Skip to main content
. 2013 Apr 5;1:11. doi: 10.1186/2049-2618-1-11

Table 7.

Classification accuracy with feature/ operational taxonomic unit (OTU) selection, measured by relative classifier information (RCI)

Classifier Best FS Method CBH CS CSS FS FSH BP PDX PBS Averages P values
SVM, Linear C = 1
SVM-RFE
0.719
0.952
0.691
0.929
0.813
0.334
0.337
0.674
0.681
0.191*
SVM, Linear optimized C
SVM-RFE
0.852
0.946
0.723
0.971
0.840
0.314
0.325
0.653
0.703
-
SVM, Poly
SVM-RFE
0.845
0.941
0.716
0.969
0.840
0.316
0.323
0.644
0.699
0.369*
SVM, RBF
SVM-RFE
0.813
0.925
0.683
0.972
0.813
0.286
0.290
0.611
0.674
0.089*
KRR, Poly
SVM-RFE
0.759
0.939
0.683
0.931
0.800
0.297
0.290
0.626
0.666
0.061*
KRR, RBF
SVM-RFE
0.807
0.935
0.687
0.944
0.801
0.297
0.316
0.633
0.677
0.097*
KNN, K = 1
RFVS2
0.830
0.779
0.657
0.939
0.736
0.168
0.251
0.510
0.609
0.015
KNN, K = 5
RFVS2
0.774
0.744
0.625
0.884
0.736
0.153
0.224
0.522
0.583
0.008
KNN, optimized K
RFVS2
0.829
0.773
0.652
0.914
0.736
0.179
0.221
0.531
0.604
0.014
PNN
RFVS2
0.726
0.798
0.629
0.907
0.730
0.167
0.227
0.516
0.587
0.012
L2-LR, C = 1
ALL
0.772
0.941
0.670
0.964
0.778
0.161
0.236
0.628
0.644
0.027
L2-LR, optimized C
SVM-RFE
0.780
0.940
0.692
0.837
0.811
0.234
0.257
0.612
0.645
0.034
L1-LR, C = 1
RFVS1
0.742
0.836
0.642
0.934
0.771
0.183
0.213
0.584
0.613
0.011
L1-LR, optimized C
RFVS1
0.786
0.914
0.696
0.985
0.784
0.166
0.238
0.598
0.646
0.033
RF, default
RFVS1
0.840
0.952
0.712
0.982
0.819
0.266
0.213
0.648
0.679
0.179*
RF, optimized
RFVS1
0.842
0.956
0.714
0.994
0.810
0.264
0.216
0.649
0.681
0.196*
BLR, Laplace priors
SVM-RFE
0.822
0.932
0.692
0.982
0.824
0.317
0.318
0.640
0.691
0.313*
BLR, Gaussian priors RFVS2 0.761 0.855 0.625 0.968 0.770 0.208 0.202 0.570 0.620 0.018

The nominally best performing classifier on average over all datasets is marked with bold, and P values of methods whose performance cannot be deemed statistically worse than the nominally best performing method are marked with “*”. The accuracy of the nominally best performing method for each dataset is underlined.