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Modular community structure suggests metabolic
plasticity during the transition to polar night in
ice-covered Antarctic lakes
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High-latitude environments, such as the Antarctic McMurdo Dry Valley lakes, are subject to
seasonally segregated light–dark cycles, which have important consequences for microbial
diversity and function on an annual basis. Owing largely to the logistical difficulties of sampling
polar environments during the darkness of winter, little is known about planktonic microbial
community responses to the cessation of photosynthetic primary production during the austral
sunset, which lingers from approximately February to April. Here, we hypothesized that changes in
bacterial, archaeal and eukaryotic community structure, particularly shifts in favor of chemolitho-
trophs and mixotrophs, would manifest during the transition to polar night. Our work represents the
first concurrent molecular characterization, using 454 pyrosequencing of hypervariable regions of
the small-subunit ribosomal RNA gene, of bacterial, archaeal and eukaryotic communities in
permanently ice-covered lakes Fryxell and Bonney, before and during the polar night transition.
We found vertically stratified populations that varied at the community and/or operational taxonomic
unit-level between lakes and seasons. Network analysis based on operational taxonomic unit level
interactions revealed nonrandomly structured microbial communities organized into modules
(groups of taxa) containing key metabolic potential capacities, including photoheterotrophy,
mixotrophy and chemolithotrophy, which are likely to be differentially favored during the transition
to polar night.
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Introduction

Microbial diversity and function in aquatic ecosys-
tems are tightly coupled to the physical and
geochemical environment (Judd et al., 2006;
Galand et al., 2008; Bielewicz et al., 2011). The
importance of seasonal succession is increasingly
being recognized within the context of geochemi-
cally distinct environments (Crump et al., 2003;
Andersson et al., 2010; Ghiglione and Murray, 2012;
Grzymski et al., 2012). Polar environments are
subject to strong seasonal light gradients, where
24-hour daylight drives continual photoautotrophic
primary production during the summer, often
coinciding with high rates of heterotrophic

bacterioplankton production (Takacs and Priscu,
1998; Morán et al., 2001; Alonso-Sáez et al., 2008).
Winter sampling is logistically difficult in the polar
regions, and thus studies examining microbial
dynamics during the darkness of winter and the
spring and autumn transition periods are few.
Recent studies have shown higher bacterial com-
munity richness (Ghiglione and Murray, 2012) and
the increased importance of chemolithotrophic
Archaea in the Southern Ocean during winter
(Grzymski et al., 2012; Williams et al., 2012),
whereas others have shown that trophic plasticity
is a key survival strategy for protists during
the summer–winter transition in Antarctic lakes
(Bielewicz et al., 2011).

The perennially ice-covered lakes of the
McMurdo (MCM) Dry Valleys, which lie in East
Antarctica in the coldest, driest desert on earth,
comprise physicochemically stable environments
containing microbially dominated ecosystems
(Spigel and Priscu, 1998; Takacs and Priscu, 1998;
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Priscu et al., 1999; Vick and Priscu, 2012). As the
sole year-round source of liquid water, such lakes
provide the only continuous habitat for aquatic life
in the ice-free regions of the Antarctic continent.
Permanent ice covers on the lakes severely attenuate
the penetration of solar irradiance to between 1%
and 2% of incident light (Lizotte and Priscu, 1994)
and prohibit wind-driven turbulence, propagating
an environment continuously stratified with regard
to solar energy and nutrients. A few studies have
examined the molecular diversity of bacterial,
archaeal (Karr et al., 2005; Glatz et al., 2006; Karr
et al., 2006) or protistan (Bielewicz et al., 2011; Kong
et al., 2012a) communities in MCM lakes and found
that communities are distinctly stratified by depth.
The physicochemical stability of these environ-
ments makes them excellent locations to examine
the impact of seasonal light–dark cycles on micro-
bial community dynamics.

Most studies of the MCM lakes have been
confined to summer, when phytoplankton primary
production and glacial melt water streams supply
450% of the organic matter supporting hetero-
trophic growth (Takacs et al., 2001), but a few have
examined the activities of bacterioplankton (Takacs
and Priscu, 1998; Vick and Priscu, 2012), phyto-
plankton (Lizotte et al., 1996), flagellates (Thurman
et al., 2012) and the diversity of protists (Bielewicz
et al., 2011) during the transition periods flanking
summer and winter. Mixotrophy, via the combined
use of photosynthesis and phagotrophy, is a key
adaptive strategy for phytoplankton in MCM lakes
that likely allows populations to persist throughout
the winter (McKnight et al., 2000; Laybourn-Parry,
2002; Bielewicz et al., 2011; Thurman et al., 2012),
whereas metabolic plasticity, such as the ability to
switch carbon substrates, is important for hetero-
trophic bacterioplankton to remain active during
winter when phytoplankton-produced organic car-
bon is in short supply (Vick and Priscu, 2012).
Clearly, trophic and metabolic versatilities are vital
to the survival of given populations in these lakes
and are important to the maintenance of overall
ecosystem function.

In addition to physicochemical controls on micro-
bial community structure, recent studies have also
shown that microbial co-occurrence patterns can
help define ecologically meaningful interactions
between species and across domains (Horner-
Devine et al., 2007; Fuhrman and Steele, 2008;
Steele et al., 2011) and that co-occurring species are
often organized into groups, or modules, of func-
tional significance (Chaffron et al., 2010; Barberán
et al., 2012). In light of the physicochemical stability
of the MCM lakes, we sought to determine the
importance of both community succession and
operational taxonomic unit (OTU)-level co-occur-
rence patterns to overall community structure
during the summer� autumn transition period
(November–March). We used pyrosequencing of
the V6 (bacterial and archaeal) and V9 (eukaryotic)

hypervariable regions of the small-subunit riboso-
mal RNA gene on samples from two geochemically
distinct MCM lakes, Lake Fryxell (FRX) and the
West Lobe of Lake Bonney (WLB), during the austral
summer (November) and autumn (March) to analyze
microbial community composition, and implemen-
ted molecular ecological network analysis to exam-
ine inter- and intra-domain co-occurrence patterns.

We provide the first evidence for seasonal shifts in
bacterial, archaeal and eukaryotic communities in
these Antarctic lakes. Our data also suggest the
importance of metabolically plastic taxa in main-
taining overall ecosystem function and document
the proliferation of several archaeal lineages, which
may be important primary producers during the
darkness of winter. In combination with studies
from the polar oceans (Grzymski et al., 2012;
Ghiglione and Murray, 2012; Williams et al., 2012),
our results reveal that shifts in community diversity
may be characteristic of polar ecosystems during
winter and have particular importance in fueling
continued biogeochemical cycling in the absence of
photosynthetic primary production.

Methods

Sample collection
Duplicate samples for DNA extraction were
collected from FRX (depth B18 m) and WLB
(depthB38 m) during the Austral summer and
autumn at depths of 6 m (bacterial and primary
production maximum) and 9 m (chemocline; chlor-
ophyll-a maximum) in FRX (2 November 2007 and
25 March 2008) and 13 m (chemocline; bacterial
production, chlorophyll-a, primary production max-
imum) and 18 m (hypersaline, bottom of trophogenic
zone) in WLB (30 November 2007 and 12 March
2008). Corresponding environmental data were
collected by the MCM Long-Term Ecological
Research program B1 week before and 1 week after
samples for DNA collection and interpolated to the
DNA sample collection date (11 November and 5
December 2007, and 20 and 28 March for FRX; 25
November and 15 December 2007, and 7 and 14
March for WLB). In WLB, environmental data were
collected at 17 and 20 or 25 m and interpolated to
18 m. Complete environmental data and methods are
available on the MCM Long-Term Ecological
Research website (http://www.mcmlter.org/) and
are published elsewhere (Vick and Priscu, 2012),
and the minimum information about a marker gene
sequence-compliant (Yilmaz et al., 2011) environ-
mental data are summarized in supplementary
information. Representative vertical profiles of
temperature, conductivity and oxygen from each
lake are shown in Supplementary Figure S1, and
environmental data in Supplementary Table S1.
Temperature and conductivity were measured with
a SBE 25 Sealogger CTD according to Spigel and
Priscu (1998), and dissolved oxygen was measured
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using the azide modification of the mini-Winkler
titration. All water samples were collected through a
borehole in the ice cover using a Niskin bottle.
Samples for DNA extraction were filtered onto 0.2-
mM Sterivex filters (Millipore, Billerica, MA, USA)
and stored with 2.0 ml of Puregene lysis buffer at
� 20 1C until further processing. DNA was extracted
as described previously (Amaral-Zettler et al., 2009),
and water filtration and DNA extraction protocols
can be found at http://amarallab.mbl.edu.

Sequencing
We amplified V6 hypervariable regions using pri-
mers targeting positions (according to the E. coli
numbering scheme) 947–1046 (Bacteria) and posi-
tions 958–1048 (Archaea) of the 16S ribosomal RNA
gene. For Eukarya, amplification of the V9 hyper-
variable region followed established protocols
(Amaral-Zettler et al., 2009). We multiplex-
sequenced the resulting amplicons using bar-coded
primers (Huber et al., 2007; Amaral-Zettler et al.,
2009) on a 454 Genome Sequencer FLX (Roche,
Switzerland) using the manufacturer’s recom-
mended protocol. The number of reads obtained
on a single sample ranged from 1724 to 23 334
(Archaea), 2997 to 15 552 (Bacteria) and 2602 to
12 504 (Eukarya) (Supplementary Table S2).

Sequence processing
Sequences were trimmed, and low-quality reads
were removed according to Huse et al., 2007.
Sequences were clustered into OTUs using ESPRIT,
SLP and mothur to precluster (2%) sequences using
single linkage and construct final clusters based on
pairwise alignment and average linkage (Huse et al.,
2010). Three-percent cluster widths were used for
bacterial and archaeal analyses and 6% for eukar-
yotic analyses. This clustering method is equally
effective as ‘denoising’ data via methods such as
Pyronoise to minimize OTU inflation (Quince et al.,
2011). All of our sequence data are minimum
information about a marker gene sequence-compli-
ant (Yilmaz et al., 2011) and have been deposited in
the National Center for Biotechnology Information
normal and Sequence Read Archives under the
accession number SRP028879.

Taxonomy assignment
Taxonomic classification was assigned using the
Global Alignment for Sequence Taxonomy (GAST)
method (Huse et al., 2008). Briefly, hypervariable tag
reference sets (V6 or V9) were created from a
ribosomal RNA reference database based on the
SILVA database (Pruesse et al., 2007), with taxon-
omy assigned by the RDP Classifier (Wang et al.,
2007). We then aligned the tag sequences against the
top 100 reference sequences using MUSCLE and
considered the best GAST match. Smaller GAST

distances equate to better matches. We assigned a tag
to a given genus if two-thirds or more of the full-
length reference ribosomal RNA sequences containing
the exact hypervariable region shared the same
genus. If there was no agreement, we moved up
the tree one level to family and so on until a
consensus was reached.

Diversity calculations
Parametric alpha diversity estimates for Bacteria and
Archaea were calculated using CatchAll version 3.2
(Bunge et al., 2012), and eukaryotic nonparametric
(Chao2) richness estimates (Chao, 1987) were calcu-
lated with the program SPADE (Chao and Shen,
2010). All calculations were performed on pooled
sequences from duplicate samples for bacteria and
archaea and separate replicated samples for euka-
ryotes. We performed these calculations using full
data sets, as well as normalized data sets in which
the number of sequences per sample was made
equal through random resampling.

Network analysis
To determine associations between microbial
populations and between microbial populations
and the environment, we calculated Spearman
correlations between environmental data, relative
abundances of bacterial and archaeal OTUs and
presence–absence of eukaryotic OTUs. Significant
correlations (Po0.01; rX0.8) were extracted and the
resulting matrix of correlation coefficients was
loaded into the program Cytoscape (Shannon et al.,
2003) for visualization. In total, we included 899
variables in our correlation analysis: 186 eukaryotic,
637 bacterial and 69 archaeal OTUs, as well as 7
environmental variables.

Statistics
Statistics were carried out in R (R Development Core
Team, 2008). Beta diversity was examined and
plotted using the function nmds (non-metric multi-
dimensional scaling) in the R library labdsv (Roberts,
2010). The importance of environmental factors in
partitioning of beta diversity was tested using permu-
tational analysis of variance (Anderson, 2001) with the
adonis function, and C-scores were calculated using
the oecosimu function with nestedchecker (Stone and
Roberts, 1990) and quasiswap (Miklós and Podani
2004) in the R library vegan (Oksanen et al., 2010).
Network statistics, including modularity calcula-
tions, were carried out using Cytoscape (Shannon
et al., 2003; Supplementary Information).

Results and discussion

Seasonal variation in microbial communities
Species richness (alpha diversity) was relatively low
across all samples and all three domains, but it
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followed trends observed in other environments
with bacterial richness surpassing archaeal and
eukaryotic richness by an order of magnitude
(Huber et al., 2007, McCliment et al., 2012). Alpha
diversity was generally higher in autumn samples
for bacterial and eukaryotic communities in FRX,
whereas the opposite was true in WLB (except for
18 m bacterial communities). Archaeal diversity was
lower than bacterial and eukaryotic diversity
(Figure 1), with coverage (observed/expected diver-
sity) ranging from 53 to 90%. Eukaryotic coverage
was highest, ranging from 87 to 98%, whereas
bacterial coverage was comparatively low (15 to
50%; Supplementary Table S2).

Actinobacteria and Bacteroidetes dominated the
bacterial communities of both lakes. This is con-
sistent with reports from other freshwater systems
(Newton et al., 2011). The Proteobacteria was the
next most abundant phylum in both lakes, with the
class Betaproteobacteria dominating FRX and Gam-
maproteobacteria dominating WLB, a difference that
may be explained by the influence of Blood Falls, a
Gammaproteobacteria-dominated subglacial feature
that flows into the western terminus of WLB
(Mikucki and Priscu, 2007). Marine Group I Cre-
narchaeota dominated the archaeal communities,
similar to the upper and intermediate waters of
Arctic meromictic Lake A (Comeau et al., 2012),
followed by Thermoplasmatales-related Euryarch-
aeotes and Methanomicrobia. Eukaryotic community
composition varied between lakes and depths, with
Cryptomonadales and Ciliophora OTUs being the
most frequently encountered in FRX, whereas WLB
contained OTUs most frequently affiliated with
Cryptomonadales, Stramenopiles and Dinoflagellata
(Figure 2).

Bacterial and eukaryotic communities both
grouped by lake (permutational analysis of variance;
P¼ 0.0010 for Bacteria, P¼ 0.0020 for Eukarya) and
depth (P¼ 0.0010 for Bacteria and Eukarya). Season
(summer vs autumn) was not significant alone, but
when included in a model that first accounted for
the interaction between lake and depth it explained
a significant portion of the variation in the bacterial

and eukaryotic communities (P¼ 0.013 and
P¼ 0.042, respectively). These results indicate that
within lake and depth, bacterial and eukaryotic
communities were significantly different between
seasons (Figure 3). Archaeal communities did not
clearly partition by lake, depth or season, but a
model accounting for lake and season indicated that
depth was the most important factor explaining the
variation between communities (P¼ 0.042;
Figure 3). The effects of lake and season were
marginally significant for the Archaea (P¼ 0.14
and 0.12, respectively). These results are similar to
the seasonal and depth partitioning observed in
Arctic meromictic Lake A, where bacterial and
eukaryotic phyla varied as a function of both depth
and time, and archaeal phylum-level seasonal
changes were minor, but depth partitioning was
strong (Charvet et al., 2012a, Comeau et al., 2012).

Seasonal changes in community composition
were apparent at the OTU level as the percentage
of OTUs that went from being rare (o0.1% of
community) or absent in summer samples to being
abundant (40.1% of community; Crump et al.,
2012) in autumn samples. The changes in composi-
tion, shown in Figure 4 as points falling along the y
axes, were especially pronounced for the Archaea,
describing 28% and 23% of the 6 m and 9 m FRX
communities, respectively, and 14% and 10% of the
13 m and 18 m WLB communities, respectively.
OTU-level changes in community composition were
comparatively small for the Bacteria (0.8 to 5.5% of
the communities) and Eukarya (1.7 to 3.0% of
OTUs). The use of a higher cutoff (1.0%) for the
rare to abundant transition did not change the
pattern, although it decreased the percentages
(Archaea¼ 4 to 12%, Bacteria¼ 0.2 to 1.0%,
Eukarya¼ 0 to 2.0%).

Although they were not the dominant members of
the communities overall, Stramenopiles (mostly
chrysophytes) dominated the eukaryotic OTUs that
became abundant during autumn. Charvet et al.
(2012b) suggested that the generally small size of
chrysophyte cells, relative to other phytoplankton,
may account for their dominance in oligotrophic

Figure 1 Alpha diversity estimates with Bonferroni-corrected confidence bounds calculated with CatchAll for Bacteria and Archaea
and as the Chao2 index for Eukarya. Archaeal diversity estimates could not be calculated for the FRX 9 m and WLB 13 m summer samples
owing to insufficient numbers of reads.
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Arctic lakes; decreasing phosphorous concentra-
tions in autumn samples (Vick and Priscu, 2012)
may have favored the proliferation of chrysophytes
in FRX and WLB. Lizotte et al. (1996) found that
chrysophyte communities in the Lake Bonney
photic zone were dominated by the mixotrophic
genera Ochromonas, which may persist through
the seasonal sunset by switching to phagotrophy.
The Alphaproteobacteria dominated the autumn
proliferation of bacterial OTUs. This contrast with
the Actinobacteria- or Bacteroidetes-dominated
total communities (summer and autumn together;
Figure 2) indicates that the most numerically
abundant phyla in the lakes are also capable of

persisting through changing environmental condi-
tions, whereas less abundant phyla may opportu-
nistically increase under changing conditions.

Sixty-eight percent of the archaeal OTUs that
increased in density during autumn belonged to the
Euryarchaeota; half of those grouped with marine or
aquatic lineages, whereas the other half grouped
with methanogenic clades. The non-methanogenic
Euryarchaeota that became abundant during autumn
were all members of the Marine Group II, which are
known to form seasonal blooms in the surface
waters of the North Sea (Pernthaler et al., 2002).
One Marine Group II OTU (Archaea_03_5) increased
from 3.0% and 0% to 27.3% and 16.5% of the
archaeal sequences in the surface and 9 m waters,
respectively, of FRX. Thirty-two percent of the
autumn archaeal OTUs belonged to the Crenarch-
aeota, which were dominated by terrestrial and
soil groups (42.9%), followed by the Marine Group I
Crenarchaeota (28.6%). The increase in euryarchaeal

Figure 2 Phylum-level diversity of bacterial (a), archaeal (b) and
eukaryotic (c) communities in Lakes FRX and WLB during
summer (Sum) and autumn (Aut). Bacterial and archaeal OTUs
were determined at 97% sequence similarity, and eukaryotic
OTUs were determined at 94% sequence similarity. Alpha, Beta,
Gamma and Delta refer to the subclasses of Proteobacteria. MGI
refers to Marine Group I Crenarchaeota, TGC refers to Terrestrial
Group Crenarchaeota and SGC refers to Soil Group Crenarchaeota.

Figure 3 Non-metric multidimensional scaling of bacterial and
archaeal (relative abundance; Bray-Curtis dissimilarity;
stress¼ 2.49 and 4.97, respectively) and eukaryotic (presence-
absence; Sørensen’s similarity; stress¼ 4.68) communities.
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OTUs relative to crenarchaeal OTUs was distinct
from the composition of the overall communities,
which were dominated by Crenarchaeota rather than
Euryarchaeota (Figure 2).

The proliferation of archaeal phylotypes
(Grzymski et al., 2012) and proteins associated
with chemolithotrophic Archaea (Williams et al.,
2012) was reported in Southern Ocean waters
during the winter, suggesting that summer commu-
nities dominated by photoautotrophy shift to
chemolithotrophy during the polar night. Molecular
and cultivation studies have revealed the presence
of diverse chemolithotrophic microorganisms in
FRX and WLB (Priscu et al., 1996, Voytek et al.,
1999; Karr et al., 2005; Sattley and Madigan 2006;
Kong et al., 2012a), and dark carbon fixation
attributed to chemolithotrophs has been measured
in these same lakes (Priscu et al., 1996, Vick and
Priscu, unpublished data). Kong et al. (2012b)
showed that Proteobacteria actively produced

RubisCO in WLB during February and March,
indicating that chemolithotrophic bacteria were
active during the summer–autumn transition.
Currently, there are no data regarding the activities
of chemolithotrophic archaea in the photic zones of
the MCM lakes, but the proliferation of archaeal
sequences during autumn suggests that they may be
important.

Part of the autumn archaeal ‘bloom’ was also
owing to the appearance of Terrestrial and Soil
Group Crenarchaeota, indicating that allochthonous
inputs may affect community structure. Eolian
transport is an important dispersal mechanism in
the MCM (Šabacká et al., 2012), and the downward
migration of lake ice particulate matter (Squyres
et al., 1991; Jepsen et al., 2010) may introduce
microorganisms (Paerl and Priscu, 1998; Priscu
et al., 1998; Gordon et al., 2000) into the water
column. Similarly, mid-summer stream-flow is an
important source of nutrients, particulate matter
(Takacs et al., 2001; Foreman et al., 2004) and
perhaps microorganisms (Vincent and Howard-
Williams, 1986) to the lakes. Alternatively, the
sequences may group with terrestrial lineages, but
actually represent native aquatic organisms.
Whether these putatively terrestrial sequences are
transient, inactive or represent part of the active
microbial assemblage is unknown.

Putatively methanogenic lineages (Methanomicro-
bia and Methanobacteria) accounted for 27% of the
autumn proliferation of archaeal OTUs, although the
most abundant methanogenic lineages decreased
between summer and autumn. All of our samples
were taken from oxygenated portions of the water
column, but all known Methanomicrobia and
Methanobacteria are strict anaerobes. Methano-
microbial sequences in soils surrounding FRX and
WLB (Takacs-Vesbach unpublished data) and func-
tional methanogens in the deep waters of FRX (Karr
et al., 2006) are possible sources of methanogenic
sequences; however, a local BLAST search showed
that none of the terrestrial or FRX sequences
matched the sequences in our study (data not
shown). It is possible that our methanogenic
sequences are not functionally methanogens, but
their average GAST distances were small (0 to 0.03),
indicating 495% accuracy of GAST taxonomic
assignments (Huse et al., 2008). Methane production
has been documented in oxygenated seawater
(Karl et al., 2008, Damm et al., 2010) and an
oxygenated oligotrophic lake, where planktonic
and phytoplankton-attached Archaea actively tran-
scribed the methyl coenzyme M reductase A gene for
methanogenesis (Grossart et al., 2011). Damm et al.
(2010) and Grossart et al. (2011) both connected
methanogenesis in oxygenated water to phytoplank-
ton activity, and the high concentrations of DMSP in
WLB at 13 m (Lee et al., 2004) may provide a
substrate pool for methanogenesis through its
degradation product methanethiol (Damm et al.,
2010). Although the metabolic state of the putatively

Figure 4 Relative abundances (%) of bacterial (a), archaeal (b)
and eukaryotic (c) OTUs during summer and autumn.
Bacterial and archaeal OTUs were calculated at 97% sequence
similarity, and eukaryotic OTUs were calculated at 94% sequence
similarity.
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methanogenic cells in our study is unknown, their
presence combined with the supersaturation of
methane starting at 12 m in WLB (Priscu and Dore,
unpublished data) suggests the possibility of active
methanogenesis.

Co-occurrence patterns and the molecular ecological
network
Nonrandom community assembly, denoted by non-
random co-occurrence patterns, is characteristic of
assemblages of organisms across domains of life
(Gotelli and McCabe, 2002; Horner-Devine et al.,
2007). We compared the co-occurrence patterns
found in our bacterial, archaeal and eukaryotic
sequence data with those of a null distribution,
representing random co-occurrence, and used the
C-score metric (Stone and Roberts 1990) to deter-
mine whether our data differed significantly from a
randomly assembled community. We observed non-
random co-occurrence patterns for our whole data
set (C-score¼ 1.56, P¼ 0.01) and for the Bacteria and
Eukarya (C-score¼ 1.52, P¼ 0.01 and C-score¼ 1.61,
P¼ 0.01, respectively), whereas the C-score for
the Archaea alone was marginally significant
(C-score¼ 1.41, P¼ 0.19).

To describe the importance of biotic and abiotic
interactions in explaining the nonrandom co-occur-
rence patterns, we generated a molecular ecological
network based on Spearman correlations (Pp0.01,
rX0.8) between relative abundances of Bacterial and
Archaeal OTUs, presence–absence of Eukaryotic
OTUs and discrete values of environmental para-
meters. In total, we found 20 793 significant correla-
tions between 872 variables (Supplementary Figure
S2). We used modularity to detect community
structure in our network (Fortunato, 2010;
Supplementary Information), resulting in 27 mod-
ules containing groups of interconnected nodes
(Figure 5; Supplementary Table S3). Each module
was designated by a key (the OTU with the highest
assignment value to the module) and numbered for
convenience in the discussion (Table 1). The
modules most important to the network structure
were determined based on betweenness centrality
(BC). González et al., 2010 showed that nodes with
high BC scores were particularly important in
maintaining the connectivity of an ecological net-
work, and compared them with keystone species.
Nine of 27 modules in our network had BC scores
40 (range 0.005–0.19; Table 1).

We examined the modules with significant BC
scores and the modules containing the autumn
blooming Archaea in detail, and attempted to assign
functions based on the putative physiologies of the
organisms present (Supplementary Table S5).
Bielewicz et al., (2011) suggested that trophic or
metabolic plasticity allows organisms to be more
successful in the MCM lakes, and our module
analysis supports the importance of innovative
energy capture and metabolic flexibility during the
transition to polar night.

On the basis of its high BC score (0.19; nearly
twice the next highest BC), Module 15 forms the
keystone (González et al., 2010) of the MCM
network. Five OTUs (40% of the module) were
related to taxa that can produce proteorhodopsins
(Atamna-Ismaeel et al., 2008, Oh et al., 2011,
Huggett and Rappé, 2012), including the
module key, Alphaproteobacteria_03_91 (Pelagibacter,
GAST¼ 0.049), Bacteroidetes_03_1 (Flavobacter-
iacea, GAST¼ 0.0029) and Gammaproteobacteria_03
_175 (Oceanospirillales, GAST¼ 0.0026). Proteorho-
dopsins are light-driven proton pumps found
mainly in marine and freshwater Alphaproteobac-
teria, Gammaproteobacteria, Flavobacteria and some
Euryarchaeota, which, along with heterotrophic
metabolism, can generate energy for growth (‘photo-
heterotrophy’; Giovannoni et al., 2005; Frigaard
et al., 2006; Atamna-Ismaeel et al., 2008; DeLong
and Béjà, 2010; Steindler et al., 2011) and provide a
competitive advantage under conditions of organic
carbon or nutrient limitation (Giovannoni et al.,
2005), such as those found in the MCM lakes.
Fluctuations in the quality and quantity of available
organic carbon are thought to affect heterotrophic
bacterioplankton metabolism in the MCM lakes
during autumn (Vick and Priscu, 2012), and
although nutrient limitation is perennial in these
lakes phytoplankton activity results in a spring/
summer drawdown of N and P (Lizotte et al., 1996).
In addition to putatively photoheterotrophic OTUs,
which account for 40% of the module, Module 15
contains two OTUs of the genus Hydrogenophaga
(GAST¼ 0.0014 and 0.002), which are typically
facultatively autotrophic organisms capable of oxi-
dizing hydrogen or using organic carbon to generate
energy (for example, Yoon et al., 2008). In total, 53%
of the module belongs to groups known to be
metabolically flexible, suggesting that oligotrophy

Figure 5 Modules in the molecular ecological network deter-
mined by ModuLand. Each module is named according to the
node with maximum assignment value to the module.
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and the strong seasonality associated with the MCM
lakes favor the ability to shift between energy
resources in response to changing environmental
conditions. In addition, Module 15’s keystone status
indicates that these abilities are integral to the MCM
lake ecosystem function.

Module 17 contained five of the nodes represent-
ing the autumn proliferation of archaeal phylotypes
(Figure 4, Supplementary Table S3; Archaea_03_17),
and it provides another example of competitive
energy acquisition in MCM lakes. Two of the nodes
belong to the Marine Group I Crenarchaeota and
may signify an autumn shift in favor of chemolitho-
trophic metabolisms similar to that found in the
Southern Ocean (Grzymski et al., 2012; Williams
et al., 2012). Nodes representing the Marine Group II
of the Euryarchaeota also group with Module 17.
Currently, there are no cultured representatives
of Marine Group II, and thus little is known about
their range of metabolic capabilities. However, a
complete genome representing the Marine Group II
Euryarchaeota was recovered from a Puget Sound
metagenome (Iverson et al., 2012), revealing
a photoheterotrophic, proteorhodopsin-containing
organism. A PCR-based study of Archaea from the
North Pacific Subtropical Gyre concluded that
approximately 10% of Euryarchaeota contained
proteorhodopsin genes (Frigaard et al., 2006). If the
putative functions assigned to the Archaea in
Module 17 are correct, the module provides further
evidence for the importance of metabolic flexibility

and suggests that chemolithotrophy may be impor-
tant in fueling ecosystem production during the
polar night.

Protistan organisms often rely on mixotrophic
lifestyles to cope with the oligotrophic conditions
and seasonal light–dark cycles in MCM lakes
(Laybourn-Parry 2002; Bielewicz et al., 2011;
Thurman et al., 2012). Phototrophic nanoflagellates
in WLB increased their grazing rates on fluores-
cently labeled bacterial prey throughout the month
of March (Thurman et al., 2012), supporting the
suggestion of Bielewicz et al. (2011) that crypto-
phyte populations use phagotrophy as an adaptive
strategy during the summer�winter transition.
Similarly, our results showed that Chrysophyceae,
which are generally dominated by the mixotrophic
genus Ochromonas in these lakes (Lizotte et al.,
1996), likely increased in abundance during the
autumn. Module 22 (BC¼ 0.04, Supplementary
Table S3, Betaproteobacteria_03_51) contained
35% of the eukaryotic OTUs that became abundant
during autumn, including all of the Chrysophyceae,
the heterotrophic nanoflagellate Cryothecomonas
and a ciliate.

Module 26 (BC¼ 0.04) contained Actinobacteria
(22% of the module), including members of the
genus Microthrix (Actinobacteria_03_174; GAST¼
0.0095). Microthrix and other Actinobacteria
generate carbon and energy storage compounds
(triacylglcerols), store polyphosphates and possess
high-affinity Pst P-uptake systems, all of which may

Table 1 Highest-level taxonomy definition for module keys with the average GAST distance for the reported taxonomy and the
betweenness centrality score for each module

Module ID Module Number Taxonomy Average GAST Distance Module Betweenness
Centrality Score

Acidobacteria_03_11260 1 Acidobacteriaceae 0.241 0
Acidobacteria_03_15770 2 Acidobacteriaceae 0.258 0
Acidobacteria_03_18 3 Geothrix 0.003 0
Acidobacteria_03_1982 4 Acidobacteriaceae 0.0165 0
Acidobacteria_03_231 5 Solibacter 0.0531 0
Acidobacteria_03_5976 6 Acidobacteriaceae 0.254 0
Actinobacteria_03_11036 7 Acidimicrobiaceae 0.105 0
Actinobacteria_03_3 8 Actinobacteria 0.0026 0
Actinobacteria_03_4 9 Sporichthyaceae 0.0016 0
Actinobacteria_03_91 10 Micrococcus 0.0031 0
Alphaproteobacteria_03_13239 11 Rhodospirilliaceae 0.281 0
Alphaproteobacteria_03_2014 12 Rickettsiaceae 0.0482 0
Alphaproteobacteria_03_62 13 Caulobacteraceae 0.0052 0
Alphaproteobacteria_03_6621 14 Sneathiella 0.0078 0
Alphaproteobacteria_03_91 15 Pelagibacter 0.0496 0.19
Archaea_03_117 16 Methanomicrobiales 0 0
Archaea_03_17 17 Thermoplasmatales 0.0102 0
Bacteroidetes_03_1296 18 Flexibacter 0.0188 0.07
Bacteroidetes_03_168 19 Croceibacter 0.0236 0.04
Bacteroidetes_03_262 20 Flavobacterium 0.0005 0.04
Betaproteobacteria_03_143 21 Herbaspirillum 0.0827 0.02
Betaproteobacteria_03_51 22 Methyloversatilis 0.0063 0.04
Eukarya_06_1718 23 Pteridomonas 0.023 0
Eukarya_06_1772 24 Chlorogonium 0.023 0
Gammaproteobacteria_03_4 25 Pseudomonas 0.0015 0.1
Planctomycetes_03_726 26 Planctomyces 0.0169 0.04
Verrucomicrobia_03_119 27 Opitutus 0.0077 0.005
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help the organisms compete under conditions of
unbalanced growth and P-limiting conditions
(McIlroy et al. 2013), such as those found in
Lake Bonney (Dore and Priscu, 2001). In addition,
Planktophila (Actinobacteria_03_32; GAST¼ 0.0028)
are important polysaccharide degraders with the
ability to mineralize N-acetylgucosamine, a break-
down product of bacterial cell walls, which may
assist in winter survival, and contain actinorhodop-
sin (Garcia et al., 2013), suggesting a role for
photoheterotrophy in Module 26.

Module 21 (BC¼ 0.02; Key¼Betaproteobacteria_
03_143) contained mostly heterotrophic bacteria
and a few Archaea, and a majority of the OTUs in
the module increased between the summer and
autumn sampling points, especially in the shallower
waters of the lakes. Typically, phytoplankton pro-
duction is thought to draw down nutrient concen-
trations during the summer, leading to increased
nutrient depletion in the already oligotrophic waters
of the FRX and WLB photic zones. Members of the
Actinobacteria have been shown to proliferate under
low-nutrient conditions (reviewed in Newton et al.,
2010). The module also contains putative
nitrogen-fixing bacteria, which may have increased
in response to decreasing nutrient concentrations
(Alphaproteobacteria_03_431, Alphaproteobacteria_
03_15, Alphaproteobacteria_03_808 and Betaproteo-
bacteria_03_143, the module key).

Taken together, these modules provide evidence for
the importance of metabolic and trophic plasticity
and nutrient scavenging in the MCM lakes. Other
significant modules are discussed in Supplementary
Information and provide further examples of the
adaptation to oligotrophic or changing environments,
along with insights into organic matter processing
and eukaryote�prokaryote interactions in lakes FRX
and WLB.

Conclusions

Our study comprises the first high-throughput
sequencing evaluation of the diversity of Bacteria,
Archaea and Eukarya in permanently ice-covered
lakes of the Antarctic MCM Dry Valleys. We found
that these light- and nutrient-limited systems exhibit
low diversity overall, but that the autumn decrease in
solar radiation coincides with increases or shifts in
microbial diversity across all three domains of life.
The statistically significant partitioning of bacterial
and eukaryotic communities by season within lake
and depth suggests, in agreement with past studies,
that these communities are strongly controlled by the
vertically stratified water columns of lakes FRX and
Bonney, but that they also respond to the change in
season. The low archaeal diversity was offset by an
autumn ‘bloom’ of archaeal OTUs, which likely
stemmed from a combination of allochthonous
inputs and proliferation of organisms adapted to the
winter darkness. Similarly, we found OTUs whose

closest relatives are adapted to low-nutrient environ-
ments, photoheterotrophic and mixotrophic life-
styles, to be particularly important in the modular
community structure in these lakes. We suggest
future studies focusing on functional gene analysis,
metagenomics or transcription to examine the rela-
tionships revealed by our molecular ecological net-
work analysis.
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