the 25 lowest energy structures, using PROCHECK-NMR.
doi:10.1371/journal.pone.0091760.t001
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SAXS profile and the corresponding fit to the experimental data

were calculated using the program FoXS [32]. Two sets of ChxR

models were generated, one with zero constraints on the

orientation of the two effector domains (unconstrained) and one

requiring that a head-to-tail orientation of the effector domains be

maintained (constrained). The unconstrained model set allowed for all

possible orientations of the linker and effector domain, relative to

the receiver domain dimer. All possible orientations were also

generated for the constrained model set, with the requirement that a

head-to-tail orientation be maintained for the effector domains. A

Minimal Ensemble Search (MES) was ultimately used to select two

conformers from a pool of all generated constrained conformers that

achieved the best fit (x) to the experimental curve [33]. Chi is

defined by the following equation:

x~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
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Iexp(qi){cI(qi)

s(qi)

� �2
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Comparison of the structural properties of the selected

conformers allowed us to distinguish the degree of flexibility and

heterogeneity of the experimental system [34]. Additional SAXS

parameters are available in Table 2.

Multiple Sequence Alignments and Figure Modeling
Multiple sequence alignments were carried out using ClustalW

[35] and aligned with secondary structure elements using

ESPRIPT [36]. OmpR/PhoB RR effector domain sequences

used in alignments, along with their respective GenBank accession

numbers, were as follows: ChxR, C. trachomatis, 15605361; PhoB,

E. coli, 213521171; OmpR, E. coli, 242378928; HP1043, H. pylori,

15645657; DrrB, T. maritima, 15642901; RegX3, M. tuberculosis,

15607632; MtrA, M. tuberculosis, 509815; PrrA, M. tuberculosis,

397672721; DrrD, T. maritima, 15643165. Three-dimensional

structures were superimposed using the Local-Global Alignment

method (LGA) [37]. OmpR/PhoB RR structures were obtained

from the PDB [38] and are as follows: PhoB (1QQI); YycF

(2D1V); HP1043 (2HQR); OmpR (2JPB); PhoP (2PMU); KdpE

(3ZQ7) for effector domains and DrrD (1KGS); DrrB (1P2F); PrrA

(1YS6); MtrA (2GWR); HP1043 (2HQR); RegX3 (2OQR); PhoP

(3R0J) for full-length structures. Representations of all structures

were generated using PyMol [39]. Calculations of electrostatic

potentials at the molecular surface were carried out using

DELPHI [40]. All figure representations of full-length ChxR have

the N-terminal fusion tag and disordered C-terminal (truncated

after final secondary structure element) region removed for clarity.

Numbering of all residues in this work reflects their position in the

C. trachomatis ChxR sequence. Secondary structure elements are

numbered with respect to their position in full-length ChxR.

Accession Numbers
The atomic coordinates and structure factors (code 2M1B) have

been deposited in the Protein Data Bank, Research Collaboratory

for Structural Bioinformatics, Rutgers University, New Brunswick,

NJ (http://www.rcsb.org/) as well as Biological Magnetic Reso-

nance Data Bank (http://www.bmrb.wisc.edu/) (code 17014).

Results

ChxREff alone can Bind DNA
We have previously shown that ChxR interacts with DNA

corresponding to the DR2 (59-TCGATCA-N5-TAGATAA-39)

binding site in the chxR promoter with a dissociation constant (Kd)

of approximately 44 nM [17]. To determine if ChxREff (residues

115–227) alone can to bind to DNA, an electrophoretic mobility

Table 2. SAXS Parameters for Data Validation and Interpretation.

SAXS parameters Comments

q-range (Å21) 0.01–0.33

I(0) 8e265.4e0 Intensity at q = 0

Rg (Å) 30.0760.89 Rg value was obtained after extrapolation
to infinite dilution; single values were
calculated from Guinier fit using a q*Rg ,1.6

Rg (Å) real 31.5360.08 Rg values were calculated from the P(r)
function by the program SCATTER [30].

V (Å3) 1.47e5 Volume was determined based on [54]

Mw SAXS 6.14e460e0 Mw was estimated from the Volume
based on [54]

Dmax (Å) 100 Maximal dimension was determined from
P(r) function

P 3.8 Porod Exponent

Structure Modeling

Quality of Fit (x) -single
best model

3.86 Scattering profiles up to qmax. 0.33 Å21 and
fit for the atomic models were calculated by
the program FoXS [32]

Quality of Fit (x) -MES 3.66 Minimal Ensemble fit was obtained by MES [33]

Quality of Fit (x) -single
best unconstrained model

8.05 Scattering profiles up to qmax. 0.33 Å21 and
fit for the unconstrained atomic models were
calculated by the program FoXS [32]

SAXS shape (NSD) 0.7960.07 The values given are the average and standard
error from ten runs of the DAMMIF [31]

doi:10.1371/journal.pone.0091760.t002

Solution Structures of Chlamydia ChxR

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91760



shift assay (EMSA) was performed with the DR2 DNA sequence.

Indeed, ChxREff can bind to DNA (Fig. S1), albeit at a much

weaker affinity than full-length ChxR. Increasing concentrations

of ChxREff (50 nM–10 mM) were quantified with respect to DNA

interaction and a Kd was calculated (450675 nM). The calculated

Kd assumes that two ChxREff molecules are bound to the DNA as

the DR2 sequence contains two binding sites. The approximate

10-fold decrease in DNA affinity for ChxREff relative to ChxR

likely results from the lack of receiver domain-mediated dimer-

ization to stabilize the protein-nucleic acid complex. This result is

in agreement with previous studies on OmpR/PhoB RRs that

demonstrated dimerization promotes DNA interaction [13].

Structural Analysis of ChxREff
We have previously elucidated the structure of the ChxR

receiver domain (ChxRRec), which has many unique features

compared to typical OmpR/PhoB subfamily members [13]. To

determine if the atypical features of ChxR are limited to the

receiver domain or if the effector domain also has unique features,

we determined the solution structure of the effector domain

(ChxREff) through NMR Spectroscopy. Analysis of the structure of

ChxREff will help facilitate the identification of residues important

to DNA binding.

To determine whether an NMR approach was suitable for

investigating the structure of ChxREff, an initial Heteronuclear

Single Quantum Coherence (HSQC) spectrum was analyzed with

a 1H-15N-labeled sample of ChxREff. Resonance signals for 105/

112 residues were detected (Fig. 1). The signals were well resolved

and dispersed, which was a positive indication that the structure of

the protein could be determined using this method. Following data

acquisition and analysis as described in the Materials and Methods

section, the 25 lowest total energy structures (Fig. S2) displaying

good Ramachandran plot statistics and low restraint violations

were selected for further analysis. An average of 15 NOEs per

residue (1637/112) constrains the ChxREff structure, while 84%

(94/112) of the dihedral angles were defined. The RMSD of the

backbone atoms of the mean structure was 0.7660.14 Å,

indicating a high degree of structural similarity across the 25

lowest energy structures. All relevant NMR statistics are listed in

Table 1 and the final structure of ChxREff was deposited in the

Protein Data Bank under the identification number 2M1B and the

Biological Magnetic Resonance Data Bank under code 17014.

The structure of ChxREff (Fig. 2A) is comprised of a four-

stranded antiparallel b-sheet (b6–b7–b8–b9, residues Ile120-

Phe122, Asn125-Tyr128, Leu132-Thr136 and Gly139-Leu143,

respectively), followed by one a-helix (a4, residues Pro145-

Asn157), one b-sheet (b10, residues Gly159-Cys162), three a-

helices (a5–a6–a7, residues Arg164-Asn173, Val183-Leu194 and

Ala196-Arg200, respectively) and a b-hairpin (b11–b12, residues

Ile201-Leu204 and Val207-Phe211, respectively)#. Lastly, the C-

terminus of ChxREff is a long random coil (residues Ser212-

Glu229), characterized by a high degree of conformational

flexibility (Fig. S2). The overall topology of ChxREff is b6–b7–

b8–b9–a4–b10–a5–a6–a7–b11–b12.

The backbone dynamics of ChxREff. were investigated by 15N

T1, T2 and Heteronuclear-NOE, with an average T1 value of

0.4360.06 s and an average T2 value of 0.06460.018 s. Het-

NOEs for well-defined regions in the structure were found to be in

the range of 0.75–0.85 indicating that internal motions on the ps

(fast motion) time scale are restricted. Het-NOEs for the N- and C-

termini as well as loop residues 174–182 were significantly smaller

than average. The overall rotational correlation time (tC) was

estimated to be 8.6660.40 ns from T1/T2 ratios of residues

selected from well-defined regions of the structure. This value

indicates that ChxREff exists in a monomeric state in solution (MW

in kDa60.6; expected tC for monomeric ChxREff

(12.7 kDa) = 7.6 ns) and is in good agreement with those reported

in the literature for proteins of similar size [26,27]. In additional

support of a monomeric state, additional and/or broad cross peaks

were not observed in the 2D-HSQC spectrum.

The electrostatic surface potential of ChxREff (Fig. 2B) reveals

several regions of positive charge on both faces of the protein. Of

potential importance is a cohort of Arg (121, 181, 191, 200 and

205) and Lys (165 and 192) residues within the putative DNA

binding region (helix-turn-helix and wing motifs). Positive surfaces

appear to be conserved within OmpR/PhoB subfamily effector

domains [3,41,42], as would be expected from a region that

interacts with the negatively charged phosphate backbone of

DNA. Unsurprisingly, several of these residues have previously

been implicated in DNA binding studies [12,41,43–45] (Arg191,

Lys192 and Arg205) and are highly conserved across this

subfamily (Fig. 3).

ChxREff Resembles Prototypical OmpR/PhoB Subfamily
Members

In contrast to the atypical receiver domain dimerization

interface, the structure of ChxREff closely resembles that of typical

OmpR/PhoB subfamily effector domain structures. While the

primary sequence similarity between effector domains of the

OmpR/PhoB subfamily varies from 20–65% [3], the secondary

and tertiary structure of this domain is highly conserved

throughout the subfamily. Structural superposition with previously

determined OmpR/PhoB subfamily effector domains (OmpR

[3,43,46], PhoB [42], PhoP [47], KdpE [45] and HP1043 [12])

reveals ChxREff aligns with an RMSD no greater than 2.50 Å to

each structure (Table 3, Fig. S3). The high structural similarity

between OmpR/PhoB subfamily effector domains has been

proposed to be a result of the conservation of 13 hydrophobic

residues that comprise the hydrophobic core of the effector

domain [48]. Indeed, twelve of the thirteen residues are conserved

in ChxREff.

Regions of high variability between ChxREff and structurally

characterized OmpR/PhoB effector domains exist within the

transactivation loop and the disordered C-terminal extended coil.

The transactivation loop is a site of variable function within this

subfamily of DNA binding proteins. Not surprisingly, sequence

conservation is completely absent within this region for the aligned

OmpR/PhoB subfamily members (Fig. 3). Interactions with

sigma factors (PhoB [49,50]) or the a-subunit of RNA Polymerase

(OmpR [51]) have been documented, albeit based largely upon

genetic studies. Loop orientation is most similar between ChxR

and OmpR, however differences do exist within this region

between the two proteins. The length of the loop in ChxREff is one

residue shorter than OmpR and the residues that comprise their

respective loops are quite different. Polar and charged residues

primarily comprise the transactivation loop in OmpR, whereas the

loop in ChxREff is almost entirely composed of hydrophobic

residues. Furthermore, the four loop residues within OmpR that

are important for interaction with the a-subunit of RNA

polymerase and for transcriptional activation [3] are not conserved

in ChxR, suggesting an alternative site of transcriptional

machinery interaction might occur.

ChxREff Residues that are Critical for DNA Interaction
Residues important for direct interaction with DNA in OmpR/

PhoB subfamily members are generally located within the helix-

turn-helix or wing of the effector domain (Fig. 2) [41]. To begin

identification of ChxR residues that might interact with DNA, Ala

Solution Structures of Chlamydia ChxR
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substitutions were generated within the full-length protein in

surface-exposed residues of the DNA binding helix (a6) or wing

(b11–b12 loop) (Fig. 2C). Proper folding of ChxR mutants was

assessed by size exclusion chromatography and the ability of each

mutant to bind DNA was evaluated using EMSAs. The amount of

DNA bound by ChxR and shifted with each substitution was

quantified and compared to wild-type ChxR (Fig. 4). Substitu-

tions in three residues (Asn182, His186, and Lys192) within the

recognition helix (a6) and a residue (Arg205) within the wing

(b11–b12 loop) significantly reduced DNA interaction, while

Asp184, Ile187 and Val207 substitutions appeared to bind with

near wild type affinity (Fig. 4B). Substitution of Arg191 resulted in

protein expression localized to inclusion bodies, potentially

reflecting a role in structural stability of the effector domain.

Importantly, residues implicated in DNA binding are not

conserved amongst OmpR/PhoB subfamily members (Fig. 3),

supporting that these may provide DNA sequence specificity for

ChxR [4].

Small-Angle X-Ray Scattering (SAXS) of ChxR Supports
Conformation of Activated OmpR/PhoB Subfamily

Due to the paucity of full-length structures of OmpR/PhoB

subfamily RRs in the active state, little is known structurally about

receiver-effector domain interactions and effector domain orien-

tation upon phosphorylation. While ChxR is a member of the

OmpR/PhoB subfamily, it is an atypical response regulator,

meaning that dimerization and function are retained in the

absence of phosphorylation [15,52,53]. Previous biochemical

characterization of ChxR demonstrated that stable homodimers,

primarily through receiver domain interactions, were maintained

in solution both in vitro and in vivo [17]. The results described here,

in concert with previous receiver domain structural studies [13],

lead us to hypothesize that ChxR exists as a constitutively active

dimer in solution. Full-length ChxR has been recalcitrant to

crystallization, aggregating rapidly at concentrations higher than

,5 mg/ml (unpublished data), however, the addition of 5% (v/v)

glycerol to the protein solution described within the Materials and

Methods section resulted in conditions that give monodisperse

samples. Thus, in order to test this hypothesis Small-angle X-ray

Scattering (SAXS) was used to analyze the solution state of ChxR.

Figure 1. 1H-15N HSQC spectrum of ChxREff. 2D
1H-15N HSQC spectrum of 1.5 mM 15N, 13C labeled ChxREff acquired on a BRUKER AVANCE

800 NMR spectrometer at 25uC. Cross peaks are labeled with their corresponding backbone assignments.
doi:10.1371/journal.pone.0091760.g001
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SAXS, with recent technical and computational advances, has

become a robust and effective technique for analyzing macromo-

lecular structures, including the generation and experimental

validation of relatively high-resolution models of proteins in

solution [29,54–56]. This process is particularly effective when the

atomic structures of individual protein components (e.g. domains)

have been determined [57], which allows the generation of

extensive collections of computational models reflecting many

possible conformations of the full-length protein. ‘Best fit’ model(s)

of the complete macromolecule can then be selected based upon

the experimental SAXS data. Together, these processes (e.g. small-

angle scattering and computational modeling) provide comple-

mentary information about flexibly linked domains [34,58,59],

shape, conformation, and assembly state in solution [29,30,60].

Figure 2. Solution structure of ChxREff. A, Cartoon ribbon diagram of the minimized mean structure of C. trachomatis ChxREff (residues 114–229)
colored blue (N-terminus) to red (C-terminus). The topology of ChxREff is b6–b7–b8–b9–a4–b10–a5–a6–a7–b11–b12. B, Surface representation of
electrostatic potential, generated by DelPhi [40], of ChxREff. Color scheme represents regions of negative (red) and positive (blue) charge density
contoured at 63 e/kT. Structure is oriented the same as panel A. C, Surface representation of ChxREff with surface exposed side chains targeted for
site directed mutagenesis colored magenta. Structure is oriented the same as panel A. All three panels are rotated 180u on the right.
doi:10.1371/journal.pone.0091760.g002
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Clearly, a fundamental strength of SAXS analysis is that it

provides an efficient and powerful way to experimentally test

models for different macromolecular assemblies and conforma-

tions in solution, as evidenced by the wealth of recent solution

studies on multidomain proteins [60–65].

SAXS data were collected and analyzed on full-length ChxR.

Concentration dependent scattering (from interparticle interfer-

ence or aggregation) can be revealed by superposition of scaled

scattering curves at multiple concentrations (1.0 mg/ml to

5.0 mg/ml, Fig. S4A). Linear dependence between Intensities,

I(q), and concentrations indicated a systematic influence of

individual scattering factors, S(q), up to q ,0.05 Å21 (Fig.

S4B). As this q value was outside the first Shannon channel

(qmin = 0.031 Å21 for Dmax = 100 Å; [66]), infinity dilution [29]

was applied to the SAXS profile at q ,0.05 Å21 and merged with

the higher concentration (5 mg/ml) SAXS profile at q .0.05 Å21.

This scattering profile was used for subsequent data analysis. The

resulting Guinier plot (Fig. S4C) was linear, which indicated the

sample was relatively free of aggregation and gave a radius of

gyration of 30.860.3 Å. Estimated molecular mass using the

Porod Volume was ,62 kDa, which is consistent with the dimeric

state of ChxR (calculated MW =,56 kDa). All further scattering

analyses were determined from this interference free (e.g.

aggregation) SAXS curve. Analysis of the Kratky and Porod-

Figure 3. Limited structure-based sequence alignment of OmpR/PhoB subfamily Response Regulator effector domains. Numbers
above the sequences correspond to C. trachomatis ChxR. The secondary structure of ChxR is shown above the alignment. Residues are colored
according to conservation (cyan= identical and purple = similar) as judged by the BLOSUM62 matrix. Red triangles below the sequences correspond
to amino acid side chains identified by ChxR mutagenesis that are involved in DNA binding, blue triangles correspond to DNA interacting side chains
identified within a single OmpR/PhoB subfamily member while black stars represent DNA interaction sites within multiple OmpR/PhoB subfamily
members [41,43–45]. Sequences used within alignment are comprised of OmpR/PhoB subfamily members with extensive structural and/or functional
studies. Accession numbers are detailed in the Materials and Methods section.
doi:10.1371/journal.pone.0091760.g003

Table 3. Superposition Analysis of ChxREff with OmpR/PhoB Subfamily Effector Domains.

OmpR/PhoB Effector Domain Corresponding Ca Positionsa RMSD (Å) Sequence Identity (%) LGA_Sb

OmpR 88/104 2.49 25.0 51.2

PhoB 83/104 2.36 28.9 53.6

PhoP 78/98 2.38 25.6 47.1

KdpE 86/101 2.37 25.6 49.0

HP1043 82/106 2.38 22.0 47.8

aDenotes the number of Effector Domain residues that superimpose within 5.0 Å distance of an equivalent position in ChxREff.
bThe LGA_S parameter represents a scoring function to evaluate the overall levels of structural similarity between two sets of coordinates. For each set of corresponding
residues, it combines information pertaining to both the fraction of residues that overlap within a given RMSD window as well as those that overlap within a given
distance cutoff (5.0 Å) [37].
doi:10.1371/journal.pone.0091760.t003
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Debye plots (Fig. S5) reveals that ChxR may have partially

unfolded or flexible regions (Porod-Debye Exponent, P = 3.8).

Additional SAXS data collection parameters are available in

Table 2.

Reconstitution of the solvated molecular envelope was carried

out with a full-length model of ChxR generated by MODELLER

[67] and Chimera [68], which was comprised of the previously

determined [13] ChxR receiver domain homodimer (PDB ID:

3Q7R), ChxREff mean minimized NMR solution structure

described herein and models for the 24 residue N-terminal His-

tag and 8 residue interdomain linker. The molecular dynamics

simulation program, BILBOMD [33], facilitated the determina-

tion of ,20,000 different conformations of full-length ChxR dimer

models (,10,000 each of constrained and unconstrained model sets;

described in Materials and Methods section). The entire ensemble of

both ChxR model sets was used to calculate theoretical SAXS

profiles with FoXS [32]. In support of previous biological ChxR

data indicating a ‘‘head-to-tail’’ effector domain orientation would

be required to bind direct DNA repeats [13,15,17], the single best

fit constrained conformer (Fig. 5) was in agreement with the

experimental scattering curve (x= 3.86). However, the single best

fit unconstrained conformer (Fig. 6) produced a poor fit to the

experimental scattering curve (x= 8.05). This unconstrained con-

former model is characterized by a ‘‘head-to-head’’ orientation for

both effector domains, maintaining the two-fold symmetry present

within the receiver domain. Additionally, the majority of this poor

fit (Fig. 6B) occurs within the medium resolution range of the

experimental SAXS profile (q = 0.1–0.2 Å21), indicative of an

incorrectly modeled domain conformation [29]. Analysis of the

experimental scattering data with constrained versus unconstrained

conformers indicated a better relative fit across all constrained

models (Fig. 7). Overall, the observations from the comparative

(e.g. constrained vs. unconstrained) analyses provided stronger support

for the ChxR DNA binding domain being in a ‘head-to-tail’

orientation, reflective of the direct symmetry required to interact

with the DNA repeats found within ChxR promoter sites

[13,15,17].

Using the constrained dataset, Minimal Ensemble Search (MES)

was applied to determine the level of conformational heterogeneity

in ChxR and develop refined conformers that better match the

experimental scattering (reviewed in [34]). Briefly, MES is a

weighted genetic algorithm that generates a subset of conformers

based upon multiple iterative modifications of highly representa-

tive models and best-fit selection with experimental data. Two

conformers representative of the ChxR constrained dataset (includ-

ing the single best fit conformer) were together compared to the

experimental curve (Fig. 5B, C), achieving a slightly better fit

(x= 3.64) than the single best fit conformer alone to the

experimental curve (x= 3.86). The slightly improved x score

reflects a better fit to the experimental scattering by accounting for

the coexistence of multiple solution conformations following MES.

Importantly, the addition of more than two conformations failed

to increase the quality of fit to the experimental SAXS curve,

indicating that ChxR adopts a compact, dimeric conformation

with a minimal degree of flexibility between each effector domain

(Fig. 5C). As such, the entirety of the scattering profile can

essentially be attributed to ChxR in a compact state with effector

domains in a ‘‘head-to-tail’’ orientation. Moreover, the DNA

binding helices within each effector domain are ,36 Å apart, as

measured from the Ala188 Ca of each chain (Fig. 5A). This

orientation of ChxR potentially allows for each effector domain to

interact within the DNA major groove of two recognition sites of

the ChxR promoter, as the distance between major grooves is

,34 Å [69].

Discussion

Flexibility of Interdomain Contacts in OmpR/PhoB
Subfamily Members

Full-length RRs, including ChxR, have proven quite recalci-

trant to structural determination, which likely is a reflection of the

highly flexible interdomain interfaces formed by the receiver and

effector domains. As such we propose that the available structures

can be classified into three structural and functional subclasses

based upon interdomain interactions and the resulting steric

hindrance of the DNA recognition helix within the effector

domain. The full-length structures of MtrA [6], DrrB [8] and PrrA

[7] form extensive contacts between the receiver and effector

domains (involving the activated dimer interface, a4–b5–a5) and

thus belong to the ‘‘closed’’ subclass (Fig. 8A). Interdomain

Figure 4. Site-directed mutagenesis identifies DNA-binding residues within ChxR. A, Alanine substitutions were generated in several of
the residues within regions (a5–a6 and b11–b12) known to interact with DNA in other OmpR/PhoB subfamily members. Representative EMSA of
IR800-labeled DNA in the absence of ChxR (-) and in the presence of 44 mM wild-type ChxR or 44 mM ChxRH186A. B, The amount of DNA shifted with
each substitution was quantified. DNA binding of four substitutions (Asn182, His186, Lys192, and Arg205) was significantly (p,0.001 (***)) reduced
relative to wild-type ChxR.
doi:10.1371/journal.pone.0091760.g004
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interfaces within these subclass members have been demonstrated

to inhibit both in vitro and in vivo autophosphorylation rates [5].

Full-length crystal structures of RegX3 [9] and DrrD [11] have

solvent accessible recognition helices as a result of limited

interdomain contacts that do not primarily involve the a4–b5–

a5 interface, and as such have been classified in the ‘‘open’’

subclass (Fig. 8B). Finally, we propose a new subclass of full-

length RRs, termed the ‘‘free’’ subclass (Fig. 8C) whose members

completely lack interdomain interactions and readily form

phosphoryl-independent homodimers through the a4–b5–a5

interface. The subclass is currently comprised of HP1043 [12]

and ChxR. NMR relaxation data on dimeric HP1043 supports its

classification as a ‘‘free’’ subclass member, as residues potentially

involved in interdomain interactions had an increased S2

(generalized order parameter) relative to the remainder of the

protein [12]. In agreement with these data, NMR chemical shift

perturbation experiments with varying molar ratios of ChxREff

and ChxRRec failed to detect interdomain interactions (unpub-

lished data).

These structural subclasses are merely snapshots of an

equilibrium that exists between inactive and active conformational

states for prototypical OmpR/PhoB RRs [5]. The active state is

stabilized by phosphorylation, which enhances DNA binding

affinity, and makes dimerization through the a4–b5–a5 interface

energetically favorable. Atypical RRs exist in a constitutively

active, dimeric state as demonstrated by previous studies on ChxR

[13,17] and HP1043 [12,14,52]. Recent studies by Barbieri et al.

demonstrated that interdomain interfaces stabilize the inactive

state and inhibit phosphotransfer-mediated activation [5].

OmpR/PhoB subfamily RRs classified in the ‘‘free’’ subclass lack

interdomain interactions and its members (ChxR and HP1043)

are able to bind DNA in a phosphoryl-independent manner

[10,12,17]. The structural studies discussed herein provide further

support for the delineation of three separate OmpR/PhoB RR

structural subclasses.

DNA Interactions in OmpR/PhoB Subfamily Members
OmpR/PhoB subfamily RRs regulate a diverse collection of

biological processes involving signaling, metabolism and develop-

ment, among others. As such, great diversity in the target DNA

sequences of these members is not unexpected. This naturally

leads to unique protein-DNA interactions among subfamily

Figure 5. Overall arrangement of full-length ChxR dimer in solution. A, Cartoon ribbon format of ChxR dimer (colored blue, yellow, green
and red) that had the best scattering profile fit and accounts for the entirety of the experimental scattering from inset plot. For reference, a4–b5–a5
dimer interface colored yellow, DNA recognition helix and wing colored green and transactivation loop colored red within each polypeptide. Effector
domains are 36.0 Å apart, as measured from Ala188 Ca on each polypeptide. B, Experimental scattering profile (upper graph) of full-length ChxR
dimer (black) with the single best BILBOMD-derived [33] model fit to the experimental data (x=3.86) (red) and MES [33] fit of the two conformers
shown in panel C (x=3.64) (blue). Calculation of Residual Fit, Experimental Intensity divided by Model Intensity (lower graph). C, Two views of the
average SAXS shape with two MES ChxR models (red fit, panel B) in ribbon format. Single best fit conformer (blue) represents ,90% of scattering,
while the 2nd MES-derived conformer (orange) accounts for the remaining ,10% of scattering. D, ChxR dimer rotated 90u about the horizontal plane
from panel A.
doi:10.1371/journal.pone.0091760.g005
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members. Residues critical for DNA binding have also been

identified in OmpR [43], PhoB [41], PhoP [44], KdpE [45] and

HP1043 [12]. All of these residues are localized to the recognition

helix (labeled a6 in Fig. 2) or the minor groove binding wing. Of

the residue positions implicated in multiple OmpR/PhoB

subfamily member mutants (black star in Fig. 3), all three

predominantly involve Arginine (including Arg205 described

within), the most frequent side chain involved in protein-DNA

interactions [70]. This suggests these side chains are involved in

non-specific DNA interactions found across various OmpR/PhoB

subfamily members. Residues identified in only a single member of

the OmpR/PhoBs subfamily (blue triangles in Fig. 3) predominantly

involve non-conserved positions without a preference for aliphatic

or charged side chains, suggesting potential roles in site-specific

Figure 6. Overall arrangement of the Best-Fit Unconstrained ChxR Dimer in Solution. A, Cartoon ribbon format of head-to-head ChxR
dimer (colored purple and cyan) that had the best scattering profile fit of the experimental scattering (panel B). For reference, helix-turn-helix motif
colored cyan within each polypeptide. B, Experimental scattering profile (upper graph) of head-to-head ChxR dimer (black) with the single best
BILBOMD-derived [33] unconstrained model fit to the experimental data (x=8.05) (red). Calculation of Residual Fit, Experimental Intensity divided by
Model Intensity (lower graph). C, ChxR dimer rotated 90u about the horizontal plane from panel A.
doi:10.1371/journal.pone.0091760.g006

Figure 7. Experimental Fit for Constrained and Unconstrained Model Pools. A, Plot of x versus Rg (Å) for all generated ChxR conformers. B,
Plot of x versus Dmax (Å) for all generated ChxR conformers. In both panels, green and red circles represent unconstrained and constrained model
pools, respectively.
doi:10.1371/journal.pone.0091760.g007
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interactions. As expected, amino acids within the recognition helix

that stabilize effector domain tertiary structure (positions 183, 187,

190 and 194; ChxR numbering) have not been implicated in DNA

binding. Based up the previous observations, residues imparting

protein specific-DNA base recognition are likely to be found

within the few non-conserved side chains of the OmpR/PhoB

recognition helix. The effect of substitutions at these specific-DNA

base recognition sites in ChxR was not evaluated for their

capability to bind to alternate ChxR recognition sites (e.g. DR1,

3–6; [17]). While the proposed ChxR binding motif has an overall

low nucleotide conservation, three nucleotides are (TXGAXXX)

are highly conserved among ChxR binding sites. Additionally,

when these conserved nucleotides were mutated and naturally

variant, ChxR binding was severely reduced [17]. These

observations would support that the amino acids important for

ChxR binding to DR2 site, and these cognate conserved

nucleotides, are also important for binding to alternate sites as

well. Clearly, experimental analyses will be needed to support this

hypothesis.

DNA Homology Model of ChxR Bound to Direct Repeat
The large majority of OmpR/PhoB subfamily RRs have been

found to bind direct DNA repeats, which thus requires these

proteins to form functional dimers [71,72]. Structural studies of

full-length OmpR/PhoB RRs bound to their cognate DNA

repeats have proven elusive, with only the PhoB effector domain in

complex with the pho box having been reported [41]. While a full-

length structure for PhoB has yet to be determined, the structures

of each individual domain are available, in addition to the

BeF3
–activated a4–b5–a5 receiver dimer [73]. Furthermore,

autophosphorylation of PhoB suggests it has a minimal inter-

domain interface, much like ChxR [5]. Each of these structures

demonstrates strong structural similarity with the respective ChxR

domain (Fig. S6). Of the 17 amino acid contacts within the PhoB-

DNA complex, 9 are conserved within ChxR. Furthermore, the

majority of the contrasting side chain interactions can be found

within the recognition helix, which is anticipated given the

differences in target DNA sites [17,41]. These similarities

suggested that the active state ChxR structure could be modeled

onto the PhoB-DNA complex (Fig. 9). The four ChxR residues

that were demonstrated by site directed mutagenesis to be critical

for DR2 interaction are within appropriate distances to bind each

direct DNA repeat. Thus, the solution structure of ChxR in a

DNA-binding state provides a model for comparison within the

OmpR/PhoB subfamily. However, as atypical RRs appear to lack

interdomain interfaces, the primary site for regulation of

prototypical RRs, further studies are needed to elucidate how

these proteins are turned ‘‘on’’ and ‘‘off’’.

The proposed model of full-length ChxR has the domains

(receiver and effector) in different paired orientations. Specifically,

the regulatory domains have been determined to interact with

two-fold symmetry, which is strongly supported by crystallograph-

ic data for ChxR and almost all other OmpR/PhoB subfamily

members. However, the DNA binding domains of ChxR appear

to have tandem symmetry (head-to-tail) based upon the SAXS

analysis presented herein, as well as their monomeric state and

reduced DNA binding affinity in the absence of the receiver

domain. This matches the orientation of the DNA sequence motif

(direct repeat) recognized by ChxR [13]. The resulting orientation

is not unexpected for an OmpR/PhoB subfamily member, and

was recently highlighted by Bachhawat et al. [73]. They suggested

that orientational constraint is lost between the domains of PhoB,

based upon the observations of the receiver domain structure (two-

fold symmetry) and DNA repeat-bound effector domain (tandem

symmetry) [41]. This prediction was further strengthened by the

recently reported crystal structure of PhoB in complex with RNAP

and DNA [74].

Support for the ChxR-DNA model is limited by the relative

structural absence of effector domains bound to DNA with only

two examples of protein bound to neighboring sites. However, the

overall expectation of independent domain orientation is further

supported as most OmpR/PhoB subfamily response regulators

bind to direct repeats of DNA sequences, which would seemingly

require two similarly oriented winged helix DNA binding motifs.

Figure 8. Structural comparisons of the ChxR solution state with various classes of full-length OmpR/PhoB subfamily structures. A,
Structural superposition, through the receiver domain, of a full-length ChxR monomer (cyan) with a representative ‘‘closed’’ subclass full-length
structure, MtrA (gold; PDB ID: 2GWR) from M. tuberculosis. B, Structural superposition, through the receiver domain, of a full-length ChxR monomer
(cyan) with a representative ‘‘open’’ subclass full-length structure, DrrD (green; PDB ID: 1KGS) from T. maritima. ChxR is oriented as in panel A. C,
Structural superposition, through the receiver domain, of a full-length ChxR monomer (cyan) with a representative ‘‘free’’ subclass full-length
structure, HP1043 (blue; PDB ID: 2HQR) from H. pylori. ChxR is rotated 90u from panels A and B. In panels A-C dashed lines represent the a4–b5–a5
dimerization interface, while recognition helices are colored magenta.
doi:10.1371/journal.pone.0091760.g008
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One of the few OmpR/PhoB subfamily members that bind to

inverted repeats is the atypical response regulator HP1043 [75]. It

is also among the few full-length structures from this family that

have been determined and, of note, the DNA binding domains are

oriented similar to the receiver domain with two-fold symmetry,

which is in the best orientation for binding inverted repeats.

Clearly, the absence of a full-length structures from the OmpR/

PhoB subfamily bound to tandem repeat DNA limits any strong

conclusions regarding the orientation of these molecules, although

proposing a model that incorporates domain independent

orientation seems best supported by the overall observations for

OmpR/PhoB subfamily response regulators, including the struc-

tural data presented herein.

Lastly, the recent advances in Chlamydia genetics [76,77] and the

development of molecular tools [78–80] will enable studies related

to the function and role of ChxR to be performed directly in

Chlamydia. Observations described herein are essential in directing

those future studies, specifically the possibility of generating

dominant negative ChxR variants. Substitutions that rendered

ChxR incapable of binding to DR2 still retained the ability to form

homodimers. Furthermore, prior studies demonstrated that

binding to both direct repeats was essential to stabilizing the

protein-nucleic acid complex [17]. Thus, conditional expression

[79] of DNA binding deficient ChxR could form heterodimers

with wild-type ChxR and effectively disrupt the function of ChxR

in Chlamydia. This would enable phenotypic and functional studies

(e.g. transcriptome analysis) to provide a better understanding of

the role of ChxR in the chlamydial developmental cycle and

pathogenesis.

Supporting Information

Figure S1 DNA-binding analysis of ChxREff. To determine

if ChxREff can interact with DNA in the absence of the receiver

domain, EMSAs were performed with IR800-labeled DNA

corresponding to the DR2 site (1 nM) from the chxR promoter

and increasing concentrations (50 nM, 100 nM, 500 nM, 1 mM,

5 mM, or 10 mM) of recombinant ChxREff. The first lane (left)

contains DNA in the absence of ChxREff.

(TIF)

Figure S2 Superposition of 25 lowest energy conformers
of ChxREff (b-strands and a-helices are colored cyan and red,

respectively) NMR solution structure.

(TIF)

Figure S3 Structural Superposition of OmpR/PhoB
Effector Domains. Stereo view of OmpR/PhoB effector

domain structures in ribbon format. Structures correspond to

the following proteins/organisms: ChxR, C. trachomatis (gray);

OmpR, E. coli (green); PhoB, E. coli (yellow); KdpE, E. coli (blue);

PhoP, M. tuberculosis (orange) and HP1043, H. pylori (magenta).

(TIF)

Figure S4 Experimental Scattering Profile, Guinier Plot
and P(r) function of ChxR. A, Experimental scattering profile

of ChxR for 5 mg/ml (blue), 2.5 mg/ml (magenta), 1.25 mg/ml

(green) and extrapolated curve at the infinity dilution (cyan). B,

Intensities obtained for scaled SAXS profiles (panel A) at q = 0.02,

0.03 and 0.05 Å21 indicate effect of the Structure factor at higher

protein concentration for q ,0.05 Å21. To eliminate this effect we

used infinity dilution for further data analysis C, Guinier plot with

Guinier region. A linear dependence of ln(I(q)) vs. q2 indicates the

sample is free of aggregation. Radius of gyration (Rg) values as

obtained from Guinier plot: Glmn Rg = 30.860.3 Å. D, Pair

distribution function P(r) calculated from the SAXS curve shown

in Figure 5B.

(TIF)

Figure S5 Kratky and Porod-Debye Plot of ChxR. A,

Experimental SAXS curve shown as a Kratky plot indicate

minimal flexibility. B, We performed a Porod–Debye analysis to

obtain direct insights into their flexibility. In a plot of the

normalized q4NI(q) vs. q4, the positive slope and obtained Porod-

Debye coefficient of P = 3.8 is consistent with inter-domain

flexibility (27). This observation suggests that the ChxR C-

Figure 9. Proposed model of full-length ChxR binding to tandem DNA repeat. The solution state of full-length, dimeric ChxR (each
polypeptide colored a different shade of gray, surface representation) was manually overlayed onto the cocrystal structure of the PhoB effector
domain from E. coli bound to its cognate pho box (PDB ID: 1GXP). The structure is rotated 90u about the protein:DNA interface on the right. Surface
exposed residues within ChxR that were implicated in DNA binding by site-directed mutagenesis are highlighted in magenta.
doi:10.1371/journal.pone.0091760.g009
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terminus remains flexible, resulting in the upward slope in the

Kratky plot at high q values.

(TIF)

Figure S6 Structural Superposition of ChxR and PhoB
Receiver and Effector Domains. A, Structural superposition

of a full-length ChxR monomer (cyan) model from SAXS analysis

with receiver (PDB ID: 1B00) and effector (PDB ID:1GXQ)

domain monomers from E. coli PhoB (colored green and red,

respectively). B, Structural superposition of ChxR receiver domain

dimer (colored cyan, PDB ID: 3Q7R) and BeF3
–activated PhoB

receiver domain dimer (colored magenta, PDB ID: 1ZES). C,

Structures from panel A and B were superimposed by Local-

Global Alignment in order to access structural similarities. Table

displays quantitative analysis of all superimpositions.

(TIF)
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