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Abstract
The next-generation sequencing (NGS) revolution has drastically reduced time and cost
requirements for sequencing of large genomes, and also qualitatively changed the problem of
assembly. This article reviews the state of the art in de novo genome assembly, paying particular
attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing
platforms are highlighted, leading to a discussion of assembly and the new challenges associated
with NGS data. Current approaches to assembly are outlined and the various software packages
available are introduced and compared. The question of whether quality assemblies can be
produced using short-read NGS data alone, or whether it must be combined with more expensive
sequencing techniques, is considered. Prospects for future assemblers and tests of assembly
performance are also discussed.
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Genome assembly continues to be one of the central problems of bioinformatics. This is
owing, in large part, to the continuing development of the sequencing technology that
provides ‘reads’ of short sequences of DNA, from which the genome is inferred. Larger sets
of data, and changes in the properties of reads such as length and errors, bring with them
new challenges for assembly. For the earliest sequencing efforts using the whole-genome
shotgun (WGS) approach, in which reads are generated from random locations across the
entire genome, assembly could be dealt with by arranging print-outs of the reads by hand.
Through the next three decades, Sanger capillary sequencing gained substantially in
throughput, and WGS became practical for increasingly large and complex genomes, from
tens of kilobases in the early 1980s to gigabases by 2001 [1]. In line with this, assembly
went on to use not only increasingly powerful computational means, but also increasingly
time and memory-efficient assemblers.

A further revolution in sequencing began around 2005, when second-generation sequencing
(SGS) technologies began to produce massive throughput at far lower costs than Sanger
sequencing, enabling a mammalian genome to be sequenced in a matter of days [2]. De novo
assemblies of the Panda [3] and Turkey [4] genomes have now been made using SGS data
alone, and several human resequencing projects have been completed [5-7]. The
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disadvantages of the new technologies lie primarily in the short lengths of reads and, in
some cases, higher error rate. So-called third-generation sequencing technology is now
available, and promises similar throughput, lower costs and longer read lengths, as well as
novel read types. These innovations promise to change the game once more.

Assembly is not at all a trivial task. Repeated sequences of DNA make it difficult to infer
the relative positions in the genome corresponding to reads, and they occur far more often in
real genomes than they would in a sequence of independently randomly generated bases.
Overcoming this problem, as well as correcting for errors in reads and taking heterozygosity
into account, all while staying within the bounds of practical computability, make assembly
a complex and difficult challenge, which is often qualitatively altered by advances in
technology. In particular, many assemblers designed to handle Sanger reads were found to
be impractical when dealing with next-generation sequencing (NGS) data. In response to
this, several new assemblers have been developed, employing qualitatively new approaches,
and the field continues to develop rapidly. It is thus of interest at this time to ask whether the
resulting de novo assemblies are of good enough quality to replace assemblies based on
more expensive techniques, at least for certain purposes. It is also of use to compare the
strengths and weaknesses of existing methods.

In the field of pharmacogenomics, data from DNA sequencing are used to find genetic
variations associated with drug efficacy and toxicity. The area has been pushed forward by
the rapid development of NGS technologies. Reference-guided alignment methods can
detect SNPs and short indel variants. However, the SNPs identified to date have been found
to account for only 30–50% of the observed variations in drug response [8]. The copy
number variation (CNV), another major form of human genetic variation, and its
significance in pharmacogenomics, needs to be fully investigated. It is known that CNVs
involve some known metabolizing enzymes, such as CYP2D6, GSTM1 and potential drug
targets such as CCL3L1, and can influence the phenotype through alteration in gene dosage,
structure and expression [9]. However, the identification of CNVs using NGS data poses
significant challenges, particularly for large insertion sequences. Despite this, the first
analysis of structural variation detection by whole-genome de novo assembly was recently
reported [10]. The findings demonstrate that whole-genome de novo assembly is a feasible
approach to deriving more comprehensive maps of genetic variation. More recently, a
graph-based assembly method, which uses a human reference as well as homology among
individual samples, was developed to detect different forms of variation from a population
[11]. There are several earlier reviews on assembly using NGS data [12-14]. Reviews
concerning particular applications of these methods are also available, including finding
genetic variations in plants [15] and the study of cancer [16,17].

NGS technologies & platforms
DNA sequencing is a fast-moving area with technologies and platforms being updated at a
blistering pace. The hallmark of NGS has been a massive increase in throughput and
decrease in price as compared with previous technologies: SGS sequencing can now be
10,000-times cheaper per base than typical Sanger capillary sequencing. As far as assembly
is concerned, the available platforms are distinguished by possible read length, biases in
coverage and error profile. Below, we outline the characteristic features of the most
commonly used NGS platforms. While exact specifications are likely to change rapidly,
Glenn gives details of state of the art as of May 2011 [18]; an update is planned for May
2012. Some of those figures are given in Table 1 along with updated information from other
sources cited below including, where noted, the instrument manufacturers.
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The first next-generation DNA sequencing machine, the GS20, was introduced to the market
by 454 Life Sciences (Basel, Switzerland) in 2005. The technology is based on a large-scale
parallel pyrosequencing system, which relies on fixing nebulized and adapter-ligated DNA
fragments to small DNA-capture beads in a water-in-oil emulsion. The DNA fixed to these
beads is then amplified by PCR. The very latest 454 GS FLX Titanium XL+ claims an
average read length of 700 bp with some reads up to 1000 bp in length [101]. With an
advantage in sequencing length, it enables a variety of applications including de novo
whole-genome sequencing, re-sequencing of whole genomes and target DNA regions,
metagenomics and RNA analysis. Characteristic errors include exact number in
homopolymer lengths, an error that is a type of indel specific to the 454 sequencing method
[19].

The release of Illumina’s (CA, USA) Genome Analyzer in 2007 marked a true revolution for
genome sequencing, in which short reads became significant to genomic applications. The
technology is based on reversible dye terminators. DNA molecules are first attached to
primers on a slide and amplified so that local clonal colonies are formed (bridge
amplification). Four types of reversible terminator (RT)-bases are added, and
nonincorporated nucleotides are washed away. Unlike pyrosequencing, the DNA can only
be extended one nucleotide at a time, similar to Sanger sequencing. Read length and
throughput have undergone rapid changes in the last few years, from 35 bp length reads with
1 Gb throughput using the Genome Analyzer to protocols now available yeilding 100 bp
reads with 600 Gb using HiSeq 2000. These protocols generate read pairs (see below) [102].
Base substitutions are the most common error type for this platform [20]. Owing to its high
accuracy (base error rate of raw sequencing data <1%) and relatively low costs, these
platforms have been widely used for applications in resequencing [21,22], de novo assembly
and RNA-seq analysis [23,24] among others.

Life Technologies’ (CA, USA) SOLiD™ technology employs sequencing by ligation. Here,
a pool of all possible oligonucleotides of a fixed length are labeled according to the
sequenced position. Oligonucleotides are annealed and ligated; the preferential ligation by
DNA ligase for matching sequences results in a signal informative of the nucleotide at that
position. SOLiD generally has more reads than its competitors, but with a shorter read
length [103]. Most importantly, the use of color spaces rather than sequence bases in the
earlier versions of platforms hampered its applications in de novo assemblies.

So-called ‘third-generation’ technologies directly sequence individual DNA molecules
rather than relying on amplification prior to sequencing. The recently released PacBio RS
system can produce 35–45 megabases of data per SMRT® cell with an average read length
of 1500 bp. The latest C2 chemistry can produce reads with an average read length of 2700
bp [104]. The method used is sequencing by synthesis, which has a high base error rate of
~13–15% in raw data. However, the high base error rate can be traded in for read length,
basically by reading the same sequence more than once and/or by means of computational
processes. As well as reads of the usual type, ‘strobe reads’ can be produced, which cover
larger ranges in the genome but contain several unsequenced gaps whose size is
approximately known.

The Ion Torrent™ Personal Genome Machine™ (PGM™) is another third-generation
platform that uses standard sequencing chemistry, but with a novel, semiconductor based
detection system [25]. The method of sequencing is based on the detection of hydrogen ions
that are released during the polymerisation of DNA. This technology already claims read
lengths of approximately 200 bp with high accuracy, and the latest PGM 318 chip can
produce 1.0 Gb of data in a 2-h run [105].
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With low machine costs, short sequencing time and reasonable amount of throughput,
desktop sequencers such as Ion Torrent PGM, and its second-generation technology
competitors, Illumina’s MiSeq® and 454 GS Junior, offer exciting prospects for diagnostic
sequencing in future medical care. With the 318 chip, IonTorrent competes with MiSeq on
throughput and cost, and MiSeq’s read length is a little shorter at 150 bp. The 454 GS Junior
achieves longer reads, with a mean length of 400 bp, at the penalty of lower throughput and,
as a result, higher cost per Gb.

Most NGS platforms require that template DNA is short, typically 200–1000 bp (short insert
size) and that each template contains forward and reverse primer-binding sites. Libraries can
be constructed so that the sequencing machine reads the DNA starting from both ends of the
template fragment, producing two reads that overlap or are separated by a short gap of
approximately known length. This process is called paired-end sequencing for short insert
sizes. ‘Mate-pair’ libraries, prepared using more complex techniques, provide for larger
separations between pairs of reads. The insert size in mate pair libraries varies from 2 to 40
Kb [26,27]. Using Bacterial Artificial Chromosome (BAC) techniques, inserts of 150 Kb
can be produced, but at higher cost. The mate-pair type of data is essential for establishing
long-range continuity in de novo assemblies, especially with short reads where other long-
range information is lacking. Errors, however, are common for long insert sizes. A large
proportion of read pairs can be ‘chimeric’ (from random, unrelated places in the genome).
Duplicates of read pairs are often found, reducing true coverage. Thirdly, for some protocols
employing DNA fragment circularization, it can happen that two reads are made
unexpectedly close to each other and with the wrong orientation (‘cross-biotin’ pairs). The
variance of the insert size also affects the usefulness of pair information, as does any
departure of the distribution of insert size from the normal distribution, which can be
pronounced with many common protocols.

Overview of assembly methods
Assembly would be an easy task, if it could be determined whether (and by how much)
given reads correspond to overlapping positions on the genome. Reads are said to ‘overlap’
if there is a match between the sequence at the beginning of one read and the end of the
other that is long enough to be reliably distinguished from a random event. This is the case if
they are from overlapping locations on the genome, but the converse is not true: the reads
may have arisen from two different copies of the same sequence. This complicates
assembly. Consider a genome that contains the concatenation of the three sequences A, X
and B, and elsewhere contains the concatenation of the sequences C, X and D. If the
sequence X is longer than the longest read, overlap information alone cannot be used to rule
out possibility that the genome contains the sequence A, X, D, which may not in fact be part
of the genome. For this reason, assembled sequences must end at the boundaries of such
repeats.

Figure 1 shows how this problem affects the best attainable quality of assemblies for four
genomes: human (Homo sapiens), mouse (Mus musculus), fruit fly (Drosophila
melanogaster) and the malaria parasite (Plasmodium falciparum). It shows a statistic
summarising the lengths of sequences from the genome that could be successfully
reconstructed, if the only factor obstructing assembly was ambiguity caused by repeats (as
opposed to sequencing errors, errors caused by heuristic computing methods and so on). For
each position in the reference genome, we first calculated the uniqueness of the following
sequence of length y in both strands (forward and reverse complement) and then marked
those unique positions over the whole genome. Continuous intervals of marked positions
were treated as assembled sequences; in other words, these contiguous sequences end at the
boundaries of repeats in the genome that are longer than y bases. The lengths of the resulting
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pieces are summarized using the N50 statistic. The N50 of a set of sequences is the
maximum length for which a subset of longer or equal sequences can be found whose
combined length is over half of the total length of all sequences. The result is an upper
bound on the N50 of assemblies produced from WGS data with reads of length y.

Here we see the gains in ideal assembly quality that can be made with longer read length: for
the human genome the possible N50 ranges from approximately 3–32 Kb as we increase
read length of single-end reads from 50 to 100. Similarly, using reads of length 1000, an
N50 of 8978 Kb is ideally achievable. It is also evident that repeat structure varies
considerably even in mammals. Realistically, assembly quality is further limited by read
errors and suboptimal assembly algorithms.

Early assemblers for viral genomes used a simple ‘greedy’ algorithm; however, larger and
more repetitive genomes called for a more cautious approach, in which two sequences are
not merged if either one of the sequences can be extended in conflicting ways. This stage
results in a number of separate sequences or ‘unitigs’ that terminate at the boundaries of
repeats, or more generally a set of contiguous sequences from the genome called ‘contigs’
[28]. Read errors can also be corrected during assembly by comparing overlapping
sequences and choosing the most likely version of any difference by various means. A
‘scaffolding’ stage follows, in which read-pair data is used to find the approximate distances
between nonrepetitive contigs in the genome, producing a sequence with ‘gaps’ of
undetermined bases. Repeats are retained and can be inserted back into the sequence when
the order of the contigs bordering each copy is no longer ambiguous, and then overlaps
between remaining reads are used in attempts to close any remaining gaps. Repeat contigs
can be identified, up to some error, by the relatively high density of reads mapping to them,
and in principle by the multiple ways of extending the contig by overlap and/or multiple
conflicting contigs connected to them by read pairs. The process can be expressed using an
‘overlap graph’ in which the reads are nodes and the (directed) edges represent overlaps
(Figure 2a & 2b). The genome corresponds to one of the paths through the graph. The
division into stages of assembly (including error correction), scaffolding and gap closure has
remained in place up to the present.

New problems arose in the new era of high-throughput sequencing. Assembly is confounded
by locations in which there are not enough overlaps to extend the sequence with confidence,
and shorter read lengths imply a larger expected number of these coverage gaps when the
average coverage is held constant. For Sanger reads, models show that, ideally, it is
sufficient for each base in a mammalian sized-genome to be covered by at least three reads
on average (written as 3× coverage) [29]; however, for the new short reads, this figure rises
to around 30×. Correction of the larger error rate also requires a higher coverage. In practice
assemblies of large genomes used coverage of between 7× and 10× in the previous
sequencing era, and have begun to use 50× coverage, 100× coverage or even higher with
NGS technology. Furthermore, no amount of coverage will make repeats disappear, and
with shorter reads, less repeats can be resolved without turning to read-pair data, introducing
a new problem for generating long contigs. While it quickly became possible to produce
such datasets cheaply in the laboratory, even for large genomes, assembling them proved
impossible for most of the previously existing tools.

This problem led to the wide adoption of de Bruijn graph methods [30]. In this approach,
instead of storing information about reads and overlaps explicitly, the nodes of the graph are
sequences of a fixed length k or ‘k-mers’. All such k-mers that appear in some read are
included, and an edge is placed between all pairs of k-mers that appear consecutively in
some read. Again, the genome corresponds to a path in this graph. This structure is sketched
in Figure 2C. A read whose (k+1)-mers are all contained in other reads adds nothing to the
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graph, and so memory requirements scale well with coverage. The same is true for
processing time: constructing the de Bruijn graph only requires recording the k-mers in the
read, rather than explicitly constructing scored overlaps for each pair of reads. Unambiguous
contigs are now represented by nonbranching paths, while the ambiguities at the boundaries
of repeats are explicitly represented in the graph as branch nodes. Most popular assemblers
merge nonbranching paths of k-mers into one node, thereby saving further space.
Scaffolding and gap closure can proceed after these unambiguous contigs are found.

Read errors pose a problem for this improved scaling behaviour. A single-base error in the
middle of a read changes k of its k-mers to ones which are likely to be uncommon in the
other reads. Many assemblers make use of this very property to find such errors [31],
although genuine k-mers can be lost without further conditions. Using the topology of the
graph to find errors improves this and is now widely implemented [32,33]. For example,
errors at the end of reads (which are common in, e.g., Illumina reads) correspond to short
chains of k-mers that only connect to the rest of the graph at one end ‘tips’, while errors in
the middle of reads give two paths starting and ending at nearby locations with similar
sequence. A complication here is that, for diploid or polyploid genomes, sequences that
should be mapped to the same position in the genome may have genuine discrepancies. Most
pipelines do not attempt to explicitly construct the alternative alelles for regions of sequence
variation when building contigs, instead producing one representative haplotype. Because of
this, when there is sequence variation assemblers must either construct two contigs or treat
the differences as error and merge the contigs. The former can lead to misassembly errors,
and so generally efforts are made to avoid this occurrence.

One drawback of the de Bruijn graph approach is the loss of information from reads.
Repeats longer than a k-mer cannot be resolved using only the de Bruijn graph described
above, even if reads bridge the repeat (in assembly terminology, the approach is not ‘read
consistent’). This is a problem that some de Bruijn assemblers remedy by adding
information on reads’ paths through the graph, at the cost of more computational resources.

The choice of k involves a number of trade-offs. The longer the k-mers are, the fewer edges
are needed, decreasing computational requirements. But with greater length, more bits are
required to store individual k-mers. On balance, it is generally true that the use of large k-
mers requires more memory for the same assembler. The main advantage of larger k is the
retention of more information about short repeats; however, only read overlaps of more than
k-1 bases are reflected in the graph, and so, as well as greater memory requirements, larger k
means that more coverage is needed to find enough overlaps. This is not a problem when
read lengths are as small as 25 bp; however, typical values of k used in studies have not
stayed approximately the same as read lengths as they have approached 100 bp. The
alternative is to use smaller k, which either means losing read information on short repeats
(which is the main reason for preferring longer read lengths in the first place) or retaining
even more information from reads.

The string graph, represented in Figure 2D, is another way to compress read and overlap
data [34]. Here, the overlaps of all pairs of reads must be calculated. Unlike the overlap
graph, however, the edges in the graph carry the sequence information and the nodes
represent the beginning or ends of overlaps. First, reads that are contained in other reads can
be discarded as they add nothing to the set of possible genomic sequences (neglecting error
correction). These sequences can be represented as concatenations of the ‘overhangs’ of
overlaps, where an overhang is the part of one overlapping read not covered by the other.
The string graph has nodes corresponding to the start and end point of each read (i.e., the
boundaries of the overhangs) and edges corresponding to the overhangs running between
them labeled by the corresponding sequence. Non-minimal overhangs that contain several
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smaller ones add no extra implied sequences and can be discarded, saving memory in
comparison with the overlap graph approach. Algorithms for this stage scale linearly in time
with the number of edges. After this stage, nonbranching paths in the string graph can be
merged into one edge corresponding to a unitig in the overlap graph approach. A common
simplifying assumption here (and in the de Bruijn approach) is that the genome is the
shortest nonbranching path through the graph that contains all edges (or nodes in the de
Bruijn graph). This has the advantage of picking out a unique order of copies of contigs
when that path is unique, although it is not obvious how close to reality this assumption will
typically be. Scaffolding and gap closure follow the assembly stage as above.

Like the de Bruijn graph, boundaries of repeats are branch nodes in the string graph.
However, the string graph does not lose information from reads on short repeats. The
disadvantages include the need to calculate all overlaps on a pairwise basis rather than
comparing k-mers in each read to the set of previously found k-mers, although efficient new
algorithms massively reduce time and memory requirements for this.

The other stages of assembly also change with NGS data. As with assembly, simple greedy
algorithms for scaffolding can fail because of repeats, and more sophisticated approaches
make use of the graph of connections between contigs in one way or another. Beyond this
general point, the situation is different from read assembly. The main problem is a result of
the error-prone nature of NGS mate pair libraries: distinguishing the genuine relationship
between contigs implied by good mate pairs from spurious connections caused by errors.

Third-generation sequencing promises to cheaply generate data with higher read lengths;
however, with a larger volume of data needing to be dealt with quickly, the possibility of
cheaply generating more coverage to suppress errors, and recent algorithmic innovations,
this will not simply mean a return to earlier methods. With significantly longer reads, string-
graph methods would become more attractive compared with de Bruijn-graph methods.

Next-generation assemblers
When the implications of NGS technology became apparent, several assemblers were
designed to deal with the new problems. The Euler assembler [30] was the first to employ de
Bruijn graphs for WGS assembly, and proved capable of assembling bacterial genomes.
Velvet [32] and ALLPATHS [35] improved assembly in terms of speed, contig and scaffold
length and avoidance of misassembly. Both implement graph topology-based error
correction and, instead of storing the paths of reads, these assemblers employ short read-pair
data to resolve short repeats, finding long contigs that are joined by several reads pairs and
then extending them along available paths towards each other when this can be done
uniquely, using different algorithms. This allowed assemblies of bacterial-sized genomes
and BACs from short-read data.

ABySS followed the innovations with de Bruijn methods, but also introduced a distributed
representation of the graph, allowing message passing interface parallelization [36]. Greater
exploitation of computational resources enabled ABySS to assemble a human genome from
short read data for the first time. SOAPdenovo is another assembler using a similar overall
strategy that is also able to assemble large genomes [37].

The CABOG [38] and variant MSR-CA pipelines are updates of the Celera overlap-based
assembler designed for a combination of read types, which showed some success with short-
read data for genomes in the 100 Mb range. CABOG has now been used to assemble the
Tasmanian devil genome using a combination of Illumina and 454 reads [39]. The CABOG
pipeline will also attempt to construct multiple alelles for regions of sequence variation after
contig assembly [40]. MSR-CA uses a de Bruijn graph to combine reads that map on to the
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same nodes and edges into ‘super-reads’, reducing the number of reads to be dealt with by
Celera by a factor of 50 or more.

The String Graph Assembler (SGA) is the first to make assembly of mammalian-sized
genomes practical using the string graph approach [31]. The problem of computing the
whole set of overlaps is solved by making use of the Ferragina–Manzini index data
structure, which allows overlaps to be quickly calculated while greatly reducing storage
requirements for the reads [41]. In principle SGA can assemble a human genome using only
one machine, although in practice using a cluster will reduce time requirements. This
assembler also implements particularly successful routines to correct single-base errors,
mainly by finding bases in reads that are not covered by frequently occuring k-mers.

Following on from the Phusion long-read assembly pipeline [42], the Phusion2 assembler
uses a strategy of read clustering and ‘local assembly’ followed by a merging step [43]. In
clustering, reads are divided into sets that are expected to be close to each other in the
assembly. Using a table of k-mers found in the reads, a relation matrix is built up that
records, for each pair of reads, the number of shared k-mers. If reads are considered as
nodes, and pairs with more than some minimum threshold of shared k-mers are considered
connected by an edge, clusters are connected components in this graph. After obtaining
small-read clusters with a controllable size (~100,000 reads), SOAPdenovo and ABySS are
run separately on each cluster to obtain a combined assembly. Reads are aligned back to the
draft assembly and the Gap5 tool is used to generate the final consensus sequences [44].

Improvements and additions to these tools continue to raise the quality of results for short-
read assemblers. For example, ALLPATHS-LG uses shared-memory parallelization and can
assemble mammalian genomes [45], and a recent update enables ‘patching’ contigs with
long reads (similar to scaffolding with mate pairs) from 454 or PacBio sequencing.
Similarly, Velvet1.1 includes mutlithreaded assembly and new algorithms for scaffolding
using mate pairs and long reads [46]. Some data on the performance and requirements of
each large genome assembler are collated in Table 2.

Of these assemblers, almost all will accept any read-pair libraries, although results will be
much improved by supplying a range of different insert sizes from overlapping pairs to
inserts of several tens of Kb. One study indicates that, at least for particular bacterial-size
genomes, ABySS and SGA gain most from the use of multiple short-insert libraries rather
than the inclusion of 3 Kb-insert size data (although this could be due to the quality of the 3
Kb library used), whereas most other assemblers benefit more from the latter [47].
ALLPATHS-LG differs, in that it will not run without at least one overlapping read pair
library and at least one longer insert library. Because of the current prevalence of Illumina
short-read data, most assemblers are optimised for this data type. Use of other short-read
platforms is not ruled out by this, but most short-read assemblers exclude the use of 454
reads because there is no support for their larger rate of indel errors. Euler-SR will accept
454 data and CABOG was designed to accept Applied Biosystems, 454 and Sanger reads.
As noted above, ALLPATHS-LG will now also accept PacBio reads [102], while SGA is
still at an experimental stage and is likely to be developed to handle third-generation long
reads [105].

Major NGS-oriented assemblers generally include their own routines for error correction,
scaffolding and gap closure that are designed and tuned to work well with the other parts of
the pipeline. There also exist a number of standalone software packages for these tasks.
Error correction tools include Quake [48,106] and HiTEC [49,107]. For scaffolding with
NGS data, there are SSPACE [50], SOPRA [51], Bambus [52] and the recently released
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MIP scaffolder [53]. There is little in the literature at present to suggest that any scaffolder
greatly excels over all others in terms of scaffold length or accuracy.

Assessing performance
It is important to ask to what extent NGS technology trades off costs with assembly quality.
While many projects have set out to sequence large numbers of species and individuals for
studies of evolution and disease, some researchers have suggested that inherent limitations
in using short reads preclude assemblies of the quality necessary for these ends, and have
recommended a combination of NGS with other techniques. Alternatively, it may be that
improvements in read pair data and its use in assembly turn out to be more useful than
combining NGS data with expensive long reads.

It is also interesting to establish how results vary among the various available tools.
Judgements here depend on the uses to which the assembly will be put. When structural
variation detection is the aim, one would prefer an assembler with high local accuracy,
particularly in coding regions of the genome, whereas for de novo projects seeking a draft
assembly of a new species this is less of a consideration than finding long contigs and
scaffolds. Some important questions are: which NGS assembly tools perform best on
different parameters; what read pair libraries to prepare and what settings to use for the best
assembly; what results can be expected in terms of contig and scaffold size, errors and
coverage of the genome.

To assess these, various metrics are used. Of course, errors can only be assessed to the
extent that there exists a reference, meaning that the target genome, or some part of it is
known. Without this only length of contigs and scaffolds can be assessed. The N50, defined
previously, provides a summary statistic for contig and scaffold lengths; if the genome
length has been estimated, this can be substituted for the total length of all contigs in the
definition to calculate the ‘NG50’ (and similarly for scaffolds). Contigs or scaffolds can be
broken at locations where the match to a reference changes or fails, and the N50 of the
resulting blocks gives a more telling estimation of assembly quality. The correct contiguity
(CC)50 gives a measure of the long-range continuity of the assembly that is tolerant of small
errors. Leaving aside some details, the CC50 is the median separation between pairs of bases
that can be considered aligned to approximately the correct relative locations in the
reference [54].

A number of recent studies have set out to address these questions. Alkan et al. compared
NGS assemblies of two human genomes to the human reference genome and assemblies
using older technologies [55]. As might be expected with short reads, the study found major
problems with repeats. It is estimated that 99.4% of all true pairwise segmental duplications
are absent, resulting in the loss of 16% of the genome (compared with around 8% when
using Sanger-type sequencing) and significantly affecting the coding regions of the genome.
Segmental duplications are also relevant to studies of disease and evolution, creating
problems for the end use of assemblies. The authors conclude that using purely NGS data to
sequence large genomes may not be viable. Other studies also emphasize the creation of
false segmental duplications in assemblies, which sometimes occur when heterozygous
sequences from two haplotypes are assembled into separate contigs and are scaffolded
adjacent to each other rather than being merged [56]. However, new results from
ALLPATHS-LG show that 40% of true segmental duplications are covered by their short-
read assemblies of the mouse and human genomes [45]. This approaches what is possible
with Sanger reads, and other assembly performance statistics are even closer to ideal levels.
There are also indications from Velvet’s new scaffolding tools that, in some cases at least,
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good use of mate-pair reads may be more useful than adding a small number of long reads to
NGS data [46].

Other studies have compared different assembly techniques. Some previous studies, while
focusing on assemblers capable of assembling only short sequences, do provide some
interesting results. For example, measuring assemblies using simulated reads from a number
of sequences including two human chromosomes, they indicate that SOAPdenovo achieved
a better N50 than ABySS whereas ABySS excelled on accuracy. The study also points out
that assembly quality is sensitive to the number of base-call errors only when the coverage is
low (i.e., before the coverage is so high that increasing it further does not significantly
increase assembly quality) [57,58].

The Assemblathon takes the form of a competition in which organizers and outside groups
attempt to assemble a given set of reads [54]. To allow a better comparison to the
‘reference’, a simulated genome and read set were used, produced by subjecting a sequence
of human DNA to simulated evolution. Significantly, the resulting genome contained only
around half the number of 100-base repeats as the original human DNA. Because of this, the
competition does little to answer the questions raised above on duplications. The total length
was also chosen to be fairly small, at 112.5 Mb. Contigs and scaffolds were then aligned
back to the reference and various metrics were used to find assembly quality. For length,
‘paths’ from contigs and scaffolds representing a correct assembly (including combinations
of sequence from the two haplotypes, which were exactly known here) were considered, and
the ‘contig path N50’, representing the N50 after breaking at points of misassembly, was
used as a summary statistic (and similarly for scaffolds).

The three most successful assemblies overall were deemed to be those produced by the
Broad Institute (MA, USA; using ALPATHS-LG), Beijing Genomics Institute (BGI; using
SOAPdenovo), and Wellcome Trust Sanger Institute (using SGA). None of these dominated
on all measures. While BGI’s SOAPdenovo produced the largest contig path N50 of 8.25 ×
104, closely followed by the Broad Institute’s ALLPATHS-LG assembly, the scaffold path
N50 of the Welcome Turust Sanger Institute (WTSI) SGA assembly was more than double
that achieved in the other two at 4.95 × 105, and similarly the Broad Institute’s CC50 was
more than double that of the nearest competitor of these three at 2.66 × 106.

While several other assemblies were comparable with the top three on some metrics, these
achieved the best size and lack of errors overall, with some tradeoff apparent between major
structural errors (such as joins between sequences mapping to distant locations on the
genome) and contig size. It is interesting to note that the proportion of base substitution
errors to genome size varied hugely. The WTSI SGA assembly achieved a result of 1.3 ×
10−7, while the Broad Institute and BGI assemblies contained many more such errors, by a
factor of approximately 22 and 92, respectively. The SGA assembly contained only one
structural error while others varied from 3 to 20.

Overall results were good, and there was no one assembly that was clearly far ahead of the
rest, apart from on substitution errors. However, conclusions based on the Assemblathon
must be limited as they may not apply to larger and more realistic datasets (which will in
any case vary amongst themselves), especially those with a more challenging repeat
structure.

The recent Genome Assembly Gold-standard Evaluations (GAGE) project differed in that it
used real data and only assemblies constructed by the organisers using openly available
protocols [47]. Real data could give results that are more comparable to typical assembly,
but on the other hand parameter choices for assemblers can make a large difference to
performance; they may well be less well optimized in the GAGE methodology than in the
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Assemblathon, where each assembler is run by teams that are highly familiar with it (e.g., in
the GAGE project, Velvet was run with a k-mer length of 31, which would normally be
much lower than optimal with reads of length 100).

Two bacteria with good finished reference genomes of size 2–5 Mb, as well as a human
chromosome 14 and a bee genome of size 250 Mb (which had no available reference) were
used. ALLPATHS-LG, SOAPdenovo, ABySS, Velvet and SGA were tested alongside
overlap assemblers like CABOG. For both bacteria, ALLPATHS-LG again was more
successful than its nearest competitors in terms of N50 of contigs and scaffolds broken at
misassembly points, its nearest competitors here being Bambus2 and MSR-CA, while the
other assemblers designed for large genomes lagged behind. For the human data, CABOG
was marginally more successful on (error-broken) contigs than ALLPATHS-LG, but again
ALLPATHS-LG was superior on scaffold length, and the best of the large-genome
assemblers overall. Results on the bee genome were best for SOAPdenovo; however, in this
case the overlapping read pairs required by ALLPATHS-LG were absent, and errors were
not accounted for. It may be the case that the stricter and less-detailed contig-breaking used
in the GAGE project is a disadvantage for less locally accurate assemblers. While
SOAPdenovo managed a much larger N50 than others, after contig breaking the advantage
disappeared; however, results from the Assemblathon showed that this assembler performed
well on the small error-tolerant CC50 metric. The weakness here seems to be that
SOAPdenovo produces some short ‘indels’ (erroneously inserted or deleted sequences)
during gap closure. This tool may still be a better choice for draft de novo assembly.

While these results are useful, most of the recent technical advances have been in handling
large eukaryotic genomes. Assembly pipelines should be expected to perform very
differently when running on the type of data for which they were primarily designed, while
some other assemblers will not be able to run at all on large genomes. Because of this, more
wide-ranging and comprehensive comparative studies focused on large genomes will have to
be carried out to reach more solid conclusions about the pros and cons of each assembler
when they are applied to such datasets. Fortunately, further comparison studies are planned
that should substantially improve matters. The dnGasp project is another collaborative effort
based on a large, simulated genome [108], while the Assemblathon 2 project will use real,
large genomes, from species of snake, bird and fish [109]. Both studies are now closed to
new entries, and results will soon be available to compare to those above, providing
significant tests of current tools against large and repeat-rich genomes.

Conclusion
WGS genome assembly remains an active area of innovation, which has been greatly
affected by the introduction of NGS sequencing, even if its fundamental problems remain
largely the same. Assemblies built from NGS reads alone are far from perfect, exhibiting, in
particular, many errors involving counts of segmental duplications. Early on, it was
suggested that such short-read technology may not be viable for de novo assembly of large
genomes without some help from more expensive sequencing methods. However, with the
rapid development of assembly techniques, the quality of NGS assemblies is beginning to
approach that which is possible by other means. Some assemblers can achieve much better
results on local errors than others (and without apparent costs elsewhere for some types of
errors), showing that improvements are possible. New assembly analysis studies are set to
show how much of a gap still exists between the quality of NGS assemblies and finished
sequence.

We have also seen a number of apparent trade-offs. When choosing how to create reads,
longer read length often implies more errors, especially when using the new PacBio
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technology. Most interestingly when designing a study, assemblers that excel on long-range
continuity in contigs perform badly on suppressing local errors such as indels (such as
SOAPdenovo) or vice versa (such as SGA). The choice made here in different genomic
studies will vary depending on the intended use of the assembly.

Future perspective
This observation on the current tradeoff between accuracy and continuity suggests avenues
for future improvements in assembly. The best results might be achieved by using accurate
assemblies to correct errors in long-scaffold assemblies, or by developing special tools built
on similar principles to correct errors after the scaffolding and gap closure stages. There is
room for other improvements at the scaffolding stage, where, as has happened at the
assembly stage, we are seeing a move from naive, greedy algorithms to more subtle graph-
based techniques.

Another developing area is the explicit construction of haplotypes from reads, to the extent
that this is possible. At present, producing one representative haplotype is normally taken as
the aim of assembly, and alternative alleles are merged when identified. As we have seen,
differences between alleles are normally treated in the same way as errors, and they are
often scaffolded sequentially when not identified, causing misassemblies. Routines to
explicitly identify alternatives during contig construction would help to reduce such errors
as well as providing extra genetic information to end users. Pipelines such as CABOG do
attempt to identify alleles after the main assembly steps [40]; however, exploiting variance
information optimally for error avoidance during assembly is still an open problem.

In the future, as well as improvements in assemblers themselves, there are likely to be
improvements in sequencing. Of particular importance are improvements in the production
of mate-pair libraries, in terms of accuracy of insert-size estimation and suppression of
errors. All this suggests that the way forward may lie with exploiting NGS technologies with
improved mate-pair libraries to guide long-range assembly accuracy.

Second- and third-generation technology may soon dramatically improve. This would
change assembly methods and greatly improve results. With the release of Illumina’s HiSeq
2500, a platform that aims for a ‘genome in a day’, users can expect 2×150bp reads in late
2012 [110]. Life Technologies’ Ion Torrent plans to launch 2 × 200 bp paired-end reads and
400-base single ends. With two Ion Proton™ chips on the way, the Proton I chip will be
targeting exome sequencing, while the Proton II chip, to be released in early 2013, is
intended for whole-genome applications. For the latter, it claims the ability to sequence a
human genome at about 20× to 30× coverage for US$1000 in total, including sample
preparation, chip and reagent costs [111]. The biggest potential player, Oxford Nanopore®
(Oxford, UK), could enter the market with two low-cost DNA strand sequencing
instruments: a higher-throughput version, named GridIon and a disposable MinIon system.
The latter instrument is in the size of a USB memory stick and costs less than US$900. The
GridIon system, scalable like a computer cluster, takes disposable reagent cartridges that
contain the nanopores. Running 20 GridIon instruments each with 8000 pores in parallel will
enable users to sequence a human genome at 15-fold coverage in 15 min for less than US
$10 per Gb [112]. Both released systems are expected to produce read length of up to 100
Kb with a reasonable level of base accuracy. A 48-Kb phage λ genome has been sequenced
as a single contiguous read and the error rate was reported to be approximately 4.0%. These
advances will undoubtedly change the landscape of genomics and its applications,
pharmacogenomics included. The genomics community could find itself in a situation in
which data is produced in matter of hours, but it takes days or even weeks to assemble a
human genome using the fastest assembler. For de novo sequencing on new species or
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assembly-assisted variation detection, the efficiency of assembly process may be the
bottleneck, and new algorithms are ultimately needed to speed up the process as well as
cope with the new data.

Finally, the suppression of local errors in assemblies, well as improving the assembly for
end-use purposes, has other effects. Segmental duplications will differ in a few of their
bases, and we see, unsurprisingly, that more copy-number errors are reported for
duplications with a lower proportion of differing bases. With fewer local assembly errors it
may be possible to increase sensitivity to differences here, going some way to solving a
major outstanding problem with current (and past) assembly techniques.
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Executive summary

Next-generation sequencing technologies & platforms

■ Next-generation sequencing (NGS) platforms offer massive increases in
sequencing time–effectiveness and cost–effectiveness, but produce shorter
and/or less accurate reads than more expensive techniques.

■ The read lengths achievable with 454 sequencing approaches that for Sanger
sequencing, while Illumina platforms still lead in terms of cost, and third-
generation sequencing offers longer reads with new error characteristics.

■ Rapid improvements in existing technologies and new platforms are to be
expected.

Overview of assembly methods

■ Repeating sequences of DNA confound naive approaches to de novo genome
assembly, a problem exacerbated by short read length.

■ Previous assembly methods, which relied on calculating overlaps between all
reads, were found to be impractical for NGS data, and it has proved more
effective to consider relationships between consecutive fixed-length
subsequences of reads (the de Bruijn graph).

■ The string graph is an efficient way to store overlap data, which may gain an
advantage over De Bruijn methods as read lengths increase again.

Next-generation assemblers

■ Assemblers such as Euler and Velvet applied the de Bruijn method to
bacterial genomes.

■ ABySS, ALLPATHS-LG and SOAPdenovo can assemble a human genome
from NGS data using de Bruijn graph methods, while SGA employs the
string graph.

■ NGS assemblers differ in input requirements, with some allowing the
inclusion of long reads for ‘patching’.

Assessing performance

■ Some applications will favor local accuracy over long-range continuity in
assemblies, and some the converse.

■ Large-genome assemblies using short reads show relative deficiencies, such
as failing to reproduce most segmental duplications in the human genome,
although ALLPATHS-LG now claims results approaching those achieved
with long reads.

■ It has been suggested that expensive longer reads must be included to achieve
assemblies of sufficient quality for common applications; improved quality
and better use of mate pair libraries could instead offer a cheaper way to
improve long-range properties of NGS assemblies.

■ Assessments of the state-of-the-art in assembly show that no tool is superior
overall, but some assemblers (e.g., SOAPdenovo) lead in long-range
continuity while others (such as SGA) are much more locally accurate.
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■ Studies available this year will compare the performance of NGS assemblers
on large genomes for the first time.
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Figure 1. An upper bound on assembly N50 against read length y
For a set of sequences, the N50 is the number of bases in the longest sequence such that 50%
of the total bases are contained in this sequence or longer sequences. Here, the N50 is given
for the set of contiguous sequences of bases in each genome that are covered by a unique
segment of sequence at a given length y. Owing to the ambiguities in ordering caused by
nonunique sequences, this provides an upper bound on the N50 that is possible for whole-
genome sequencing assembly when using reads below this length, and gives an indication of
the advantages to be gained from longer read length in some cases.
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Figure 2. Graph structures for assembly
(A) Eight aligned reads are shown. (B) The corresponding overlap graph, in which nodes
correspond to reads and edges to overlaps, in this case overlaps of five or more bases
(transitive edges, meaning overlaps that are covered by a set of shorter overlaps, are shown
as curved arrows). (C) The de Bruijn graph, in which nodes are k-mers and edges indicate
that some read contains both k-mers consecutively. Note that reads such as two add nothing
to the de Bruijn graph. The basic idea of the string graph is illustrated under (D). Here, the
graph topology is the same as in (A) with transitive edges removed; however, but nodes
correspond to the beginnings of reads, and edges are labeled by the string between these two
points in the case that those reads overlap, rather than the whole read being associated to
each node. All sequences supported by reads and overlaps can be recovered from this
labeling (along with terminal reads such as read 8 in the example given in this figure):
following the graph backwards adds the sequence necessary to complete the previous read.
Both the de Bruijn and string graphs can be further simplified by merging linear subgraphs.
Treatment of reverse complement sequences has been neglected here for clarity.
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