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In the present study we examined whether LPA can be synthesized and act during in vitro maturation of bovine cumulus oocyte
complexes (COCs). We found transcription of genes coding for enzymes of LPA synthesis pathway (ATX and PLA2) and of LPA
receptors (LPAR 1–4) in bovine oocytes and cumulus cells, following in vitromaturation. COCs were matured in vitro in presence
or absence of LPA (10−5M) for 24 h. Supplementation of maturation medium with LPA increased mRNA abundance of FST and
GDF9 in oocytes and decreased mRNA abundance of CTSs in cumulus cells. Additionally, oocytes stimulated with LPA had higher
transcription levels of BCL2 and lower transcription levels of BAX resulting in the significantly lower BAX/BCL2 ratio. Blastocyst
rates on day 7were similar in the control and the LPA-stimulated COCs.Our study demonstrates for the first time that bovine COCs
are a potential source and target of LPA action. We postulate that LPA exerts an autocrine and/or paracrine signaling, through
several LPARs, between the oocyte and cumulus cells. LPA supplementation of maturation medium improves COC quality, and
although this was not translated into an enhanced in vitro development until the blastocyst stage, improved oocyte competence
may be relevant for subsequent in vivo survival.

1. Introduction

During the last decade, the functional role of lysophos-
phatidic acid (LPA) in the female reproduction has been
the object of an increasing number of reports [1]. LPA,
the simplest and at the same time one of the most potent
phospholipids, has been regarded as an important signaling
molecule participating in various biological processes, such
as cell proliferation [2], differentiation [3], survival [4, 5],
morphogenesis [6], and cytokine secretion [7].Thismolecule
is produced from membrane phospholipids by two main
pathways/enzymes: autotaxin (ATX) and phospholipase A2

(PLA2) [8, 9]. In mammals, LPA exerts its action via at least
six high affinity, transmembrane G-protein-coupled receptor
(GPCR) types: LPAR1–LPAR6 and possibly through a nuclear
receptor PPAR𝛾 [10–14]. Expression of LPARs is tissue and
cell specific [15]. An association of LPA signaling with regu-
lation of reproductive function first was described in women
[16] and then in farm animals including ruminants [17, 18].
Our previous studies showed that LPA is locally produced
and acts in the bovine uterus [18, 19] and ovary [20, 21]. We
documented that the intravaginal administration of LPARs
antagonist decreases pregnancy rate and that infusion of
LPA prevents spontaneous luteolysis, prolongs the functional
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lifespan of the corpus luteum (CL), and also stimulates
luteotropic prostaglandin (PG)E

2

synthesis in heifers [18, 22].
Additionally, in in vitro studies, we found a stimulatory effect
of LPA on progesterone (P

4

) synthesis and interferon (IFN)𝜏
action in the steroidogenic cells of the bovine CL [20] and
on luteotropic PGE

2

synthesis in bovine endometrial cells
[22]. Our recently published data demonstrates that bovine
granulosa cells of the follicle are also the site of LPA synthesis
and the target for LPA action [21]. In the above mentioned
study [21], LPA exerted an autocrine and paracrine action
in granulosa cells through several LPARs and stimulated
estradiol (E

2

) synthesis via increased FSH receptor (FSHR)
and 17 𝛽 -hydroxysteroid dehydrogenase (17𝛽-HSD) expres-
sion. These results led us to hypothesize that cumulus oocyte
complexes (COCs) may be the source and the target of LPA
action during oocytematuration.Oocytematuration involves
changes in the nucleus [23–25] and cytoplasm [26–29], and
granulosa cells modulate chromatin configuration [30, 31],
transcriptional activity [31], and cytoplasmic maturation [30,
32]. This bidirectional communication between the oocyte
and surrounding cumulus cells is essential for proper oocyte
maturation anddeterminates subsequent oocyte competence.

There are two major premises that initiated our studies
on the effect of LPA supplementation of maturation medium
on the communication between the oocyte and surround-
ing cumulus cells defined as embryonic development and
the expression of genes involved in apoptosis and oocyte
competence in oocytes and cumulus cells. The first premise
documented by Boruszewska et al. [21] is concerned about an
autocrine and paracrine action of LPA in the granulosa cells
of the bovine ovarian follicle.The second premise regards the
continuous, unrestrained development of the methods of in
vitro culture of bovine embryos using variously supplemented
media.

In the present study we examined whether LPA can be
synthesized and act during in vitro maturation of bovine
COCs.We also determined the effect of LPA supplementation
of maturation medium on mRNA abundance of oocyte qual-
ity markers (follistatin-FST, growth and differentiation factor
9-GDF9, bone morphogenetic protein 15-BMP15, cysteine
proteinases-cathepsins: CTSB, CTSK, CTSS, and CTSZ) and
genes involved in apoptosis (BCL2 and BAX, as well as
BAX/BCL2 ratio) in oocytes and cumulus cells. Finally, we
evaluated the effect of LPA supplementation of maturation
medium on cleavage and blastocyst rates on day 2 and day
7 of in vitro culture of bovine embryos, respectively.

2. Materials and Methods

2.1. Chemicals and Suppliers. All chemicals and reagents
for in vitro culture were purchased from Sigma Aldrich
(Germany) unless otherwise stated. Plastic dishes, four-
well plates, and tubes were obtained from Nunc (Thermo
Scientific, Denmark). All chemicals for reverse transcription
were acquired from Invitrogen (Life Technologies, USA).

2.2. Oocyte and Cumulus Cell Collection. All experimental
procedures were approved by the Local Animal Care and

Use Committee in Olsztyn, Poland (Agreement number
34/2012/N). Ovaries were collected from slaughtered cows
and transported to the laboratory in sterile PBS at 37∘C.
COCs were obtained by aspiration from subordinate ovarian
follicles, less than 5mm in diameter. Only COCs consisting of
oocytes with homogeneous ooplasm without dark spots and
surrounded by at least three layers of compact cumulus cells
were selected for the study. COCs were chosen under a stere-
omicroscope and washed two times in wash medium (TCM-
199; #M2154) supplemented with 25 𝜇g/mL amphotericin
b (#A2942), 5USP/mL heparin (#H3393), 25mM HEPES
(#H3784), 5mM sodium bicarbonate (#S4019), 0.2mM
sodium pyruvate (#P3662), and 1% fetal bovine serum (FBS;
#12106C) and subsequently washed in maturation medium.

2.3. Oocyte Maturation. 26 groups of 25 immature COCs
were cultured in four-well plates (#144444) containing
400 𝜇L of maturation medium (TCM-199 supplemented
with 0.4mM L-glutamine (#G5763), 0.05mg/mL gentam-
icin (#G1272), 1𝜇L/mL insulin-transferrin-sodium selenite,
(ITS, #I3146), 10UI/mL pregnant mare’s serum gonadotropin
(PMSG), and 5UI/mL chorionic gonadotropin human (hCG;
PG600, Intervet International, Boxmeer, The Netherlands)
and 15% v/v FBS) under 400𝜇L of mineral oil (#M5310),
as recently described by Torres et al. [33]. Two experi-
mental groups were randomly generated for analyses from
COCs: exposed to LPA agonist (LPA; 1-oleoyl-sn-glycerol
3-phosphate sodium salt; 10−5M; #L7260) or PBS (control
group) during in vitro maturation. The dose of LPA was
taken from earlier reports on humans and rodents [34–36].
Subsequently COCs were matured in vitro for 24 h at 39∘C
under 5% CO

2

in humidified air. After in vitro maturation,
COCs were processed for total RNA extraction (for mRNA
expression analysis) or in vitro fertilized and cultured (for
cleavage and blastocyst rates analysis).

2.4. Sample Collection for RNA Isolation and Reverse Tran-
scription. After 24 h of in vitro maturation, for total RNA
extraction (for mRNA expression analysis), the oocytes from
5 pools of each experimental group (control or LPA treated)
were separated from cumulus cells by vortexing. Each pool
consisted of 25 denuded oocytes and all cumulus cells sepa-
rated from the respective oocytes. The oocytes and cumulus
cells were suspended in the Extraction Buffer and processed
for RNA isolation according to manufacturer’s instructions
(#KIT0204, Arcturus PicoPure RNA Isolation Kit, Applied
Biosystems, Life Technologies, USA). DNase treatment was
performed for the removal of genomic DNA contamination
using RNase-free DNase Set (#79254, Qiagen, Germany).
Samples were stored at −80∘C until reverse transcription.
The reverse transcription (RT) was performed using oligo
(dT)12–18 primers (#18418-012) by Super Script III reverse
transcriptase (#18080-044) in a total volumeof 20𝜇L to prime
the RT reaction and produce cDNA. The RT reaction was
carried out at 65∘C for 5min and 42∘C for 60min followed by
a denaturation step at 70∘C for 15min. RNase H (#18021-071)
was used to degrade the RNA strand of an RNA-DNA hybrid
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(37∘C for 20min). RT products were diluted four times and
were stored at −20∘C until real-time PCR amplification.

2.5. Quantitative Real-Time PCR. The quantification of
mRNA for the examined genes was conducted by real-
time PCR using specific primers for LPAR1, LPAR2, LPAR3,
LPAR4, ATX, PLA2, FST, GDF9, BMP15, CTSB, CTSK, CTSS,
CTSZ, BCL2, and BAX.The results of mRNA expression were
normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, an internal control) mRNA expression and were
expressed as arbitrary units.The primers were designed using
an online software package (http://bioinfo.ut.ee/primer3/).
Primer sequences and the sizes of the amplified fragments
of all transcripts are shown in Table 1. Real-time PCR was
performed with an ABI Prism 7900 (Applied Biosystems,
Life Technologies, USA) sequence detection system using
Maxima SYBR Green/ROX qPCR Master Mix (#K0222,
Fermentas, Thermo Scientific, USA). The PCR reactions
were performed in 96-well plates. Each PCR reaction well
(20𝜇L) contained 2 𝜇L of RT product, 5 pmol/𝜇L forward
and reverse primers each, and 10 𝜇L SYBRGreen PCRmaster
mix. In each reaction we used a quantity of cDNA equiv-
alent to 0.25 oocyte or cumulus cells. Real-time PCR was
performed under the following conditions: 95∘C for 10min,
followed by 40 cycles of 94∘C for 15 sec and 60∘C for 60 sec.
Subsequently in each PCR reaction melting curves were
obtained to ensure single product amplification. In order to
exclude the possibility of genomic DNA contamination in
the RNA samples, the reactions were also performed either
with blank-only buffer samples or in absence of the reverse
transcriptase enzyme. The specificity of the PCR products
for all examined genes was confirmed by gel electrophoresis
and by sequencing. The efficiency range for the target and
the internal control amplifications balance was between 95
and 100%. For the relative quantification of the mRNA
expression levels real-time PCR Miner algorithm was used
(http://www.miner.ewindup.info/version2).

2.6. In Vitro Fertilization and Embryo Culture. Procedures
of in vitro fertilization and embryo culture were performed
according to Torres et al. [33]. Briefly, for in vitro fertil-
ization (for developmental capacity analysis), 16 pools of
25 COCs were washed in fertilization medium (modified
Tyrode’s medium (TALP) supplemented with 5.4USP/mL
heparin, 10mM penicillamine (#P4875), 20mM hypotaurine
(#H1384), 0.25mM epinephrine (#E1635), and 0.1mg/mL
gentamicin solution. For in vitro insemination, frozen-
thawed semen was used. After thawing, semen was lay-
ered below capacitation medium (TALP medium supple-
mented with 72.72mM pyruvic acid sodium pyruvate and
0.05mg/mL gentamicin) and incubated for 1 h at 39∘C
in a 5% CO

2

in humidified air atmosphere to allow the
recovery of motile sperm through the swim-up procedure.
After incubation, the upper two-thirds of the capacitation
medium were recovered, centrifuged at 200×g for 10min,
the supernatant removed, and the sperm pellet diluted in an
appropriate volume of fertilization medium to give a final
concentration of 106 sperm/mL. Groups of 25 COCs were

coincubated with spermatozoa in four-well dishes containing
400 𝜇L of fertilization medium under 400 𝜇L of mineral oil
for 48 h at 39∘C in a 5% CO

2

humidified air atmosphere.
The day of in vitro insemination was considered day 0. At
48 h postinsemination (hpi) embryos were separated from
cumulus cells by vortexing and washed three times in wash
medium. The cleavage rates were assessed and embryos
with four or more cells were placed in four-well dishes
containing 400 𝜇L culture medium (SOF; synthetic oviductal
fluid medium described by Holm et al. [37] supplemented
with amino acids: 30𝜇L/mL BME (#B6766) and 10 𝜇L/mL
MEM (#M7145), 0.34mM trisodium-citrate (#6448.1000,
MerckMillipore, Germany), 2.77mMmyo-inositol (#I7508),
1 𝜇L/mL gentamicin, 1 𝜇L/mL ITS, and 5% v/v FCS) overlaid
with 400 𝜇L mineral oil. Culture was carried out at 39∘C in
a 5% CO

2

in air with high humidity. Blastocyst numbers
were determined on day 7 postinsemination. The rates of
development to the blastocyst stage were calculated based on
the total number of matured oocytes.

2.7. Statistical Analysis. All data concerning expression pat-
terns of target genes are presented as mean ± SEM. One-way
ANOVA followed by Newman-Keuls’ multiple comparison
test was used to determine differences in mRNA expression
of LPARs in oocytes and cumulus cells (GraphPad PRISM
6.0). Differences in transcription levels of the remaining
genes were analyzed by Student’s 𝑡-test for independent pairs.
Cleavage and blastocyst rates were analyzed by Fisher’s exact
test. Differenceswere considered statistically significant at the
95% confidence level (𝑃 < 0.05).

3. Results

3.1.The Expression Patterns of LPARs (LPAR1, LPAR2, LPAR3,
and LPAR4) and Enzymes Involved in LPA Synthesis (ATX and
PLA2) inOocytes andCumulus Cells after InVitroMaturation.
After in vitro maturation of COCs, oocytes and cumulus
cells transcribe genes coding for enzymes involved in LPA
synthesis (ATX and PLA2) as well as LPARs (Figures 1 and 2).
We found significantly higher mRNA expression of LPAR2
than other three LPARs in bovine oocytes (Figure 1(a); 𝑃 <
0.05). The expression of all examined LPARs in the cumulus
cells did not significantly differ (Figure 2(a); 𝑃 > 0.05). In the
bovine oocytes the expression of ATX was higher than that
of PLA2 (Figure 1(b); 𝑃 < 0.05), whereas in cumulus cells the
opposite was observed (Figure 2(b); 𝑃 < 0.05).

3.2. Effect of LPA on mRNA Abundance of Oocyte Quality
Markers and Genes Involved in Apoptosis in Oocytes and
Cumulus Cells after In Vitro Maturation. We found higher
mRNA abundance of FST and GDF9 in the oocytes from
the LPA-stimulated group compared to oocytes from the
control group (Figures 3(a) and 3(b); 𝑃 < 0.05). The
supplementation of thematurationmediumwith LPAdid not
significantly influence BMP15 mRNA level in the examined
oocytes (Figure 3(c); 𝑃 > 0.05). In the cumulus cells there
was lower mRNA abundance of all examined CTSs from the
LPA-stimulated group compared to cumulus cells from the

http://bioinfo.ut.ee/primer3/
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Table 1: Primers used for real-time PCR.

Gene Primer sequence (5󸀠-3󸀠) Fragment size, bp GenBank accession number

LPAR1 ACGGAATCGGGATACCATGA 86 NM 174047.2
CCAGTCCAGGAGTCCAGCAG

LPAR2 TTCTATGTGAGGCGGCGAGT 161 NM 001192235.1
AGACCATCCAGGAGCAGCAC

LPAR3 TCCAACCTCATGGCCTTCTT 101 NM 001192741.2
GACCCACTCGTATGCGGAGA

LPAR4 CCACAGTACCTCCAGAAAGTTCA 192 NM 001098105.1
TTGGAATTGGAAGTCAATGAATC

ATX ACCCCCTGATTGTCGATGTG 120 NM 001080293.1
TCTCCGCATCTGTCCTTGGT

PLA2 CTGCGTGCCACAAAAGTGAC 92 NM 001075864.1
TCGGGGGTTGAAGAGATGAA

FST GCAGCTCTACATGCGTGGTG 133 NM 175801.2
TGACAGGCACTGGGGTAGGT

GDF9 TCGGACATCGGTATGGCTCT 86 NM 174681.2
GGATGGTCTTGGCACTGAGG

BMP15 GCAGAGGAAGCCTCGGATCT 104 NM 001031752.1
CAATGGTGCGGTTTTCCCTA

CTSB GGCTCACCCTCTCCAGTCCT 136 NM 174031.2
TCACAACCGCCTTGTCTGAA

CTSK GAACCACTTGGGGGACATGA 77 NM 001034435.1
GGGAACGAGAAGCGGGTACT

CTSS CCGCCGTCAGCATTCTTAGT 99 NM 001033615.1
CATGTGCCATTGCAGAGGAG

CTSZ GGGGAGGGAGAAGATGATGG 146 NM 001077835.1
CCACGGAGACGATGTGGTTT

BCL2 GAGTTCGGAGGGGTCATGTG 203 NM 001166486.1
GCCTTCAGAGACAGCCAGGA

BAX GTGCCCGAGTTGATCAGGAC 126 NM 173894.1
CCATGTGGGTGTCCCAAAGT

GAPDH CACCCTCAAGATTGTCAGCA 103 NM 001034034.2
GGTCATAAGTCCCTCCACGA
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Figure 1: mRNA expression of (a) LPA receptors (LPAR1–4) and (b) autotaxin (ATX) and phospholipase A2 (PLA2) in oocytes. The values
are expressed as mean ± SEM. Different letters indicate significant differences (𝑃 < 0.05), as determined by one-way ANOVA and Student’s
𝑡-test, respectively.
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Figure 2: mRNA expression of (a) LPA receptors (LPAR1–4) and (b) autotaxin (ATX) and phospholipase A2 (PLA2) in cumulus cells. The
values are expressed as mean ± SEM. Different letters indicate significant differences (𝑃 < 0.05), as determined by one-way ANOVA and
Student’s 𝑡-test, respectively.
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Figure 3: The effect of LPA (10−5M) supplementation of maturation medium on mRNA abundance of FST (a), GDF9 (b), and BMP15 (c)
in oocytes. The values are expressed as mean ± SEM. Different letters indicate significant differences (𝑃 < 0.05), as determined by Student’s
𝑡-test.
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Figure 4: The effect of LPA (10−5M) supplementation of maturation medium on mRNA abundance of CTSB (a), CTSK (b), CTSS (c), and
CTSZ (d) in cumulus cells.The values are expressed asmean± SEM.Different letters indicate significant differences (𝑃 < 0.05), as determined
by Student’s 𝑡-test.

control group (Figure 4; 𝑃 < 0.05). We demonstrated higher
BCL2 and lower BAX mRNA level in the oocytes from the
LPA-stimulated group compared to oocytes from the control
group (Figures 5(a) and 5(b); 𝑃 < 0.05). The BAX/BCL2
ratio was significantly lower in the oocytes matured in the
presence of LPA compared to the oocytes from the control
group (Figure 5(c); 𝑃 < 0.05). The supplementation of the
maturation medium with LPA did not significantly influence
mRNA level of BCL2 and BAX or BAX/BCL2 ratio in the
examined cumulus cells (Figure 6; 𝑃 > 0.05).

3.3. Effect of LPA Supplementation of Maturation Medium on
Embryonic Development. As shown in Table 2, we did not
find any significant differences in the cleavage rates on day
2 between the control group and the LPA-stimulated group
(61.7% versus 56.8%, resp.; 𝑃 > 0.05). The blastocyst rates
on day 7 were similar in the control group and the LPA-
stimulated group (24.5% versus 28.4%, resp.; 𝑃 > 0.05).

4. Discussion

This study is the first to demonstrate mRNA expression of
four types of LPARs and two main enzymes involved in LPA

synthesis (ATX and PLA2) in bovine oocytes and cumulus
cells. This indicates that bovine COCs are a potential source
and target of LPA action and that LPA may be involved
in cellular signaling between the oocyte and cumulus cells
during maturation. Up to now, the presence of LPAR1 and
LPAR2 was proposed only in the murine cumulus cells [35].
In mice it was also demonstrated that during blastocyst
differentiation in vitro, embryos expressed LPAR1 mRNA
constitutively, LPAR2 only in the late stage blastocysts,
and there was no expression of LPAR3 [38]. However, van
Meeteren et al. [39] demonstrated mRNA expression of four
LPA receptors duringmurine embryonic development in vivo
from E6.5 to E10.5 with significantly higher expression of
LPAR1 than that of LPAR2–4. In ruminants, Liszewska et al.
[17] showed that LPAR1, LPAR2, and LPAR3 transcripts were
expressed in ovine conceptuses during early pregnancy and
postulated the main role of LPAR1 and LPAR3 at the time of
implantation. In cows, we documented the presence of LPAR1
in the endometrium and four isoforms of LPARs in the CL
with the dominant function of LPAR2 and LPAR4 [19, 20].
Moreover, in bovine granulosa cells four types of LPARswere
expressed with the highest transcript abundance of LPAR1
[21].
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Figure 5: The effect of LPA (10−5M) supplementation of maturation medium on mRNA abundance of BCL2 (a), BAX (b), and BAX/BCL2
ratio (c) in oocytes. The values are expressed as mean ± SEM. Different letters indicate significant differences (𝑃 < 0.05), as determined by
Student’s 𝑡-test.

The transcript level of ATX mRNA was only identified
during early embryo development in mouse and it was
shown that the offspring of ATX-knockout mice died during
embryonic development [39]. In sheep, Liszewska et al. [17]
detected expression of ATX in embryonic trophectoderm
from day 12 to day 16 of pregnancy. In our previous study, we
demonstrated the presence of ATX and PLA2 in stromal and
epithelial cells of the bovine endometrium as well as mRNA
expression of ATX and PLA2 in granulosa cells [21, 40].

Considering that there is the possibility of LPA synthesis
and action during in vitro maturation of COCs, in the
second part of our study we examined the effect of LPA
supplementation of maturation medium on mRNA abun-
dance of the oocyte quality markers in oocytes and cumulus
cells obtained after in vitro maturation. Supplementation
of maturation medium with LPA increased oocyte GDF9
and FST transcripts, whereas BMP15 mRNA abundance
was not affected. Morphological quality of oocytes can be
depicted from the number and compactness of the neigh-
boring cumulus cell layers [41]. Oocytes are responsible for
cumulus cell expansion [42, 43], regulate steroid production
[43–45], and maintain cumulus cell phenotype [45]. This

is accomplished through the paracrine secretion of factors,
which include TGF-𝛽 superfamily members, notably GDF9
and BMP15, also known as GDF-9B [46–48]. In cow, BMP15
and GDF9 transcription occur in oocyte during processes of
in vitro maturation and fertilization and in preimplantation
embryos until the five- to eight-cell or morula stage as well
as in high quality oocytes [49–51]. Therefore, BMP15 and
GDF9 are considered valid oocyte quality marker genes [50–
52]. Moreover, Gendelman et al. [50] found that mRNA
expression of GDF9 was higher in early- versus late-cleaved
embryos. Gendelman and Roth [51] documented higher
GDF9 transcript level in matured oocytes collected in the
cold season than in those from the hot season and postulated
that seasonally induced alterations in GDF9 expression were
involved in the reduced developmental competence noted
for oocytes collected in the hot season. In fact, addition of
BMP15 and GDF9 to maturation medium enhanced oocyte
developmental competence in the cow [52]. Oocyte mRNA
abundance of FST was associated with time of the first
cleavage that accounted for high developmental competence
of the oocyte [53]. Moreover, Lee et al. [54] showed higher
level of FST protein in early versus late cleaving two-cell
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Figure 6: The effect of LPA (10−5M) supplementation of maturation medium on mRNA abundance of BCL2 (a), BAX (b), and BAX/BCL2
ratio (c) in cumulus cells. The values are expressed as mean ± SEM. Different letters indicate significant differences (𝑃 < 0.05), as determined
by Student’s 𝑡-test.

Table 2: The effect of LPA supplementation of in vitromaturation medium on cleavage and blastocyst rates on day 2 and day 7, respectively.

Supplement Matured oocytes, 𝑛 Cleaved embryos, 𝑛 Cleavage rate, % Blastocyst on day 7, 𝑛 Blastocyst rate, %
Control (PBS) 188 116 61,7 46 24,5
LPA (10−5M) 190 108 56,8 54 28,4
Proportion of cleaved embryos and of blastocysts relative to the total number of matured oocytes.

embryos and the stimulatory effects of FST on time to first
cleavage, blastocyst rate, and cell allocation within the blas-
tocyst. Here, increased transcription levels of GDF9 and FST
following LPA supplementation during in vitro maturation
may indicate that LPA increased oocyte competence.

The role of cumulus cells during in vitro maturation
is vital for oocyte maturation and subsequent fertilization
and embryo development [55, 56]. Cumulus cells play a
pivotal role in the provision of nutrients to the oocyte
[57, 58] as well as stimulate oocyte glutathione synthesis
[59]. Therefore, gene expression in cumulus cells may also
reflect oocyte quality and competence. Bettegowda et al. [60]
demonstrated negative correlation between CTSs transcript
abundance in cumulus cells and oocyte quality as well as their
developmental competence. Here, LPA supplementation of
maturation medium decreased cumulus cell transcript levels

of CTSB, CTSK, CTSS, and CTSZ. Again, this may indicate
that LPA increased oocyte competence.

LPA supplementation of maturation medium had no
effect on transcription levels of proapoptotic (BAX) and
antiapoptotic (BCL2) genes in cumulus cells but decreased
oocyte BAX mRNA abundance and increased oocyte BCL2
transcript levels. Moreover, the BAX/BCL2 ratio was lower
in the oocytes matured in the presence of LPA compared to
the oocytes from the control group. Apoptosis in cumulus
cells may be also a good marker of oocyte developmental
competence [61] due to the bidirectional communication
between oocytes and cumulus cells [62]. Cumulus cells
regulate nuclear and cytoplasmic maturation of oocytes and
prevent apoptosis induced by oxidative stress during in
vitromaturation [63, 64]. However, the relationship between
the occurrence of apoptosis in cumulus cells and oocyte
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developmental competence is controversial [65–69]. In fact,
some studies report that oocytes with early signs of atresia are
developmentally more competent [70, 71]. Oocytes with the
highest transcriptional level of BAX and the lowest mRNA
level of BCL2 exhibited the highest nuclear maturation,
cleavage, and blastocyst rate [71]. In contrast, in other studies,
good quality oocytes showed the highest transcription levels
of BCL2 and the lowest mRNA abundance of BAX [72]. The
ratio of BCL2 to BAX may be an indicator of the tendency
of oocytes and embryos towards either survival or apoptosis
[72]. According to Yuan et al. [73] COCs with no signs of
atresia yield higher blastocyst rates. The authors found that
the degree of apoptosis in the cumulus cells is negatively
correlated to the developmental competence of oocyte [73].
On the other hand, another group of authors demonstrated
that the level of apoptosis in cumulus cells does not correlate
either with COC morphology or oocyte meiotic stage [74].
Here, LPA decreased BAX/BCL2 ratio, indicating that an
antiapoptotic balance was induced in the oocyte, which may
be relevant for oocyte competence. Hussein et al. [75] showed
that, at the beginning, the apoptotic signal appears in the
cumulus cells and then in the oocyte. Similarly, we have
detected an antiapoptotic effect of LPA in cultured luteal
cells: LPA inhibited the stimulatory effects of tumor necrosis
factor alpha (TNF𝛼) and interferon gamma (IFN𝛾) on the
expression of BAXmRNA and protein in steroidogenic luteal
cells [76].

Although, LPA supplementation of maturation medium
promoted transcription of quality marker genes in oocytes,
decreased transcription of CTSs in cumulus cells, and
induced and antiapoptotic balance in oocytes, this was not
translated into a higher number of cleaved embryos and
subsequent blastocyst development. Ye et al. [77] examined
the influence of LPA on the embryo implantation in LPA3
receptor null mice. According to these authors, examined
mice exhibited delayed implantation, reduced number of
implantation sites, delayed embryonic development, and
increased embryonic mortality [77]. However, we did not
examine the effect of LPA on the implantation of bovine
embryos. Moreover, we cannot exclude that LPA supplemen-
tation of maturation medium can impact the maturation
process itself and/or early pronuclear stages of embryo devel-
opment. In rodents, LPA promoted nuclear and cytoplasmic
oocyte maturation via cumulus cells and through the closure
or loosening of gap junctions between cumulus cells and the
oocyte [35, 36], as well as stimulated blastocyst development
[38, 78, 79]. Differences in early embryonic development
between the mouse and bovine models may account for the
discrepancy in the rate of blastocyst development observed in
our study and in the studies with rodents. Further studies are
needed to evaluate the role of LPA stimulation during in vitro
maturation and embryo culture in in vivo survival of bovine
embryos.

In conclusion, our study demonstrates for the first time
that bovine COCs (both oocytes and cumulus cells) are
a potential source and target of LPA action. We postulate
that LPA exerts an autocrine and/or paracrine signaling,
through several LPARs, between the oocyte and cumulus
cells. LPA supplementation of maturation medium increases

oocyte transcripts of quality marker genes (FST and GDF9),
promotes an antiapoptotic balance in transcription of genes
involved in apoptosis (BCL2 and BAX), and decreases cumu-
lus cells transcripts associatedwith lowviability (CTSs).These
effects, although not affecting in vitro development until the
blastocyst stage, may be of relevance for subsequent in vivo
developmental competence.
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