Evidence for Bound Phytochrome in Oat Seedlings'

Bernard Rubinstein², K. Susan Drury³, and R. B. Park

Department of Botany, University of California, Berkeley, California 94720

Received September 9. 1968.

Abstract. Phytochrome is consistently observed in pellets centrifuged from homogenates of etiolated, 5-day-old oat seedlings. The majority of pigment associated with the pellet cannot be removed by buffer washes, nor can appreciable quantities of additional phytochrome be adsorbed onto the sedimented material. Over 70 % of phytochrome in the pellet is released by ¹ % Triton X-100.

Storage at 0°, irradiation by white light, and Triton treatment all cause much greater loss of photoreversibility in pelleted phytochrome than in supernatant phytochrome. We oonclude that the phytochrome in the 1500 to 40,000g (30 min) pellet is distinct from the soluble phytochrome in the supernatant.

Interpretations of the mechanism of phytochrome responses in etiolated seedlings are complicated by the fact that only a portion of the total phytochrome in these plants appears to mediate some of their responses to red and far-red light (2. 5, 8). As a result, it has been suggested that a small active fraction of phvtochrome may be present, distinct from the majority of phytochrome (2) . Evidence that more than ¹ species of phytochrome exists in vivo may be adduced from the spectrophotometric data of Spruit (12), the kinetics of in vitro dark reversion (13). and the kinetic analyses of reversibility by Purves and Briggs (10).

The possibility that a species of cellular phvtochrome exists in association with membranes has been reviewed by Hendricks and Borthwick (7). These authors point out that the previously used procedures for phytochrome isolation have in no way ruled out the existence of a membrane associated phytochrome. We have searched for such a membrane associated phytochrome which differs from the soluble phytochrome most commonly inve-tigated. We will show that pellets obtained after centrifugation at various speeds contain an associated phvtochrome, that the pigment cannot be easily washed off sedimented material, and that this bound phvtochrome differs in susceptibility to denatturation com pared to soluble phytochrome.

sucrose, and 2% (w/v) insoluble polyvinylpyrroli-

done (PVP). For each 100 g tissue, 75 ml buffer were used. The homogenate was strained through 4 layers of cheesecloth before centrifugation. Resuspension of centrifugal pellets was achieved in a tight fitting glass homogenizer in grinding buffer containing 5% (w/v) soluble PVP (MW 40,000) and. where noted, sucrose was omitted. All the above manipulations were performed at 0 to 4° . In experiments where a mortar and pestle were used. the grinding buffer contained 5% soluble PVP: sand was added to facilitate grinding.

Materials and Methods

After saturating vermiculite with tap water, seeds of Avena sativa L. var. California Red were sown on the surface, covered with dry vermiculite, and grown at 28° in the dark. After 5 days, the exposed tissue was cut about ¹ cm above the vermiculite and chilled at 4° in darkness for at least 2 hr. Light treatments consisted of exposing plants to 1500 ergs \times cm⁻² \times sec⁻¹ of red light for 5 min.

The seedlings were ground. under fluorescent lighting, in buffer composed of 0.1 M tris-HCl (pH 8.0). 70 mm mercaptoethanol, 2 mm EDTA. 0.5 m

Phvtochrome was analyzed at room temperature on a Cary 14 recording spectrophotometer equipped with a 0 to 0.1 slide wire; a Model 1462 Scattered Transmission Accessory, modified to allow actinic illumination of the sample cell at 660 nm and ⁷²⁵ nm from ^a Bausch and Lomb grating monochromator; and a high intensity light source. The monochromator was supplemented by appropriate Corning cut-off filters. One cm path length cells were used. From the average of at least 4 difference spectra, $\triangle (\triangle OD)$ values were calculated (13). For each

 $\frac{1}{1}$ Supported in part by a grant from the National Institute of General Medical Sciences GM-13943-03.

² NASA Predoctoral Fellow. Present address: MSU/AEC Plant Research Laboratory, Mlichigan State University, East Lansing, Michigan 48823.

³ National Science Foundation Predoctoral Fellow.

sample these values varied less than $10^{-3} \triangle (\triangle OD)$ units. Accuracy of the method allowed detection of OD changes to 5×10^{-4} .

To determine the accuracy of \triangle (\triangle OD) measurements in scattering samples the following experiment was done. The \triangle (\triangle OD) of the 105,000g (120 min) supernatant and the 1500 to $40,000q$ (30 min) pellet were measured. The pellet was then resuspended in the supernatant and the $\triangle($ \triangle OD) measured. The \triangle (\triangle OD) of the combined supernatant was only 15 to 20 % higher than the sum of their \triangle (\triangle OD)'s measured separately. Therefore pellet \triangle (\triangle OD)'s are reported as measured.

Results and Discussion

The possibility that phvtochrome exists in other than soluble forms was examined by centrifuging the crude homogenate at various speeds and analyzing the resuspended pellets for phytochrome content. The data, expressed as a percent of the pigment in the $1500g$ (15 min) supernatant. show varying amounts of phytochrome in all pellets (table I).

Table I. Centrifugal Fractionation of Phytochrome

Fraction	Phytochrome ¹
$1500q$ (15 Min) supernatant	% 100
0-1500 $q(15 \text{ Min})$ pellet	1.3
1500-10,000 g (30 Min) pellet	5.0
$10,000-25,000q$ (30 Min) pellet	1.4
$25,000-40,000g$ (30 Min) pellet	0.3
$40,000-105,000q$ (30 Min) pellet	1.7
$105,000$ (120 Min) supernatant	66.0

 $\mathbf{1}$ Data expressed as a percent of the phytochrome assaved in the supernatant after centrifugation at 1500_g (15 Min).

Since the 1500 to $40,000g$ (30 min) pellets contained the largest amount of phytochrome activity, they were combined in subsequent experiments. When the data of 10 different experiments were pooled and analyzed statisticallv, the quantity of bound phytochrome in the once-washed, 1500 to $40,000g$ (30 min) pellet, was $4.3 \pm 1.2 \%$ of the 1500g supernatant. Could such an amount be physiologically important? In certain phytochrome-mediated responses, it has been shown that the amount of light needed to saturate a particular physiological response is much lower than that needed to convert all the phytochrome (2, 8). In fact Briggs and Chon (2) have calculated that for the case of Zea mays phototropism that only ¹ % of the lowest assayable amount of phytochrome need be transformed to saturate the phvsiological response. If this were also the case for Avena, and there are some indications that it is for geotropism (14) and phototropism (1) . then the

amount of phytochrome found in the pellet could easily participate in certain red light responses of the plant.

The sedimentable phytochrome described above may be a result of A) enclosure of soluble phytochrome within membrane bound organelles and vesicles; B) non-specific adhesion of soluble phytochromie to membranes or other particles; C) the existence of a distinct bound form. The possibility that phytochrome activity of the pellet was due to pigment contained in organelles and vesicles was tested by comparing the supernatants of pellets washed in buffer with or without sucrose. The results (table II) show that the use of a hypotonic resuspending medium, which would be expected to open any membrane enclosed bodies, released no more phytochrome to the supernatant than resuspension in sucrose btuffer.

Table II. Effects of Hypotonic Buffer and Presssure on Removal of Phytochrome Activity From Pellet

Treatment	Phytochrome activity	
	$\lceil \Delta (\Delta OD) \times ml^{-1} \times 10^3 \rceil$	
Untreated pellet	-55	
Supernatant of pellet after sucrose wash ²	7.0	
Supernatant of pellet after plain buffer wash ²	71	
Supernatant of pellet after passage through French press	16.2	

¹ Pellet formed after centrifuging $1500g$ (15 Min) supernatant at $40,000g$ for 30 Min.

Washing performed by resuspending pellet and recentrifuging at $105,000g$ for 30 Min.

Passage through a French press at 6000 psi was also employed to destroy the integrity of the sedimented organelles and vesicles. The loss of phytochrome from the pellet to the supernatant was never large enough to suggest that the bulk of the phytochrome of the pellet was located within membranebound organelles (table II). The increase in amount of phytochrome in the supernatant compared to that found in washes with hypotonic buffer may be due to smaller fragments produced by the press which were not sedimented at the speeds used.

The likelihood that the sedimented phytochrome represents only contamination of the pellet by the supernatant was investigated as follows. The 1500 to $40,000g$ pellet was subjected to successive washings. Each wash consisted of resuspension in grinding buffer minus sucrose followed by repelleting at 1S0.000g for 30 mmin. Table IT shows that the supernatant after the first wash contained about 23% of the original pelletable activity; the second wash released 8% ; and the supernatant of the third wash contained only a trace amount of phytochrome. Thus, almost 70% of the original activity of the pellet could not be washed off. The washings did.

Fraction	Phytochrome activity	Amount of pellet
	$\lceil \Delta (\Delta OD) \times 10^3 \rceil$	
1500-40,000g (30 Min) Pellet	12.8	$\frac{\%}{100}$
Supernatant after first wash ¹	2.7	23
Supernatant after second wash	$1.0\,$	
Supernatant after third wash	Trace	\cdot

Table III. Effect of Successive Washes on Liberation of Phytochrome From Pellet

Washing performed by resuspending pellet in buffer and recentrifuging at 105,000g for 30 min.

however, destroy ⁸⁰ % of the original pellet phvtochrome.

Another method of testing for supernatant contamination of the pellet made use of the fact that irradiation of intact plants lowers phytochrome levels in both supernatant and pellet fractions (see table VII). This resuilt enables us to obtain a pellet of low phytochrome activity. If the phytochrome of the pellet were due primarily to binding of supernatant phvtochrome, then the activity in the pellet from irradiated plants should be raised to the level of activity of pellets from etiolated plants by its resuspension in supernatant from etiolated plants. Table IV shows that a pellet isolated from lighttreated plants contained less than 50 $\%$ of the amount of phytochrome in a pellet from etiolated plants. When the pellet from irradiated plants was resuspended in and spun through supernatant from etiolated plants which contained high levels of phytochrome, the amount of phytochrome adsorbed to this pellet was small $[6.6 \triangle (\triangle OD) \times ml^{-1} \times 10^3]$ and never approached the level of phytochrome present in the pellet from etiolated plants [37.8 \triangle (\triangle OD) \times ml⁻¹ \times 10³].

It is unlikely that the binding of phytochrome to sedimentable particles is due to pH effects. Such an occurrence, discussed by Hillman (9), was reported to be caused by pH values below neutrality and the attachment was reversible. The pH of crude homogenates isolated for this study was always above 7.4 and all pelleted material was washed once in buffer of pH 8.0.

Table IV. Adsorption of Phytochrome From Supernatant to Pellet

Fraction	Phytochrome activity
	$\lceil \Delta (\Delta OD) \times ml^{-1} \times 10^3 \rceil$
$105,000g$ (120 Min) supernatant from etiolated plants	970
$105,000g$ (120 Min) supernatant	
from red light-treated plants $1500 - 40,000q$ (30 Min) pellet	620
from etiolated plants	38
$1500 - 40,000g$ (30 Min) pellet from red light-treated plants	14
$1500-40,000g$ (30 Min) pellet	
from red light-treated plants	
washed in supernatant from etiolated plants	20

Although repeated washes could not remove large amounts of phytochrome from the pellet, treatment for 2 hr at 0° of a once-washed pellet with the nonionic detergent Triton X-100 released a large portion of measurable phytochrome. It can be seen in the last 3 lines of table V that addition of 1% (v/v) Triton to a resuspended pellet results in a ³⁵ % destruction of reversibility. If the suspension is centrifuged at $105,000g$ for 45 min, about 75 % of the remaining activity appears in the supernatant.

The data presented so far suggest that phvtochrome exists as at least 2 different species in the cell: a soluble form remaining in solution after centrifugation at 105.OOOg for 120 min and a form which is pelletable. While these data strongly suggest the presence of a distinct pelletable phytochrome,

Table V. Inhibition and Release by Triton X-100 of Pellctable Phytochrome

of Pelletable Phytochrome				
Fraction	Phytochrome activity			
$105,000g$ (120 Min) supernatant		$\lceil \Delta (\Delta OD) \times ml^{-1} \times 10^{3} \rceil$ 90		
$105,000g$ (120 Min) supernatant with 1% Triton		94		
1500-40,000 g (30 Min) pellet 1500-40,000g (30 Min) pellet		46		
with 1% Triton $105,000g$ (45 Min) supernatant		30		
of Triton-treated pellet ¹		22		

Following addition of Triton, pellet was recentrifuged at $105,000g$ (45 min) and the resulting supernatant assayed.

they cannot refute entirely the argument that pellet activity is due largelv to supernatant contamination. Therefore, attempts have been made to see if there exist distinguishing characteristics between supernatant and pellet phytochrome.

Some evidence that the phytochrome in the pellet may have properties different from that in the supernatant is shown in the first 4 lines of table V. Addition of Triton at the high concentration of 1% (v/v) had very little effect on phytochrome of the $105,000g$ (120 min) supernatant, but destroyed the reversibility of the pelletable pigment 35% . This destruction was greatly accelerated by temperatures above 0°. In contrast, the detergent deoxycholate at 1% (w/v) completely inhibited phytochrome activity in both supernatant and pellet.

Another characteristic which can be used to separate supernatant from pelletable phytochrome is stability. Figure ¹ compares degradation of phytochrome in the $105,000g$ (120 min) supernatant, with that in a resuspended, once washed, pellet. Storage at 4° results in a rapid deterioration of phytochrome

FIG. 1. Stability over time of phytochrome in a resuspended pellet or in the supernatant. The extracts were stored at 4° in fluorescent light of 30 ft-c.

in the pellet after only ¹ day, while loss of supernatant phytochrome is much slower.

It is possible that the lability differences shown in figure ¹ do not reflect inherent differences in the phytochrome molecules themselves but are merely due to concentration of some destructive substance in the pellet. This substance would probably not be the "phytochrome killer" of Furuya and Hillman (6). Their substance was soluble while ours would be restricted to the pellet. Also, they report the "phytochrome killer" to be absent in the plant used for this study, Avena. The destructive agent in the present case mav be a hydrolytic enzyme. Siegelman and Firer (11) and Butler et al. (4) have shown that pronase and trypsin destroy phytochrome photoreversibility. It should be noted, however, that in the present study resuspension of the once-washed 1500 to 40,000g pellet in the 40,000g supernatant did not accelerate the rate of decay of the supernatant phvtochrome. These data speak against the presence of a hydrolytic, phytochrome-destroying substance in the pellet unless this substance acts differently on pelletable phytochrome.

.\nother difference in lability between pellet and supernatant phytochrome is that only the degradation of pelletable phytochrome appears to be accelerated by light. Table VI compares phytochrome preparations from pellet or supernatant origin which had been stored for 48 hr at 4° in either fluorescent light at 30 ft-c or in the dark. Light had little effect on the activity loss of 105,000g (120 min) supernatant but markedly accelerated loss of reversibility of phytochrome found in the pellet.

Irradiation of intact plants with red light results in massive decreases in their phytochrome content, while their sensitivity to red and far-red light is retained (3, 5,8). We had hoped to show that pelletable phytochrome behaved differently from that in the supernatant with respect to in vivo light destruction, but table VII shows that this was not

Table VI. Light Dependent Destruction of Pelletable Phytochrome

		Phytochrome activity After 48 hr			
Preparation	Original	dark	light		
	$\left[\Delta(\Delta OD) \times ml^{-1} \times 10^3\right]$				
$105,000g$ (120 Min) supernatant	6.8	6.3	6.5		
$1500-40,000g$ (30 Min) pellet	6.8	3.8	0.8		

Table VII. Stimulation by Red Light of Phytochrome Loss in Supernatant and Pellet

Supernatant from centrifugation at $105,000g$ for 120 min. $\mathbf{1}$

Pellet after centrifugation of $1500g$ (15 min) supernatant for 30 min at 40,000g.

Data expressed as $(\Delta OD) \times m! \rightarrow \times 10^5$.

the case. After plants were irradiated, an initial rapid drop in amount of supernatant phytochrome was evident. This level then decreased at a slower rate for 24 hr. If one compares the changes of phytochrome in the once-washed pellet after light treatment, it can be seen that a similar decrease occurs. The decrease in pelletable phytochrome always parallels the decline of phytochrome in the supernatant.

Conclusion

We have presented evidence that ^a certain portion of cellular phytochrome can be pelleted and is present in amounts which can be of physiological significance. The majority of pelletable phytochrome sediments at intermediate g -values, not in the heavier material in the $1500q$ (15 min) pellet nor in the small fragments of the lighter pellets. Phytochrome of the pellet is not removed by repeated buffer washes but is partially released by the detergent Triton X-100. The evidence suggests that pelletable phytochrome may be in some way associated with cell membranes though other explanations may also be applied.

When compared to soluble pigment, pelletable phytochrome shows an enhanced sensitivity to denaturation by detergent action, by storage in the cold, and by white light. We suggest that the differences in abundance and behavior of bound and supernatant phytochrome may be reflected by different physiological roles for the 2 phytochrome type§.

Literature Cited

1. BRIGGS, W. R. 1963. Red light, auxin relationships, and the phototropic responses of corn and oat coleoptiles. Am. J. Botany 50: 196-207.

- 2. BRIGGs. W. R. AND H. P. CHON. 1966. The physiological versus the spectrophotometric status of phvtochrome in corn coleoptiles. Plant Physiol. 41: 1159-66.
- 3. BUTLER. W. L., H. C. LANE, AND H. W. SIEGEL-MAN. 1963. Nonphotochemical transformations of phytochrome in vivo. Plant Physiol. 38: 514-19.
- 4. BUTLER, W. L., H. W. SIEGELMAN, AND C. 0. MIL-LER. 1964. Denaturation of phytochrome. Biochemistry 3: 851-57.
- 5. Fox, L. R. AND W. S. HILLMAN. 1968. Response of tissue with different phytochrome contents to various initial photostationary states. Plant Physiol. 43: 823-26.
- 6. FURUYA, WI. AND W. S. HILLMAN. 1966. Rapid destruction of the P_{FR} form of phytochrome by a substance in extracts of Pisum tissue. Plant Physiol. 41: 1242-44.
- 7. HENDRICKS, S. B. AND H. A. BORTHWICK. 1968. The function of phytochrome in regulation of plant growth. Proc. Natl. Acad. Sci. 58: 2125-30.
- 8. HILLMAN, W. S. 1965. Phytochrome conversion by brief illumination and the subsequent elongation of etiolated Pisum stem segments. Physiol. Plantarum 18: 346-58.
- 9. HILLMAN, W. S. 1967. The physiology of phytochrome. Ann. Review Plant Physiol. 18: 301-24.
- 10. PURVES, W. K. AND W. R. BRIGGS. 1968. Kinetically distinguishable populations of phytochrome. Plant Physiol. 43: 1259-63.
- 11. SIEGELMAN, H. W. AND E. M. FIRER. 1964. Purification of phytochrome from oat seedlings. Biochemistry 3: 418-23.
- 12. SPRUIT, C. J. P. 1966. Photoreversible pigment transformations in etiolated plants. Biochim. Biophys. Acta 112: 186-88.
- 13. TAYLOR, A. 0. 1968. In vitro phytochrome dark reversion process. Plant Physiol. 43: 767-74.
- 14. WILKINS, M. B. 1965. Red light and the peotropic response of the Avena coleoptile. Plant Physiol. 40: 24-34.