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Abstract: Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement 
of damaged vessels and valves has been practiced since the 1950’s. Synthetic grafts, usually made of bio-inert 
materials, are long-lasting and mechanically relevant, but fail when it comes to “biointegration”. Decellularized 
matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation 
of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a 
biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic 
digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limi-
tations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current 
state of the art relative to decellularization techniques and biological performance of decellularized heart, valves 
and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellular-
ization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.
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Introduction

Organ transplantation is still the ultimate treat-
ment for end-stage organ failure. Even if donor 
organs were not in short supply, the transplant 
recipient would still be at risk of chronic immune 
rejection and lifelong immunosuppression 
treatment. The change of paradigm that tissue 
engineering, combined to regenerative medi-
cine, has introduced is in providing exogenously 
fabricated “biological supports”, i.e. cells, bio-
materials, growth factors, or combination of 
them, which could boost the “endogenous bio-
fabrication” of new tissues. To date, although 
numerous modern technologies, such as the 
use of bioprinters, bioreactors and induced plu-
ripotent stem cells, have been employed to fab-
ricate tissues, the generation of a functional 
whole organ has not yet been accomplished. 
This is due, in part, to a lacking knowledge of 
mechanisms of organ development, and also to 
logistic issues.

The approach of combining biomaterials with 
cells and growth factors is not sufficient to 
recapitulate the complexity of tissue regenera-

tion. The use of decellularized matrices, at 
least, would overcome the need for the tissue 
engineer to artificially recreate the conditions 
for ECM deposition [1, 2]. Decellularized matri-
ces, if properly prepared, would offer a microen-
vironment naturally dense of molecular cues 
able to drive endogenous biofabrication of a 
new patent tissue. Several drawbacks might be 
encountered when a native matrix is processed. 
Alterations in the ECM composition could result 
in mis-repopulation of the decellularized matrix 
once implanted in vivo.

Decellularized matrix for heart engineering

Heart failure (HF) is defined as an abnormality 
of cardiac structure or function leading to fail-
ure to deliver oxygen at a rate commensurate to 
metabolic needs of tissues. It can be caused by 
several conditions affecting the heart, such as 
ischemic heart disease, valvular heart disease, 
hypertension or cardiomyopathies [3].

An estimated 83.6 million American adults (>1 
in 3) have one or more types of cardiovascular 
disease (CVD), 5.1 million Americans ≥20 years 
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of age suffer from HF. HF incidence approaches 
10 per 1000 population after 65 years of age. 
The 2009 overall any-mention death rate for HF 
was 82.3 [4].

Despite the advances in clinical evaluation and 
management, heart transplantation is still the 
mainstay for end-stage HF [5, 6]. The gap 
between the supply and the demand for donor 
organs [7], as well as the consequences for the 
patient of lifelong immunosuppression and 
chronic rejection, make the implantation of a 
bioartificial heart highly desirable alternative to 
allo-transplantation. While the regeneration of 
a functional organ has not been accomplished 
yet, tissue engineering and regenerative medi-
cine research have obtained promising results 
for heart regeneration. The cardiac tissue engi-
neering traditional approach relies mainly on 
the use of synthetic or biological matrix materi-
als and heart cells. Usually scaffold materials 
such as gelatin, collagen, alginate, or synthetic 
polymers are seeded in vitro with cardiac cells 
to reconstitute contractile cardiac muscle-like 
patches. Tissue coherent contractions, low dia-
stolic tension, and syncytial propagation of 
action potentials are then tested in vivo once 
the patch is implanted [8, 9]. Insufficient cell 
migration into the scaffold and an inflammatory 
reaction due to scaffold biodegradation are 
often encountered in vivo and can be remedied 
by using Okano’s cell sheet technology, which 
layers cell sheets to construct 3-D functional 
tissues without any artificial scaffold [10]. 
However, the effective support of a severely 
compromised heart requires the fabrication of 
hearts or heart patches with proper size, prov-
en contractile features and vascular provision. 
Parallel channels and artificial oxygen carriers 
have been investigated to provide appropriate 
metabolic exchange to engineered heart patch-
es [11-13].

Biocompatible three dimensional ECM-based 
scaffolds with preserved geometry and vascu-
lar tree can be generated from the decellular-
ization of cadaveric hearts [14]. Decellularized 
hearts might be suitable to engineer or regen-
erate the entire organ and can be used for 
whole-organ transplantation or as a source of 
myocardial tissue parts. Xenogeneic ECMs 
have already been used successfully to replace/
repair numerous tissues and organs in both 
preclinical animal studies and human clinical 
applications. In particular, the ECM derived 

from the porcine small intestinal submucosa 
(SIS) and urinary bladder submucosa (UBS), 
have been employed as a vascular graft [15-
18]. Ott et al. first described a method to decel-
lularize hearts by coronary perfusion [19]. In 
this procedure, the aorta of a rat heart was can-
nulated for retrograde heart perfusion with 
ionic detergents. The decellularization pre-
served the underlying extracellular matrix and 
produced an acellular, perfusable vascular 
architecture, competent acellular valves and 
intact chamber geometry. The constructs were 
then reseeded with cardiac and endothelial 
cells and maintained for up to 28 days in a bio-
reactor simulating coronary perfusion, physio-
logical load and electrical stimulation. The cul-
tured organoid was able to generate 
contractions. The perfusion-decellularization 
approach is particularly efficient for whole 
organ decellularization since it reduces the dif-
fusion distance required for decellularizing 
agents to reach cells. It also takes advantage of 
convective forces to facilitate tissue removal of 
cellular material [20]. Several protocols have 
been employed for the generation of acellular 
cardiac scaffolds from whole hearts or myocar-
dial tissue (see Table 1). The quality of each 
resulting cardiac ECM can be subjected to vari-
ables like the age and the pathological condi-
tions of the donor. Moreover, unless the cardiac 
ECM is solubilized in a hydrogel or used as a 
small cardiac patch, the evaluation of its per-
formance in vivo in models of whole heart 
transplantation is not yet practically feasible.

Decellularized matrix for heart valve engineer-
ing

Heart valves are responsible for unidirectional 
blood flow from atria to ventricles and from ven-
tricles to cardiac arteries. Several pathologies, 
such as rheumatic fever or infective endocardi-
tis, can lead to alteration of heart valve func-
tion. Congenital heart defects, including tetral-
ogy of Fallot and Patent Ductus Arteriosus, can 
also affect valves. Valvular heart diseases are 
common in the general population and can 
lead to HF and arrhythmias [21]. About 2.5% of 
US population [21] is affected, and prevalence 
increases with age, reaching over 13% for those 
75 and older [22]. Currently, optimal treatment 
for valvular heart diseases is either surgical 
repair or replacement [23]. Mechanical valves, 
the most commonly used prosthesis, have 
excellent durability but carry lifetime risks of 
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thromboembolic and hemorrhagic events [24, 
25]. Bioprosthetic valves are often porcine aor-
tic valves mounted on a stent or a Dacron sup-
port, sometimes they are made of bovine peri-
cardium. Pericardium is usually bovine in origin, 
and pericardial valves are almost invariably 
stented. These valves are fixed in glutaralde-
hyde which crosslinks collagen fibers and 
reduces tissue antigenicity, and anti-mineral-
ization treatments applied to the last genera-
tion valves reduces the risk of calcification [26, 
27]. However, the still unavoidable in vivo  
structural degeneration of xeno-bioprosthesis 
accounts for the higher risk of reoperation 
when compared to mechanical valve replace-
ment [28]. In the future, tissue engineering is 
expected to provide enduring and non- immu-
nogenic heart valves, possibly able to grow and 
remodel as the age of the patient advances 
[29, 30]. In a traditional tissue engineering 
approach, a fundamental requirement for heart 
valve engineering is a three dimensional scaf-
fold with appropriate mechanical properties 
which is seeded with appropriate cell types 
[31]. Examples of decellularized grafts include 
aortic homografts [32] and porcine valves and 
pericardium [33]. ECM can be obtained by 
using different protocols, all involving the pro-
cessing of the tissue in a decellularization solu-
tion, containing alternatively ionic and/or non-
ionic detergents or enzymatic digestion buffers, 
with hypotonic or hypertonic washings (see 
Table 2).

Results from the few clinical studies that have 
been performed are conflicting. The SynerGraft 
valve, which was developed as an acellular 
(nonglutaraldehyde-fixed) porcine aortic pros-
thetic valve [34], is the prototype of the decel-
lularized valves used in the Ross procedure. 
CryoValve SynerGraft, as named after CryoLife 
patented the decellularization technology, has 
been tested in many clinical studies. In 2003, 
three children implanted with decellularized 
porcine heart valve SynerGraft died because of 
valve rupture or early severe degeneration, fol-
lowed by the post-mortem observation that the 
xenogenic collagen matrix of the Synergraft 
valve elicits a strong inflammatory response. 
Also the grafts showed poor cellularization and 
fibrosis [35]. A subsequent report, comparing a 
new CryoValve SynerGraft decellularized pul-
monary allograft to a standard cryopreserved 
allograft (SCA) in patients aged in a range of 4 
months to 58 years, showed a similar rate of 
reoperation in patients undergoing the Ross 
procedure, while the quantification of valve 
regurgitation was in favour of Synergraft [36]. 
In conclusion, the early clinical and hemody-
namic results were encouraging although not 
significantly different from the SCA. Another 
decellularized porcine pulmonary heart valve, 
Matrix P (AutoTissue GmbH), has been tested 
for the reconstruction of the right ventricular 
outflow tract (RVOT) during repair of congenital 
or acquired heart disease or to replace the pul-
monary valve during the Ross procedure. 

Table 1. Some of the most commonly used protocols of decellularization and recellularization
tissue/organ Decell. method Recell. method Notes Ref
Human pericardium from 
cadaveric donors

Hypotonic buffer, SDS in hypotonic 
buffer, and nuclease solution

In vitro seeding of human dermal 
fibroblasts and A549 cells

No difference in glycosaminogly-
can content and tensile strength

[160]

Porcine ventricular myo-
cardial tissue

SDS and Triton X-100 detergents. 
Pepsin-solubilization of the myocar-
dial matrix

In vitro seeding of neonatal rat 
cardiomyocytes and in vivo injec-
tion in left ventricle of rats

Maintained glycosaminoglycan 
content. Good cell-conductivity

[161-
163]

Intact adult porcine heart Pulsatile retrograde aortic perfu-
sion. Serial perfusion of enzymatic, 
non-ionic and ionic detergent, 
hypotonic and hypertonic solutions

In vitro seeding of chicken car-
diomyocyte

ECM retained collagen, elastin, 
and glycosaminoglycans, and 
mechanical integrity

[164]

Porcine whole heart Langendorff decellularization 
model: perfusion of
Trypsin/EDTA and TritonX 100/
deoxycholic acid (DCA).

none Retained collagen, proteoglycan 
and elastin

[165]

Adult rat heart Comparison of different solutions: 
1) SDS/TritonX100-based v/s 2) 
Trypsin plus Triton/DCA-based v/s 
3) SDS/DCA/saponin-based

In all groups successful reseeding 
with C2C12 myoblasts in vitro.

Laminin detected in all groups. 
Collagen IV removed in group 2, 
elastin not detected in the last 
group

[166]

Human Left ventricular 
myocardium tissue

Comparison between SDS-based, 
Triton X-100-based, DCA-based, 
hypo/hypertonic solution-based 
decellularization protocols

In vitro culture with mesenchymal 
stem cells, iPS-derived cardio-
myocytes and native neonatal 
mouse cardiomyocytes

All the protocols support cell viabil-
ity and growth. Best cell removal 
and ECM architecture mainte-
nance with SDS-based protocol

[167]
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Table 2. Schematic view of different protocols of decell/recell for valves
Tissue Decell. Method Recell. Method Notes Ref
Porcine and sheep pul-
monary valve conduits

Trypsin/EDTA digestion In vivo after orthotopic 
implantation in sheep

reconstitution of surface endothelial cell 
monolayer and interstitial myofibroblasts. 
Calcifications

[168]

Porcine aortic valves Comparison Triton X-100 v/s Trypsin In vitro EC seeding Changes in the extracellular matrix 
constitution in both cases, EC-mediated 
ECM deposition.

[169]

Porcine pulmonary 
heart valves

Deoxycholic acid In vivo Efficient cell-lysis without integrity loss of 
the interstitial proteoglycans

[170, 
171]

Porcine aortic and 
pulmonary roots

Tert-octylphenyl-polyoxyethylene plus 
sodium deoxycolate (TOPOE+DOC) 
compared to trypsin and SDS

In vitro seeding with human 
ECs and myofibroblasts

Toxic influence of SDS on EC viability. 
TOPOE+DOC completely remove porcine 
cells and enable recellularization

[172]

Porcin aortic and pul-
monary valve conduits

Triton X-100 and hypotonic washings None Differential distribution of elastin and 
glycosaminoglycan

[173]

Porcine aortic valves Polyethylene glycol and gamma 
irradiation

In vivo, subcutis of rats and 
descending aorta of dogs

Mechanical strength and collagen content 
not different from native porcine tissues. 
Good recellularization, few calcifications.

[174]

Porcine mitral heart 
valve

Deoxycholic acid Othotopically in pigs Deposition of fibrin and platelet material. 
limited ingrowth of both endothelial and 
myofibroblast-like cells

[175]

Aortic homograft 
leaflets

Trypsin In vitro seeding with cardiac 
mesenchymal stromal cell

Rescuing up to the 90% of the original 
cell density and differentiation towards 
endothelial lineage.

[32]

Porcine pulmonary 
valve

Triton X-100 and ammonium 
hydroxide.

CD133 Ab-conjugation 
(self-seeding valves) and 
transplantation into the pul-
monary position of sheep

Endothelialization. No calcification or 
thrombi. Good Young’s modulus and 
tensile strength.

[176]

Recently, in a study involving 93 pediatric 
patients undergoing RVOT reconstruction using 
Matrix P and Matrix P Plus valves, conduit fail-
ure was reported in 35.5% of the patients and 
conduit disfunction in 29% [37]. Failure 
occurred for either dilation or stenosis of the 
graft, and histological analysis showed inflam-
mation and poor cellularization. Another study, 
where the Matrix P valves were implanted in 61 
patients (range: 9 days to 50 years) with con-
genital heart disease, showed favourable inter-
mediate-term performance [38]. Other studies 
reported conflicting results [39], calling for fur-
ther testing.

Decellularized matrix for vessel engineering

Almost 20% of procedures performed in males 
and 11% of those performed in females yearly 
in the United States involve the cardiovascular 
system. Of those, a considerable number, con-
sisting of over 500,000 procedures a year, are 
arterial bypass operations [40]. Arterial bypass-
es are needed to restore blood flow down-
stream an arterial occlusion, most commonly 
due to atherosclerosis. Generally, autologous 
arteries, such as radial or internal mammary 
artery, or veins, i.e. the saphenous vein, are 
used as bypass graft material. However, Almost 

40% of patients needing bypass surgery may 
not have autologous vessels of the appropriate 
quality or length [41] and even if appropriate 
venous tissue is available, in vivo remodelling, 
including intima hyperplasia, and mechanical 
injuries frequently lead to graft occlusion [42, 
43]. Synthetic grafts, used as a standard alter-
native to autologous vessels, are also not 
immune to occlusive graft failure in the long 
term [44]. Procedures involving the replace-
ment of large conductance vessels, or part of 
them, are less frequent, but conditions such as 
aortic aneurysm and dissection, for instance, 
are life-threatening and often requiring emer-
gency surgery. The damaged section of aorta is 
often replaced with synthetic grafts such as 
Dacron and ePTFE, which function exceptional-
ly well under high flow, low-resistance condi-
tions and maintain a 90% patency rate after 
five years, but show a 20% decreased patency 
rate over a five year period when applied to 
small caliber arteries because of thrombotic 
complications [45].

Taking advantage of natural and synthetic bio-
polymers and different cell seeding technolo-
gies, tissue engineering has developed vascu-
lar conduits showing proper structural and 
functional features, such as swelling and 
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stretching properties, suture-retention and cell 
conductivity [46-52]. However, the limited pro-
liferative rate of adult smooth muscle cells 
[53], as well as the senescence they undergo in 
culture, accounts for the poor in vivo mechani-
cal performance of tissue engineered blood 
vessels. Inter alia, the biofabrication of blood 
vessels is still costly and time consuming [54].

The pioneering research of Malone et al. [55] 
and Lalka et al. [56] first reported that implant-
ed cell-free arterial allografts do not undergo 
immunologic alterations. The simple treatment 
with SDS resulted in the formation of an ECM 
tube with morphologically intact elastin and 
collagen network, that was easy to suture and 
immediately blood perfused after in vivo graft-
ing. Decellularization technologies were not 
advanced yet, when these scientists intro-
duced a simple and powerful concept: reducing 
allograft/xenograft antigenicity as opposed to 
immunosuppressing the graft host!

Similarly to synthetic grafts, decellularized 
matrices would be readily available. Unlike syn-
thetic grafts, they would provide the proper 
microenvironment for supporting cell invasion, 
growth and differentiation. A future goal for the 
tissue engineering is to identify decellulariza-
tion techniques that can provide vascular grafts 
with both mechanical properties of native ves-
sels and immuno-privileged characteristics of 
autologous vessels. In a recent study by 
Fitzpatrick et al., different protocols were 
applied to decellularize segments of porcine 
aorta and it was shown that the TritonX-100/
sodium-deoxycholate treatment is a more 

effective option than TritonX-100/EDTA and 
SDS treatments since it effectively lyses VSMCs 
and results in less variability in mechanical 
behavior at in vivo stretch ratios [44]. In anoth-
er report both SDS and Triton X-100 treatments 
were able to remove cells effectively from por-
cine aorta and the major ECM structure was 
preserved, while trypsin treatment disrupted 
the cross-linked network of collagen and elas-
tin fibers [57]. Dimuzio’s group has decellular-
ized the human saphenous vein by using SDS, 
showing that decellularized veins have a burst 
and suture-holding strength similar to fresh 
veins, as well as unchanged collagen morphol-
ogy [58]. The same group reported a canine 
model of bilateral carotid interposition of a 
decellularized jugular vein allograft: the decel-
lularized allograft exhibited satisfactory stre- 
ngth, reduced antigenicity compared to fresh 
allograft, and supported cellular repopulation 
[59].

To the best of our knowledge, the clinical appli-
cation of the decellularization technology has 
been restricted to a single patient case [60]. A 
49-year-old woman underwent surgery for a 
large malignant pelvic tumour causing the 
occlusion of the iliac vein. The iliac vein was 
reconstructed by using a tissue-engineered 
neo-vein, previously developed from a decellu-
larized vein allograft that was reseeded in a bio-
reactor with recipient-derived endothelial cells. 
The interposition graft was patent for 24 
months, before the progression of the malig-
nancy lead to graft occlusion. Humacyte, Inc., 
has conducted the first-in-human pilot study to 
assess safety and efficacy of its innovative bio-
engineered blood vessel in end-stage renal dis-
ease patients (Figure 1). Human vascular cells 
were isolated and used to grow bioengineered 
vessels in bioreactors. After decellularization, 
the bioengineered vessels (6 mm in diameter 
and 40 cm in length) were tested for suture 
retention strength and burst pressure, respec-
tively comparable to human saphenous vein 
and human mammary artery. The Humacyte’s 
study is open label and single arm. It was initi-
ated in December 2012 and it has enrolled 28 
patients thus far. All the implanted bioengi-
neered vessels have been demonstrated to be 
patent and only 8/28 patients were assisted 
with interventions to restore or maintain paten-
cy. No indications of infections, immune 
response, dilatation and aneurysms have been 

Figure 1. First-in-man evaluation of an investigational 
bioengineered blood vessel. Kindly provided by Prof. 
Laura Niklason, Yale University and Humacyte, Inc.
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observed (Abstracts from the American Heart 
Association’s Emerging Science Series April 24, 
2013).

Surgeons have been using cryopreserved vas-
cular allografts successfully for many years to 
treat arterial occlusive disease and to repair 
arterial aneurysms. Vascular allografts demon-
strate high patency rates but contain viable 
cells, which may evoke an immune rejection. 
Decellularization techniques efficiently remove 
cells and can be optimized to guarantee the 
maintenance of the microarchitecture and the 
biomechanical properties of native vessels 
(see Table 3).

ECM components of cardiovascular tissues

The extracellular matrix (ECM) mediates the 
interaction between the cell and the surround-
ing microenvironment in a model of dynamic 
reciprocity, in which cells secrete ECM compo-
nents and ECM proteins regulate cell prolifera-
tion and differentiation to finally determine tis-
sue morphogenesis and homeostasis in 
development and disease [61]. Far from being 
a merely structural component of any tissue, 

the ECM represents a huge reservoir of bio-
physical stimuli and signalling molecules. The 
regulation of cell fate mediated by ECM is also 
essential during tissue repair, wherein a very 
delicate balance in the amount, composition 
and spatial organization of the newly produced 
matrix marks the border between a regenera-
tion process and scar formation [62, 63]. A pro-
found knowledge of the structure and the sig-
nalling mediated by the ECM of cardiovascular 
tissues is needed in order to rationalize the use 
of decellularized vessels, valves and even 
entire hearts. Modifications in matrix proteins, 
depending on decellularization techniques, 
might account for in vivo fibrosis, calcification, 
poor endothelialisation, and ultimately for the 
failure of the implanted patches.

ECM in the heart

ECM is crucial for heart development [64]; the 
cardiac jelly, an ECM-rich acellular space 
between the endocardium and myocardium, is 
particularly important for the proper formation 
of the endocardial cushions at the atrioventric-
ular (AV) junction. In adult life, the coupling of 
vessel endothelium and cardiomyocytes, as 

Table 3. The most commonly used decellularization/repopulation techniques for big vessels, as well 
as some of the basic milestones that have driven present research on decellularized matrices in 
vascular biology

Tissue Decell. Method Recell. Method Notes Ref
Swine arteries Sodium deoxycholate 4% None Young’s modulus, compliance, burst 

pressure, and suture retention strength 
were unchanged, while ultimate strain 
and stress relaxation were altered

[177]

Human umbilical vein Comparison between detergent treat-
ment (Triton X-100, sodium deoxycho-
late, IGEPAL-CA630), osmotic lysis (3 m 
NaCl, distilled water) and peroxyacetic 
acid treatmentTriton X-100 or Trypsin

In vitro seeding of ECs with 
endothelial cells

Seeded ECs did not remain viable. 
Partial loss of fibronectin, laminin and 
elastic fibers

[178]

Human umbilical artery CHAPS and sodium dodecyl sulfate In vitro seeding of ECs 
and in vivo implant in 
nude rats

Preserved ECM, supported endotheliali-
sation and retained function in vivo for 
up to 8 weeks.

[179]

Human common femoral 
arteries

Single freeze-thaw cycle followed by 
incubation in hypotonic tris buffer and 
low concentration SDS

In vitro seeding with 
mouse 3T3 cells or baby 
kidney cells

Retention of burst pressure, compli-
ance, and tensile properties. No cell 
toxicity detected

[180]

Porcine carotid arteries 
and tissue-engineered 
arteries

Comparison between non ionic 
detergent treatment (1% Triton X-100), 
hypo-hypertonic shock treatment and 
ionic detergent treatment (CHAPS)

Seeding of porcine
carotid artery SMCs

CHAPS did not appear to compromise 
the ECM. Vessels were dilated.

[181]

Porcine abdominal aorta Mechanical shaking device None Preliminary mechanical tests [182]

Porcin Tissue-engineered 
vessels

CHAPS and SDS treatment Seeding of recipient en-
dothelial progenitor cells 
(EPC) or endothelial cell 
(EC). Implantation in the 
porcine carotid artery

Resistance to clotting and intimal 
hyperplasia.

[183]

Porcine descending 
aorta

Sonication None Good Decellularization efficiency and 
short treatment time. 

[184]
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well as the coordination of cardiomyocyte con-
traction and relaxation is largely dependent on 
ECM [65]. In myocardial fibrosis, for instance, 
an altered secretion of ECM components by 
myofibroblasts causes a “mis-remodelling” of 
the tissue leading to cardiac muscle stiffness 
and contractile dysfunction [66, 67]. Main com-
ponents of heart ECM [64, 66] include GAGs 
and proteoglycans as important structural mol-
ecules for creating loose and hydrated matri-
ces during key events in development and dis-
ease. Some of them are:

- Hyaluronan (HA), a GAG which is synthesized 
at the plasma membrane and does not become 
linked to a core protein. It promotes cellular 
proliferation and motility in the cardiac jelly of 
developing heart [68].

- Chondroitin sulfate proteoglycans, such as 
versican, which is essential for the formation of 
endocardial cushion mesenchyme by epitheli-
al–mesenchymal transformation (EMT), heart 
chamber specification and valvulogenesis [69, 
70].

- Heparan Sulfate Proteoglycans, such as per-
lecan which is important in the formation of the 
cardiomyocyte basement membrane and in 
maintaining the integrity of the ventricular wall 
[71].

Many different collagens are expressed in the 
heart, both in ventricular myocardium (type I, 
III, V) and heart valves (I, II, IV, XI, and XIII) [64]. 
Collagens provide elasticity and structural 
integrity to cardiac tissue. Fibronectin interacts 
with integrins, proteoglycans and collagens to 
mediate cellular adhesion. Fibronectin null 
embryos do not survive beyond embryonic day 
10 (E10) due to cardiovascular (failure of heart 
tube formation in the most severely affected 
mutants) and vascular defects [72]. The remod-
elling of the ECM, important for the release of 
mediators (growth factors, cytokines, small 
peptides), is mainly carried out by matrix metal-
loproteases (MMPs) [65]. Disease states such 
as hypertension, excessive activation of the 
angiotensin aldosterone system, diabetes and 
hypoxia can lead to an over-activation of MMPs 
and consequent ECM degradation, impaired 
angiogenesis, myocardial hypertrophy and pro-
gression to heart failure [65, 73-76]. Among 
MMPs, MMP9 appears to be the most involved 
in the pathological remodelling of ECM in heart 

failure [65, 77], being associated with increas-
ing endostatin and angiostatin (anti-angiogenic 
activity ) and vascular rarefaction [74, 78].

ECM in heart valves

Mature heart valves are composed of highly 
organized ECM and valve interstitial cells (VICs), 
all surrounded by endothelial cells [79]. Valvular 
ECM is stratified into different layers and is 
responsible for biomechanical properties of the 
valves [79, 80]. The ventricularis, facing the 
ventricle, is enriched in elastin and is responsi-
ble for valve extension and recoil [81]. 
Proteoglycans are interposed between the ven-
tricularis and the fibrosa, and constitute the 
spongiosa. They provide cohesiveness between 
the layers and contribute to tissue viscoelastic-
ity [82]. The fibrosa is close to the outflow sur-
face and is mainly composed of collagens, that 
are responsible for tissue strength and durabil-
ity [80, 83]. Many disease conditions affecting 
heart valves involve degenerative changes of 
ECM. In calcific stenosis, a common disease of 
the elderly, mainly affecting the aortic valve, 
noxious stimuli such as hypertension, high 
serum cholesterol levels and smoking can 
induce differentiation of VICs to an osteoblastic 
phenotype [84]. Such cell types express osteo-
genic and chondrogenic markers and promote 
tissue calcification and degeneration [85]. 
Mitral prolapse consists in the displacement of 
a valvular leaflet of the mitral valve in the left 
atrium during systole. It has potential serious 
complications such as bacterial endocarditis, 
thromboemboli and atrial fibrillation. The patho-
genic process underlying this condition is myxo-
matous degeneration, which is characterized 
histologically by a focal thickening of the spon-
giosa with an increase in proteoglycans content 
[86, 87] together with an abnormal fibrillar 
organization, and an attenuation of the fibrosa 
[88]. Activated VICs secrete catabolic enzymes, 
including MMPs (MMP-1, MMP-13, MMP-2, and 
MMP-9), and are believed to play a major role in 
myxomatous degeneration [89].

ECM in blood vessels

Big blood vessels are constituted by three con-
centric layers, which are, progressing radially 
from the lumen; the intima, the media and the 
adventitia. Each layer is constituted by a struc-
tural ECM meshwork supporting resident cells. 
Vascular ECM not only provides the scaffold for 
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attachment of the resident cells, but is also 
able to absorb and transduce shear and strain 
forces exerted by blood flow [90]. Endothelial 
cells produce and attach to a basal lamina 
(laminin, type IV collagen, entactin and per-
lecan are the main components) and contribute 
to the formation of the internal elastic lamina, 
which is very thin in veins and venules [91]. In 
pathological conditions such as atherosclero-
sis and hypertension, or after mechanical dis-
tension and disruption of the endothelial layer, 
such as after percutaneous coronary interven-
tion; the tunica intima appears as a thick layer 
of sparse smooth muscle cells and myofibro-
blasts in a proteoglycan-rich stroma [92-94].

Tunica media consists of an ensemble of radial-
ly-arranged fenestrated sheets (lamellae) rich 
in elastin, immersed in collagen fibers, thin lay-
ers of proteoglycans, and smooth muscle cells. 
It is important to distinguish between elastin 
itself and the elastic fibers, which contain elas-
tin and microfibrils. Microfibrils act as a scaf-
fold for elastin assembly and elastic fiber over-
all growth [95]. The functional importance of 
the elastic components of the blood vessel 
walls is underlined by the fact that the genetic 
inactivation of its constituents leads to major 
health issues [96]. Elastin haploinsufficiency 
for instance causes supravalvular aortic steno-
sis [97] which can lead to hypertension, cere-
brovascular disease and obstructive cardiomy-
opathy. Vascular lesions show irregular elastic 
fibers, excess of medial smooth muscle cells 
and intimal thickening and fibrosis. Homozygous 
loss of function in FBN1 gene, coding for fibrillin 
1, causes Marfan syndrome with mitral valve 
prolapse and aortic root dilation as main car-
diovascular affections [98, 99]. Other biome-
chanically important constituents of tunica 
media ECM are fibulins, located either in the 
elastin core or its surrounding microfibrils, col-
lagens (I, III, V, VI) and proteoglycans (versican, 
lumican, etc.).

The adventitial layer contains sparse fibro-
blasts surrounded by ECM, mainly composed of 
fibrillar collagens and proteoglycans, as well as 
vasa vasorum, providing nourishment to the 
vessel, and nervi vasorum (unmyelinated nerve 
fibers). Adventitia is the primary source of ten-
sile strength in blood vessels, but also partici-
pates in the regulation of blood vessels tone 
through the activity of nervous fibers. Fibrillar 

collagens, in particular Collagen I and Collagen 
III, are responsible for blood vessels resistance 
to mechanical stress [100]. Autosomal domi-
nant mutations in type III collagen results in 
Ehlers-Danlos syndrome type IV, which is char-
acterized by spontaneous rupture of the bowel, 
uterus and blood vessels [101]. Adventitia 
undergoes remodelling in a number of patho-
logical conditions such as hypertension or ath-
erosclerosis. Adventitia fibroblasts are the 
main players of the remodelling process, which 
can be adaptive (positive) to vasoactive sub-
stances and hemodynamic stimuli, or constric-
tive (negative), leading to lumen reduction and 
stenosis [102, 103]. Since the activation of pro-
liferative and differentiative mechanisms in 
adventitia fibroblasts may shape the vessel 
wall and tone, caution should be used when 
decellularizing vessels, to avoid mis-recellular-
ization in vivo from overactivated progenitors. 
Nevertheless, the integrity of elastic fibers in 
the media has to be maintained after decellu-
larization. Indeed, it has been demonstrated 
that partial degradation of elastic fibers caused 
by NaOH and trypsin treatment of aortic xeno-
grafts significantly increases elastin-oriented 
calcification [104]. Finally, an intact Collagen IV 
(basement membrane) mediates migration and 
adhesion of endothelial cells [105], while the 
carboxy terminal globular domain is less active 
at promoting those events. Thus, decellulariz-
ing protocols, especially enzymatic ones, sh- 
ould take into account that a degraded Collagen 
IV might have repercussions for the in vivo re-
endothelialization of decellularized grafts.

Immune response to ECM

One of the main causes for biological implant 
failure is the immune rejection of the graft 
itself. In case of allogenic implants (transplan-
tation to a recipient from a genetically non-
identical donor of the same species), a cell-
mediated immune response will be activated 
by antigen presenting cells (APCs) presenting 
MHC-alloantigen to T Lymphocytes through 
direct (donor’s APCs are presenting graft anti-
gens) or indirect (recipient’s infiltrating APCs 
process and present foreign graft proteins) 
allorecognition pathways [106]. Beyond the cel-
lular response, involving CD4+ and CD8+ 
T-lymphocytes, NK cells and other phagocytes, 
also B-lymphocytes (humoral or antibody-medi-
ated rejection) and cytokines (IL-12, IFN-γ, IL-6, 
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IL-17, etc.) [107] play an important role in 
allograft rejection. Moreover, if the balance 
between proinflammatory (Th1, Th17 lympho-
cytes, IFN-γ, IL-17, etc) and anti-inflammatory 
(Th2, regulatory T cells, IL-4, IL-10, TGF-β etc.) 
players is not correctly established, a sustained 
chronic rejection of the graft can lead to vascu-
lar endothelium damage, blood supply deficien-
cy, scar formation and ultimately functional 
loss of the implant [108]. On the other hand, 
xenogenic transplantation of organs and tis-
sues ensues hyperacute rejection, which 
entails complement-activation, neutrophil infil-
tration and NK cell activation in response to 
natural xenoreactive antibodies (for instance 
the natural antibodies to Galα1,3Gal). 
Xenorejection has in the microvasculature a 
main target, thus, in addition to intragraft rejec-
tion events, systemic complications, such as 
thrombotic microangiopathy, can follow to the 
rapid graft destruction soon after implantation 
[109, 110]. One of the most relevant antigens 
involved in hyperacute rejection following xeno-
transplantation is the saccharide α-Gal. This 
epitope is found as a cell surface molecule in 
most species, with the notable exception of 
humans and Old World monkeys [111, 112]. 
Although the Gal epitope is considered the 
main obstacle to xenotransplantation, organs 
harvested from pigs that were knocked out for 
this antigen were rejected after a short time 
due to immune response towards non-Gal por-
cine antigens [113, 114]. Furthermore, the 
presence of the Gal epitope has been demon-
strated in biologic scaffolds composed of xeno-
genic ECM, such as porcine bioprosthetic heart 
valves [115], porcine cruciate ligaments [116] 
and porcine cartilage [117].

ECM proteins are among the most conserved 
proteins in evolution [118] but, it would be 
naive to think that the removal of xenogenic or 
allogenic cellular material would abolish graft 
immunogenicity [119, 120]. In fact, ECM pro-
teins have been shown to provide costimulato-
ry signals to immune cells [121], For instance, 
neutrophils exhibit chemotaxis toward frag-
ments of type IV collagen, laminins, and elastin 
[122]; a laminin-derived peptide (SIKVAV), iso-
lated from human abdominal aortic aneurysm 
tissue can recruit neutrophils within 1 day and 
macrophages by 3 days when instilled in mouse 
lungs [123]; instillation of in vitro-generated 
bovine elastin fragments into the lungs of mice 
induce macrophage accumulation, which is 

prevented when BA4 (a monoclonal antibody 
raised against the bovine tropoelastin epitope 
VGVAPG) is given [124]. The fact that ECM frag-
ments can promote immune cell recruitment 
must bring us to rethink, and maybe reinvent, 
the decellularization techniques currently in 
use, especially those involving enzymatic reac-
tions that could easily unmask crypted ECM 
peptides with pro-inflammatory activity.

Thus, the complete removal of cellular material, 
including DNA, RNAs and proteins, is necessary 
but not sufficient: special attention has to be 
given to the “new products” derived from the 
decellularization processing of the tissue. To 
date, very few reports have dealt with the issue 
of the immune response towards biological 
scaffolds composed of ECM. The role of adap-
tive immunity has been investigated most 
extensively for porcine small intestine submu-
cosa ECM [125, 126]: after its implantation in 
mice, it elicits mainly a Th2 type of response, 
which is associated with tissue remodelling 
and graft acceptance [127, 128]. Innate immu-
nity, which naturally provide immediate defense 
against foreign bodies, is obviously primarily 
involved in mediating the host response to bio-
materials, and the monocyte-derived macro-
phages are indeed important “sentinels and 
soldiers” in this context [129]. Macrophages 
are a heterogeneous cell population, displaying 
a variety of phenotypes. In particular, they have 
been classified on the basis of functional prop-
erties in M1 and M2, in analogy with Th1 and 
Th2 cells [130, 131]. M1 are the classically acti-
vated, proinflammatory macrophages, in- 
ducers and effectors of Th1 response [130]. 
While M2 macrophages are involved in Th2 
response which is required for tissue regenera-
tion and remodelling [132]. Badylak et al. have 
used implantation of biologic scaffolds (with 
and without cross-linking) derived from porcine 
small intestinal submucosa (SIS) to character-
ize the role of macrophage phenotype in the 
remodelling of the scaffold [133, 134]. They 
found that the SIS scaffold elicited a CD163+ 
response (M2 profile) and showed constructive 
remodelling at 16 weeks, while the cross-
linked-SIS device showed a predominately 
CD80+ and CCR7+ response (M1 profile), and 
at 16 weeks was characterized by chronic 
inflammation and fibrosis. The conclusion is 
that future strategies aimed at polarizing mac-
rophages from an M1 to an M2 phenotype will 
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be needed for a successful long term outcome 
of decellularized matrix implantation. Recent in 
vitro studies have showed that decellularized 
xeno-ECM, such as decellularized bovine peri-
cardium can favour the polarization of macro-
phages towards an M2 phenotype [135, 136] 
as compared to other materials commonly 
employed for medical devices, such as 
polydimethylsiloxane. Scaffolds composed of 
ECM showed to promote the switch M1-M2 also 
in vivo, after 7-14 days post-implantation [137, 
138], but mechanisms by which ECM based 
scaffold promote the M1 to M2 transition 
remain unknown. All these results are encour-
aging but more comparative (allo- v/s xeno-, 
biologic v/s synthetic, different decell. tech-
niques) in vivo studies will be necessary for a 
better understanding of macrophage polarity 
and context dependent polarization profiles, 
especially in order to design strategies for tun-
ing macrophage plasticity and reach the per-
fect biocompatibility of decellularized ma- 
trices.

In vivo recellularization

Obtaining a functional tissue or organ from an 
implanted decellularized matrix requires in vivo 
cell repopulation of the matrix. Recruitment of 
cells and progenitors from the neighbour tis-
sues and circulation is the first step to get “bio-
integration” of the decellularized matrix. To 
date, we do not have a complete knowledge of 
what cell types, what chemoattracting and sig-
nalling molecules are needed, whether there is 
a precise chronological sequence of events 
and how we can modulate each and single 
event to achieve engraftment. The in vivo 
recruitment of the whole spectrum of parenchy-
mal and stromal cells towards the ECM of com-
plex organs, such as the heart, is not feasible 
yet. On the other hand, the study of recellular-
ization events occurring in simpler structures, 
including heart valves and vascular conduits, 
might be the right start towards comprehen-
sion. Recellularization may be carried out, or 
simply started, in vitro, mainly by the use of bio-
reactors mimicking physiological organ condi-
tions, such as 3D growth and controlled chang-
es of specific environmental factors [139]. One 
of the most successful examples of the clinical 
application of decellularized matrices is the 
tissue-engineered airway by Macchiarini et al 
[140]. Here, the authors decellularized a human 

donor trachea and subsequently cultured the 
graft in a bioreactor with recipient epithelial 
cells and mesenchymal stem-cell-derived chon-
drocytes. The graft was then used to replace 
the left main bronchus of a 30-year old woman 
with end-stage bronchomalacia. There is no 
doubt that the scaffold per se is not able to be 
integrated and functional in vivo. Another study 
from Macchiarini’s group reports that decellu-
larized not pre-seeded tracheas implanted in 
pigs collapse because of obstruction and infec-
tions, while cell-seeded tracheas are function-
al, suggesting a role for epithelial and mesen-
chymal cells in mediating perfusion and 
immune-tolerance of the graft [141]. It is not 
clear whether the implanted cells are directly 
contributing to the in vivo fabrication of the tis-
sue or rather acting as reservoir of molecules 
activating micro- and macro-environment path-
ways of tissue regeneration. Unless the implant-
ed cells are immortal or able to initiate a con-
trolled and regulated program of cell renewal 
and apoptosis, the contribution of endogenous 
progenitor cells cannot be excluded from the 
whole regeneration process. It appears clear 
that tissue engineering and regenerative medi-
cine have to “hold hands” in order to provide 
complementary solutions and treatment 
options. Several techniques, aforementioned in 
this review, have been used to recellularize vas-
cular patches in vitro, before implantation. 
Re-endothelialization, in particular, seems to 
be crucial in order to decrease calcification and 
thrombus formation. Walles et al. showed that 
decellularized carotid artery and aorta undergo 
progressive calcification, while calcification is 
less pronounced in cellular native arteries 
[142]. Kasimir et al. decellularized heart valve 
matrix and reported platelet adhesion (CD41+ 
cells recruitment) and aggregate formation only 
on the surface of the non-seeded or partially 
denuded matrix, whereas after seeding with 
endothelial cells no platelet activation was 
detected [143]. Strategies to enhance in situ 
re-endothelialization have comprised the coat-
ing of decellularized heart valves with fibronec-
tin (FN) [144]. FN is used to increase cell adhe-
sion; cell adhesion is meant to provide not only 
physical support, but also pro survival signals 
to cells [145]. FN in combination with hepato-
cyte growth factor (HGF), can synergize re-
endothelialization by both stabilizing cell-matrix 
adhesion and stimulating EC proliferation [146, 
147]. Heparin, and vascular endothelial growth 
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factor (VEGF) have been used as bioactive 
coating to improve recellularization, as well 
[148], although full consideration should be 
given to VEGF-mediated hyperplasia of neointi-
ma. Other than adhesion and proliferation, 
blood perfusion of the implanted graft has to 
be achieved, not only to provide oxygen and 
nourishment to the graft, but also progenitor 
cells. Endothelial progenitor cells (EPCs), which 
are thought to be originated in the bone mar-
row, can contribute to vascular repair [149]. 

According to some authors, peripheral blood 
endothelial progenitor cells can be derived 
from monocyte/macrophages [150]. Also, 
myeloid angiogenic cells (MACs), although not 
able to become endothelial cells or be directly 
incorporated into a microvascular network as 
EPCs, have been described as an alternative 
population of activated M2 macrophages, able 
to induce vascular repair in vivo in a paracrine 
fashion [151]. Even progenitors derived from 
injured neointima could be exploited as an 

Figure 2. Scheme of different transplantation (TXP) approaches of vessels. Decellularization of the vessel reduces 
the risk of immune rejection. In vitro cell seeding of the decellularized vessel prior to implantation reduces the risk 
of thrombus formation and calcifications and induces progenitor recruitment and regeneration in vivo.
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inner cell source to promote vascular repair. 
Tsai et al. developed a mouse model of reste-
nosis by grafting a decellularized vessel to the 
carotid artery. Cells retrieved in the neointimal 
lesions were endothelial and smooth muscle 
cells, monocytes, and stem/progenitor cells 
expressing c-kit, Sca-1 and CD34 [152]. Ex-vivo 
cultured progenitors displayed the ability to dif-
ferentiate into both endothelial and smooth 
muscle cells. This suggests that the ECM per se 
is able to recruit vessel progenitors which, if 
impeded from turning on restenosis, can be a 
useful source of endothelial and mural cells.

Future perspectives

In future, it will be mandatory to set up decel-
lularization techniques that leave an intact 
ECM and to learn more about ECM biology to 
exploit native and bioengineered ECM mole-
cules that allow a better recruitment of cells in 
vivo. The concept that ECM degradation can 
result in products with chemoattractive proper-
ties [153] needs to be further developed (Figure 
2).

The enhancement of blood perfusion of decel-
lularized grafts through the peripheral anasto-
mosis could be achieved by providing an imme-
diately active angiogenic boost. Many stem 
cells, including the promising amniotic fluid 
stem cells, are endowed with a reservoir of sol-
uble factors that can exert paracrine effects on 
capillary ingrowth [154-156]. The in vitro pre-
seeding of decellularized ECM can trigger a bet-
ter recellularization in vivo. Human embryonic 
stem cells (ESCs) and human induced pluripo-
tent stem cells (iPSCs) can be cultured on 
decellularized matrices and be reprogrammed 
into cells capable of angiogenesis and re-endo-
thelialization as well as into parenchymal cells 
with positive implications for cell colonization 
of big organs, such as the heart [157-159]. 
However, caution must be used when such 
undifferentiated cells are used, since the safe-
ty profile is not completely investigated yet.

Moreover, the networking between different 
fields, including but not limited to stem cells, 
biomaterials, cell and matrix biology, will be the 
key for a successful application of decellular-
ized matrices in the treatment of cardiovascu-
lar disease.
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