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ABSTRACT: The stability of colloidal dispersions is of crucial
importance because the properties of dispersions are strongly
affected by the degree of coagulation. Whereas the coagulation
kinetics for quiescent (i.e., nonstirred) and diluted systems is well-
established, the behavior of concentrated dispersions subjected to
shear is still not fully understood. We employ the discrete element
method (DEM) for the simulation of coagulation of concentrated
colloidal dispersions. Normal forces between interacting particles
are described by a combination of the Derjaguin, Landau, Verwey,
and Overbeek (DLVO) and Johnson, Kendall, and Roberts (JKR) theories. We show that, in accordance with the expectations,
the coagulation behavior depends strongly on the particle volume fraction, the surface potential, and the shear rate. Moreover, we
demonstrate that the doublet formation rate is insufficient for the description of the coagulation kinetics and that the detailed
DEM model is able to explain the autocatalytic nature of the coagulation of stabilized dispersions subjected to shear. With no
adjustable parameters we are able to provide semiquantitative predictions of the coagulation behavior in the high-shear regions
for a broad range of particle volume fractions. The results obtained using the DEM model can provide valuable guidelines for the
operation of industrial dispersion processes.

■ INTRODUCTION

The production of many polymers often involves stages in
which the monomer, the polymer, or the intermediate product
is dispersed into small particles. This is the case of all polymers
produced by suspension or emulsion polymerization. These
techniques are undoubtedly advantageous because they provide
much easier control of the polymerization and also process
safety in terms of a thermal runaway. However, the fact that the
system is in the form of a dispersion brings along some
difficulties. These are mainly related to the colloidal stability
and thus the process of coagulation and fouling (which
depending on the situation can be desired or not).
Colloidal systems contain usually two immiscible substances,

one forming the continuous phase and the other the dispersed
phase. These systems are usually thermodynamically unstable,
but so-called kinetic stability can be achieved by several means,
such as the electrostatic repulsion due to the charge on the
surface of colloidal particles, which creates an electrostatic
barrier preventing the particles from coagulating. Although this
method sufficiently stabilizes colloidal systems under quiescent
conditions (i.e., with no stirring), for systems subjected to shear
one has to carefully check whether the energy barrier between
particles is sufficiently high to prevent coagulation. The
problem of colloidal stability under high-shear conditions is
even more complex because collisions of particles are strongly
affected by the flow pattern, which might vary significantly
throughout the process, especially for turbulent flows.
The behavior of the colloidal mixture is influenced by forces

acting on each single particle. These may arise from the
interaction of the particle with the surrounding fluid,
interactions among particles, or particle-wall interactions. For

the latter two types of interactions, there are several models
describing the forces and torques. The normal particle-particle
interactions represent the basis of the description and can
generally be divided into two parts: (i) noncontact forces and
(ii) contact forces and torques.
The most widely used approach for the description of

noncontact forces of small spheres in electrolytes is the
Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory.1 It
combines the attractive van der Waals and repulsive electro-
static forces. On the other hand, the contact of adhesive elastic
spheres is commonly described by the Johnson, Kendall, and
Roberts (JKR) theory proposed by Johnson et al. in 1971.2

The problem of the description of the normal interaction
between two particles arises when one wants to satisfactorily
describe the interaction force for the entire range of separation
distances. In 1998, Hong3 presented a way to overcome this
issue by taking the maximum adhesion force from the JKR
theory as a limiting value for the DLVO theory, which would
otherwise provide infinitely high adhesion force for very small
separation distances. We adopted this idea and further
developed it to obtain the continuous force−distance profile
for the whole range of separation distances.
Mathematical modeling is a way of getting better insight into

the dynamics of dispersion systems. Because of the discrete
nature of colloids, it is convenient to use the discrete element
method (DEM), which is employed also in this work. The main
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advantage of the DEM lies in the direct incorporation of the
interparticle forces and torques into the model.
In 2007, Marshall used DEM models to simulate aerosol

particles in a channel flow.4 He concluded that for this
nonstabilized system, the channel fouling is strongly dependent
on the adhesion forces coming from both particle-particle and
particle-wall interactions. This means that the channel with
more adhesive particles is more likely to end up with large
agglomerates in the flow as well as clusters attached to the wall.
Shear-induced aggregation of charge-stabilized colloids can

be described as an activated process.5 The activation energy is
given by the balance between the height of the potential barrier
(Umax) and the energy of the particles obtained from the flow.
The ratio of the energy of the particles from shear to the
thermal energy is described by the Pećlet number (Pe =
3πRp

3ηG/(kBT), where Rp, η, G, kB, and T are the particle
radius, fluid dynamic viscosity, shear rate, Boltzmann constant,
and absolute temperature, respectively). For the system with an
energy barrier between the particles, the critical Peclet number
can be expressed as5,6

α
=Pe

U
k T2c
max

B (1)

where α is the flow-specific coefficient. The quantity Pec can be
viewed as the energy of the advective motion necessary to
overcome the energy barrier between the particles. For values
of Pe below the critical value Pec, the system should be stable,
while for supercritical values aggregation occurs. It is therefore
the interplay between the stabilization and the shearing that
defines the behavior of the system.
The above-mentioned approach has one limitation. It is not

able to capture the effect of larger numbers of particles
contributing to the energy of the collision. In other words, for
more crowded systems, the critical Pećlet number should
depend on the volume fraction of particles (ϕ). This
phenomenon was investigated by Zaccone et al.7 in 2010,
who used the generalized Kramer’s rate theory. This statistical
approach is able to describe the dependence of the character-
istic coagulation time (tc) on the volume fraction of the
particles. This dependence is added to the model by means of
the suspension viscosity (ηs), which is a function of ϕ, and this
is known as the effective medium approach.
The rate constant of doublet formation (k1,1) in the turbulent

regime was measured experimentally by Sugimoto et al.8 in
2014. Compared with our simulations they reported higher
values of the doublet formation rate, but the conditions of the
measurements were very different.
In 2013, Soos et al.9 investigated the scaling of the maximum

stable aggregate size (Rg) with the maximum shear rate (Gmax).
From the results of breakage experiments in a stirred tank and
contracting nozzle the value of Rg was determined, while the
values of Gmax for the respective geometries were obtained
using computational fluid dynamics simulations. Soos et al.
reported that Rg follows the same scaling with the maximum
shear rate independent of whether the flow pattern is laminar
(contracting nozzle) or turbulent (stirred tank). Another
important result of this work is the finding that the maximum
value of the hydrodynamic stress (related to Gmax) is
responsible for the breakage of the aggregates (i.e., not the
usually used average value).
In this paper, we propose a new approach for the modeling

of colloidal stability. Using the DEM we can incorporate all of

the necessary forces and torques. Furthermore, because of the
dynamic nature of the model we do not have to restrict
ourselves to the statistical description. Our model directly
accounts for several phenomena, such as the crowding or
stabilization of the particles, without simplifications that are
often used.5,7,10 Having particles immersed in water phase, we
investigate a different case than Marshall4 in this paper. The
electrostatic double layer (EDL) is formed on the surface of the
particles as a result of their charge, and this imposes an energy
barrier. Also, the shear forces are more pronounced because of
the higher dynamic viscosity of water compared with air.
Moreover, particles in emulsion polymerization are soft because
of their swelling by (co)monomers. Therefore, we utilize the
description of the interparticle forces to account for all of these
phenomena. The disadvantage of our approach lies in the
necessity of computing with a small integration step, which
imposes high demand for computational power. The computa-
tional feasibility can be improved by optimization of the
algorithms and proper design of the simulations.
The main result presented in this paper is the demonstration

of the strong dependence of the coagulation kinetics on the
particle volume fraction, the surface potential, and the shear
rate. We also show that the doublet formation rate is an
important but not sufficient measure of the coagulation rate,
since at some point larger aggregates are formed and the
process becomes autocatalytic. All of these results are obtained
with no fitting parameters (i.e., material properties and physical
constants are the only inputs into the model).

■ STRUCTURE OF THE MATHEMATICAL MODEL
The DEM is applicable for the description of either naturally
discrete particles or continuous materials discretized into
discrete elements. Once defined, the discrete elements (labeled
i) are characterized by their masses (mi), positions (xi),
velocities (vi), and rotation rates (Ωi). In this work, for the sake
of simplicity, the elements are assumed to be spherical with
density ρp and radius Rp, which are the same for all of the
discrete elements. The particle trajectories are governed by the
well-known Newton’s equation of motion:

=
t m
x Fd

d
i i

i

2

2
(2)

where Fi represents the sum of all forces acting on the discrete
element i. The balance of angular momentum (Li) for each
particle can be expressed in the following form:

Ω
=

t I
Md

d
i i

i (3)

where Ωi = Li/Ii is the rotation rate of particle i, Mi is the sum
of all of the torques acting on particle i, and Ii is the particle
momentum of inertia. For a homogeneous solid sphere, we
have Ii = (2/5)miRp

2 (particle moment of inertia around its
center) and mi = 4/3πRp

3ρp.
Since we perform simulations in two spatial dimensions, it is

sufficient to introduce the rotation rate Ωi of particle i only for
rotation in the plane where the particle motion occurs. The
resulting direction of Ωi is then perpendicular to this plane.
Forces and torques acting on the particle i can originate from

(i) the interaction of the particle with the surrounding fluid
(superscript F), (ii) the particle-particle interactions (super-
script p-p), or (iii) the particle-wall interactions (superscript p-
w). These contributions are assumed to be additive, and the
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resulting force (Fi) and torque (Mi) can be expressed as
follows:

= + +

= +

− −

−

F F F F

M M M .

i i i i

i i i

F p p p w

F p p
(4)

The moment of the particle-wall interactions is not taken into
account since a strong noncontact force is employed, thus
avoiding the solid-body contact of the particles (cf. Interactions
between the Particle and the Wall below).
This defines (when initial conditions are supplied) a set of

second-order ordinary differential equations that can be
numerically integrated in time to obtain the dynamic behavior
of the system. We used the solver LSODE from ODEPACK11

to solve the set of differential equations. This solver uses the
multistep Adams method with an adaptable time step. The
“external” particle trajectory sampling time step used for the
recording of simulations was Δt = 4 × 10−10 s. However, the
real time step of the integration method was usually smaller,
especially when the problem became stiff (during the solid-
body contact of the particles).
Structure of the Computational Domain. The spatially

two-dimensional (2D) computational domain was chosen to be
rectangular with dimensions L × L/2, and for most of the
computations we used L = 12.5 μm. The velocity profile in the
domain was assumed to be linear. In our setup, the lower plate
stayed still and the upper plate moved with velocity V.
Therefore the resulting shear rate profile was constant in the
system, corresponding to the model of simple shear (the
scheme of the computational domain is shown in Figure S1 in
the Supporting Information). The position of zero velocity was
at y = −L/2 + Rp, because the force acting on the particle was
computed from the position of the particle center, and thus, a
particle attached to the wall was not moved in the translational
way by the flow but was still exposed to the torque caused by
the flow. Particles were initially randomly placed into the
domain in a way that avoided solid-body contact. The initial
velocities and rotation rates of the particles were set to
correspond to the fluid velocity and rotation at the location of
the particle.

■ FORCES AND TORQUES IN COLLOIDS

Colloidal systems are affected by a wide range of force and
torque interactions. In the following text, we introduce only
those relevant for our specific system. At first we describe the
interaction of the particles with the surrounding fluid and then
we introduce the equations for the particle-particle and particle-
wall interactions.
Interactions of the Particles with the Flow. Particles

immersed in the flowing fluid experience a drag force and are
also rotated by the fluid. For the colloidal particles investigated
in the current paper, the Reynolds number is always much
smaller than 1 because of their small inertia. Therefore, we can
describe their interaction with the flow by the simple Stokes’
law. The drag force (Fi

F) is then

πη= −RF v v6 ( )i i i
F

F p
F p

(5)

where ηF is the fluid dynamic viscosity, Rp is the radius of the
particle, and vi

F and vi
p are the velocities of the fluid and the

particle, respectively.

If the fluid surrounding the particle rotates locally with
angular velocity ω, the corresponding fluid torque (Mi

F) on
particle i is computed as follows:12

ωπη Ω= −⎜ ⎟
⎛
⎝

⎞
⎠RM (2 )

1
2i i

F
F p

3

(6)

The velocity and angular velocity of the fluid are computed
from the linear velocity profile (cf. Figure S1 in the Supporting
Information). This profile is a result of the system geometry,
and the particles are assumed not to alter the profile.

Interactions between the Particles. The most important
input for the DEM model is the description of the normal
forces between the particles. It is necessary to describe the
interaction potential energy (or force) for the entire range of
separation distances between particles. The most common
description of the noncontact forces is the DLVO theory, while
the contact forces can be described by the Born repulsion for
hard particles13 or the JKR theory for soft particles.4 The most
usual combinations are hard particles with noncontact forces
and soft particles without noncontact forces. Our system is
specific in the way that we deal with soft (swollen) adhesive
particles immersed in water. Therefore, the model of normal
interaction must be able to describe (i) the energy barrier
between the particles due to the presence of the EDL, (ii) the
attraction (adhesion) for short separation distances and during
the solid-body contact, and (iii) the elastic repulsion of the soft
particles. These phenomena are separately described by the
DLVO theory (noncontact interactions) and the JKR theory
(contact mechanics), but their combination is not straightfor-
ward.3 In the following part, we first introduce and then
combine these two theories. Finally, the description of the
tangential interactions is given.

DLVO Theory. The DLVO theory is usually expressed in the
form of interaction potential energy (U). The corresponding
interaction force (F) is the negative of the derivative of U with
respect to separation distance (h), that is, F = −dU/dh. For the
van der Waals attractive potential energy (UvdW) between two
spherical particles of the same radius (Rp), we used the
expression1

= −
+

+
+

+ −
+

⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥
⎫
⎬⎪
⎭⎪

U
A R

h hR

R

h R

R

h R

6

2

4

2

( 2 )

ln 1
2

2

vdW
H p

2

2
p

p
2

p
2

p

p

2

(7)

where the separation distance h is given by h = u − 2Rp, where
u is the distance between the centers of the two particles. The
quantity AH is the Hamaker constant, which characterizes the
material of the particles and the surrounding medium.
The electrostatic repulsive potential energy (Uele) of two

colloidal particles can be expressed as1

πε ε ψ κ= + −U R h2 ln[1 exp( )]ele 0 r p 0
2

(8)

where ε0 is the vacuum permittivity, εr is the relative
permittivity of the medium, ψ0 is the surface potential of the
particles (assumed to be constant in the model), and κ is the
reciprocal of the Debye length.
The DLVO potential energy (UDLVO) is obtained simply as

the sum of the two previously mentioned potential energies:
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= +U U UDLVO vdW ele (9)

An example of the DLVO potential energy curve and the
scaling of the height of the potential barrier (Umax) with the
model parameters are shown in Figures S2 and S3, respectively,
in the Supporting Information.
JKR Theory. The JKR theory describes the interaction of

adhesive, elastic solid bodies. The adhesive force in JKR theory
is assumed to act only within the flattened contact region. The
equations for JKR theory used in this work were proposed by
Johnson et al.2 in 1971 and later slightly modified by Marshall
in 2009.12 The equations are valid generally for two spheres
with radii Rp

i and Rp
j and the so-called effective radius (R)

defined as R = Rp
i Rp

j /(Rp
i + Rp

j ). For contact of a sphere with a
plane, the radius Rp

j becomes infinite, and R = Rp
i . When no

external force acts on the particles and the force equilibrium is
reached, we can define the equilibrium radius of the contact
area (a0) as

πγ=
⎛
⎝⎜

⎞
⎠⎟a

R
E

9
0

2 1/3

(10)

where γ denotes the surface energy (to be discussed later) and
E is the effective Young’s modulus, given by

ν ν
=

−
+

−
E E E
1 1 1i

i

j

j

2 2

(11)

where Ei and Ej are the Young’s moduli and νi and νj are the
Poisson’s ratios of the two interacting bodies.
The equation for the (nonequilibrium) radius of the contact

area (a) is implicit:12

δ= −
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥h

a
a

a
a

6 2
4
3

1/3
C

0

2

0

1/2

(12)

where δC is the critical overlap, given by the following equation:

δ =
a

R2(6)C
0

2

1/3 (13)

Finally, the magnitude of the normal force between two
colliding particles (Fne) can be obtained from the expression

= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

F
F

a
a

a
a

4 4ne

C 0

3

0

3/2

(14)

where FC is the magnitude of the critical force, given by

πγ=F R3C (15)

FC corresponds to the maximal adhesive force that can occur
between particles described by JKR theory. A typical force−
distance curve for the JKR theory is shown in Figure S3 in the
Supporting Information.
The precise determination of FC is one of the important tasks

in order to obtain reliable results from the model. The
maximum adhesion force (cf. eq 15) is directly proportional to
the surface energy of the particles (γ), which is experimentally
accessible and does not depend on the particle size. We tried to
obtain γ from experimental studies that used an atomic force
microscope (AFM) for the direct measurement of the force-
distance curves using a so-called colloidal probe.14 In these
AFM measurements, a colloidal particle is attached to the tip of
the AFM cantilever, and the force between the tip particle and
the substrate is measured. In 2002, Hodges et al.15 measured
the pull-off force between polystyrene particles in water as a
function of the size of the particles. Unfortunately, these kinds
of measurements usually provide quite scattered results, and the
construction of any trends from the published data is very
difficult and somewhat ambiguous.15 The theoretical value of γ
for polystyrene in air is predicted to be γtheor = 30 mJ m−2.16

However, the presence of water as the surrounding fluid is
known to reduce the surface energy by approximately 1 order
of magnitude.2,15 Therefore, in this work we used the value γ =
3 mJ m−2, which should correspond to smooth polystyrene
particles immersed in water. The effect of surface roughness is
known to be more important for large particles.15 Thus, for our
case of very small particles (Rp ≈ 50 nm), we assumed the
particle surface to be smooth.
Another possibility for obtaining the value of γ would be to

use the value of the DLVO potential at a certain cutoff distance
(D).17,18 The limitation of this approach lies in the
determination of the cutoff distance, which is influenced by
many factors, and the resulting value of γ is sensitive to small
variations in D. For this reason, the value of γ described in the
previous paragraph was chosen.

Connection of the DLVO Theory and the JKR Theory. The
previous paragraphs describe well the noncontact and contact
interactions in separate theories. A problem arises when one
wants to describe the interaction force or potential energy for
the entire interval of separation distances. The JKR theory
predicts the maximum adhesion force between particles (FC) to
occur at the limit radius of the contact area,17 alim = 0.63a0 (i.e.,
at the corresponding limit of the separation distance h; cf. eq
12). The value of FC can be used to constrain the DLVO
theory, which is the approach used by Hong in 1998.3

However, the separation distance h for which the maximum
adhesive force FC occurs is predicted differently in the DLVO

Figure 1. (a) Potential energy U and (b) force F as a function of the separation distance h. The values of the parameters are Rp = 50 nm, AH = 1.3 ×
10−20 J, ψ0 = −40 mV, κ−1 = 1 nm, γ = 3 mJ m−2, E = 40 MPa, and ν = 0.2.
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and JKR theories. This inconsistency is caused by different
assumptions taken into account for the derivation of the
respective theories. The easiest way to overcome this problem
without introducing a discontinuity into the force-distance
profile is to cut the JKR curve at the point where it crosses the
DLVO curve. However, in that case we lose the determination
of FC, which is an important characteristics of the system. On
the other hand, when we are interested in the agglomeration
behavior of the system, the exact position (unlike the value) of
the maximum adhesion force is not of crucial importance.14

Therefore, keeping in mind a certain arbitrariness, we decided
to overcome the different predictions of the JKR and DLVO
theories by shifting the JKR curve in the direction of the x
(separation distance) axis in such a way that the maximum
adhesion force occurs exactly at the crossing with the DLVO
curve.
The resulting potential energy and force profiles are shown

in Figure 1. We can see that the potential energy curve
describes, apart from the potential barrier already mentioned
before, a deep potential well, the so-called primary minimum.
Two approaching particles at first experience weak adhesion
due to the secondary potential minimum (not apparent in
Figure 1) and then repulsion due to the presence of EDL. If
their energy is high enough, they overcome the barrier and are
brought together by the strong adhesion. When the potential
minimum is reached, they are prevented from further approach
by elastic repulsion. This behavior, represented in terms of
force, is described by the force-distance curve in Figure 1b.
Dissipation Force. The interaction between the particles is

rarely purely elastic because some energy dissipation is likely to
occur during the collision.1 This feature can be introduced into
the DEM by the addition of a dissipation force (FN

d). Let us first
define vi

c as the surface velocity of particle i at the contact point
with particle j:

Ω= + ×v v ri i i i
c

(16)

where × denotes the cross product of the vectors and ri = Rp
i n

is the vector pointing from the center of the particle i to the
contact point (assuming that n is the unit normal vector
pointing from the center of particle i to the center of particle j).
For particle j, the corresponding vector is rj = −Rp

j n. Then the
relative velocity of the surfaces of particles i and j at the contact
point (vij

r) is defined as follows:

= −v v vij i j
r c c

(17)

Now we can proceed to define the dissipation force as12

η= − ·F v nijN
d

N
r

(18)

in which ηN is the damping coefficient, which can be written as

η α= mk( )N f N
1/2

(19)

where m is the mass of the particle, kN is the normal stiffness
coefficient (kN = 4/3E√R), and αf is the coefficient of normal
friction.
Tangential Interactions. There are several different types of

tangential interactions of the particles. Since we restrict
ourselves to two spatial dimensions, the twisting of particles
is not of concern because it involves rotation of the particles in
directions irrelevant for a spatially 2D model. In this work, we
employed models for the resistance to sliding and rolling of
particles. The formulas for these models are given in the
Supporting Information.

Interactions between the Particle and the Wall. The
description of the particle-wall interactions is complex and
involves most of the interaction types and theories mentioned
before in the section about the particle-particle interactions. In
this paper, we focused on the behavior of the colloidal particles
in the bulk. Therefore, we decided to minimize the influence of
the wall on the system behavior.
Colloidal particles immersed in solvent are known to

experience the so-called hydration (or solvation) force.17 This
force arises from the interactions of the solvent molecules in
the so-called hydration shell, but its nature is still not
completely revealed.17 Nevertheless, it causes strong short-
range repulsion between the involved bodies. In terms of the
interaction potential energy (Uh), this repulsion can be
phenomenologically described using the following exponential
dependence:19

π δ δ= −U R F Hexp( / )h p 0 0
2

0 (20)

where H is the particle-wall separation distance, F0 is the
hydration force constant, and δ0 is the characteristic decay
length. We adopted the values of the constants used by Wu et
al.,19 as they satisfactorily describe the behavior of the force for
colloidal particles. The values of the constants used in our
model for the particle-wall interactions were F0 = 2 × 108 N
m−2 and δ0 = 3 × 10−10 m.

■ COAGULATION KINETICS
The process of coagulation can be characterized by various
quantities, among which the most important are the character-
istic time of coagulation (tc) and the rate at which doublets are
formed (r1,1). To determine r1,1, we define the number of
primary particles contained in doublets as the quantity np,2. The
rate of doublet formation can be obtained from the temporal
development of np,2 by taking its first derivative with respect to
time [i.e., r1,1 ∝ 1/2(dnp,2/dt) because we defined np,2 as the
number of primary particles in doublets], and the doublet
formation rate constant (k1,1) can be obtained as follows:

=k
V

N
r

2
1,1

T
2 1,1 (21)

where VT is the total volume of the system and N is the number
of particles. To eliminate the influence of the initial positions of
the particles, we decided to evaluate k1,1 at the point where the
growth rate of np,2 reaches its maximum [i.e., the doublet
formation rate used for the evaluation of k1,1 was taken to be
r1,1
max = 1/2 max(dnp,2/dt)].
It is worth noting that the determination of VT in our system

is not straightforward. Since the particles are allowed to move
only in two spatial dimensions, the appropriate quantity to
describe the system would be its total area (AT). However, as
we want to be consistent with the common units of k1,1 (m

3

s−1), we introduce the following transformation. In three
dimensions, the concentration of the particles can be
characterized by the volume fraction of the particles, while in
two dimensions the corresponding quantity is the “area
fraction” of the particles. If we assume that these two are
equal (i.e., the ratio between solid and voids is the same for 2D
and 3D), we can obtain the VT from the following relation:

=V
V A

AT
p T

p (22)
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where Vp = 4/3πRp
3 is the volume of the particle and Ap = πRp

2

is the projected area of the particle.

■ RESULTS AND DISCUSSION
The stability of colloidal systems is controlled by the interplay
between several influencing factors, of which the most
important are (i) the height of the potential barrier (Umax);
(ii) the energy inputs, due to either Brownian motion or
agitation of the system; and (iii) the particle volume fraction.
These factors determine the process of coagulation, which is
the main topic of this paper. First we present the results for
particle-particle interactions that illustrate the capabilities of the
model. Then we show the results of larger simulations dealing
with the coagulation kinetics.
Particle-Particle Interactions. To introduce the model

behavior, we briefly present the results of two-particle
simulations. If not stated otherwise, we used the values of
parameters listed in Table 1.

The problem of the stability of colloidal systems always
(even for nonsimplified systems) can be reduced to the
interactions of primary particles. For dilute systems (ϕ ≪ 1%),
this assumption is further developed, and only two-particle
collisions are usually assumed to affect the system stability.5

Two aspects are important for the resulting stability: (i) the
collision frequency and (ii) the collision efficiency. The first
quantity can be statistically determined from the Smoluchowski
equation,20 at least for dilute systems. The collision efficiency
for two-particle collisions refers to whether the collision results
in coagulation or in a rebound and can be expressed in terms of
the critical Pećlet number (Pec). To determine Pec for a system
with two particles, we performed simulations of their direct
collision. For this simplified system, Pe is defined as follows:

= ·
Pe

m
k T

v n1/2 ( )r 2

B (23)

which means the energy of the collision in the normal direction
in units of kBT. The increase in Pec with increasing particle
radius is shown in Figure 2. The critical value separates the
region where particles rebound (Pe < Pec) from that where they
coagulate (Pe > Pec). We have also plotted the values of Pec
predicted by eq 1, where the flow-specific coefficient α is equal
to unity for this case (i.e., no flow in the system). We can see
that the results of the dynamic model correspond almost

perfectly with the theoretical prediction, confirming the
accuracy of our calculations.

Dynamics of Coagulation. The model used in this work is
based on pairwise interactions between two particles (i.e., three-
particle forces and torques are not taken into account). These
pairwise interactions can be summed up, thus allowing systems
with a large number of particles to be studied. One of the big
advantages of the DEM model is the possibility directly
observing the phenomena taking place in the dynamic system.
We performed simulations of the system described in the
previous sections for a broad range of volume fractions of the
particles (ϕ ∈ ⟨0.19; 0.49⟩). For these very concentrated
mixtures, we present the results of their dynamic behavior when
exposed to the shear flow. Snapshots from the simulation of the
system consisting of 4000 primary particles (ϕ = 0.4) exposed
to a shear rate (G) of 6.4 × 104 s−1 at different phases of the
aggregation process are shown in Figure 3. We can see that
during the initial lag phase, only a small number of small
aggregates is formed. The fast aggregation process starts when a
larger aggregate is formed in the system. The large aggregate
then very quickly coagulates with the remaining primary
particles to form dendritic structures. One large interconnected
aggregate is present at the end of the coagulation process.
In Figure 4a we show the development of the number of

primary particles in aggregates (np) with time. We can see that
the curve exhibits a sigmoidal shape with a very slow increase at
the beginning. After the lag phase, the onset of coagulum
formation occurs, and np linearly increases with time. Finally, np
reaches a plateau where all of the particles are contained in the
aggregate. This shape (with certain variation) is typical for all of
the simulations we performed with shear rates in the range
from 6.4 × 104 to 9.0 × 105 s−1.
The process of coagulation is often characterized by the rate

at which doublets are formed. This is usually considered as the
measure of the overall rate of coagulation. In Figure 4b we
present the number of particles contained in doublets (np,2) as a
function of time. The total number of particles in aggregates
(np) is also shown for comparison. For the purpose of the
logarithmic plot, these quantities are plotted as np,2 + 1 and np +
1. Initially some doublets are formed, but as the coagulation
proceeds their number remains more or less constant, and in
the later stages np,2 gradually decreases and reaches a value of
zero at the end.
Coagulation of primary particles is an important character-

istic of the system since doublet formation is the dominant

Table 1. Default Values of Model Parameters Used in the
Simulations

quantity value name

Rp 50 nm particle radius
AH 1.3 × 10−20 J Hamaker constant
ηF 1 × 10−3 Pa s fluid dynamic viscosity
T 293.15 K absolute temperature
E 40 MPa Young’s modulus
ν 0.2 Poisson’s ratio
ρp 1000 kg m−3 particle density
μeff 0.5 effective friction coefficient
εr 80 relative permittivity of water at T = 293.15 K
ψ0
p −30 mV surface potential of the particles

κ−1 1 nm Debye length
θcrit π/4 critical rolling angle
γ 3 mJ m−2 surface energy of the particles

Figure 2. Dependence of the critical Pećlet number (Pec) on the
particle radius for different values of the surface potential (ψ0). The
lines represent the prediction of eq 1, and the points are results of the
two-particle dynamic simulations.
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process in the initial phases of the coagulation.8 The rate
constant for doublet formation (k1,1) is strongly dependent on
both the shear rate G and the volume fraction of particles ϕ, as
is apparent from the results of simulations presented in Figure
5. The rate constant k1,1 can be obtained from theory.
Considering two equal-sized nonstabilized particles in simple

shear flow, we obtain the following relation (a result due to
Smoluchowski):

=k
R G32

31,1
t p

3

(24)

which for our system results in a k1,1
t value of ∼1 × 10−16 m3 s−1

(rate constant accounting only for the frequency of the
collisions). With the DEM model, we obtained k1,1 values
approximately 1−3 orders of magnitude lower (cf. Figure 5).
Since the particles are stabilized by the EDL in our model,
slower coagulation than for the nonstabilized case is expected.
This serves as another justification of the results obtained with
our model (also see Figure S5 in the Supporting Information).
Considering the very broad range of k1,1 values occurring in real
systems and the difficulties in their determination, the values
obtained from our simulations can be considered as meaningful.
It is apparent that the aggregation behavior of the stabilized

system exposed to shear is an autocatalytic process, which was
also observed experimentally.5,7,21 This means that after the
initial lag phase, the system coagulates quickly until all of the
primary particles are contained in aggregates. This phenomen-
on can be explained both in terms of the frequency and the

Figure 3. Snapshots from the simulation for the system with particle volume fraction (ϕ) of 0.4 under a shear rate (G) of 6.4 × 104 s−1. A movie
showing this simulation is available in the HTML version of this paper.

Figure 4. (a) Number of primary particles in aggregates (np) vs time and (b) numbers of primary particles in doublets (np2 + 1) and in all aggregates
(np + 1) vs time for the system with ϕ = 0.4 and G = 6.4 × 104 s−1.

Figure 5. Rate constant of doublet formation (k1,1) as a function of
shear rate G for different particle volume fractions ϕ.
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efficiency of the collisions. The explanation of the first one
comes naturally from eq 24, if we substitute the radius Rp with
the mean radius of two different spheres [(Ri + Rj)/2]. Then, as
one of the radii increases, the resulting coagulation rate
constant k1,1

t grows with the third power of the substituted
radius. The efficiency is increased as a result of the higher
energy of the collisions. In other words, as a result of the
greater momentum of the larger cluster, the resulting Pećlet
number of the collision increases, while the critical Pećlet
number remains unaltered (since the same interactions
between primary particles exist). This leads to an easier
crossing of the potential barrier for the collision of a primary
particle with a large cluster.
Another important quantity for the characterization of the

coagulation process is the characteristic coagulation time (tc).
The coagulation dynamics is typically connected with a sharp
increase in the viscosity of the whole system, which makes
viscosity (or impeller torque) measurements a convenient tool
for the observation of such systems. In 2006, Guery et al.21

proposed a method to determine tc from rheological data. It is
based on finding the linear trends in the evolution of viscosity
with time in both the lag and growth phases. The intersection
of the obtained lines then determines the value of tc. Since the
temporal development of the number of particles in aggregates
(np) in our simulations exhibits a trend very similar to the trend
of viscosity measured by Guery et al.21 and Zaccone et al.,7 we
performed the aforementioned procedure for the determination
of tc (cf. Figure 4a). The results of this analysis are shown in
Figure 6 as the decreasing dependence of tc on the shear rate G
in logarithmic and double logarithmic plots. The inverse trend
can be observed for the dependence of tc on ϕ (i.e., more
concentrated systems coagulate faster). These trends are in
agreement with the experimental measurements of Zaccone et
al.,7 who proposed an exponential scaling of tc with G.
However, it is apparent from Figure 6b that for a broader range
of G the dependence rather follows a power-law scaling.
It is interesting to compare the characteristic time of

coagulation obtained from the global time development of np
with the characteristic time of doublet formation (tc,1,1). Since
the formation of doublets follows second-order kinetics, the
characteristic time of this process can be obtained from the
following relation:

=t
ck

1
c,1,1

1,1 (25)

where c is the initial number concentration of the particles.
From the comparison of tc with tc,1,1 shown in Figure 7, it is

apparent that the characteristic time of doublet formation is
much larger than the characteristic time for the whole
coagulation process. This is the case because the process of
coagulation is driven by doublet formation only in the early
stage; once a larger aggregate is formed, it grows and the
coagulation proceeds much faster.
The data from Figure 6 can also be plotted as the

dependence of the characteristic coagulation time tc on the
volume fraction of particles ϕ. We present this graph in Figure
8 as an exponential dependence of tc on ϕ, which varies in the
range between 0.19 and 0.49. Through this interval, tc decreases
almost by 2 orders of magnitude. Similar behavior has been
observed experimentally but for a narrower range of particle
volume fractions.7 This suggests a very strong concentration

Figure 6. Characteristic coagulation time (tc) as a function of the applied shear rate G for different particle volume fractions ϕ: (a) logarithmic plot;
(b) double logarithmic plot (the lines are power-law fits).

Figure 7. Characteristic times of coagulation (tc, open symbols) and
doublet formation (tc,1,1, solid symbols) as functions of the shear rate
G for different particle volume fractions ϕ.

Figure 8. Characteristic time of coagulation tc as a function of particle
volume fraction ϕ for different shear rates (G/s−1).
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dependence of the behavior of stabilized colloidal systems
subjected to shear, which is a very important observation for
practical usage.
Another important issue is the influence of the surface

potential (ψ0) on the behavior of the system. We performed
simulations for the values of ψ0/mV ∈ ⟨−50; −30⟩, and the
results of this parametric study are shown in Figure 9. It is

apparent that tc decreases exponentially with decreasing
absolute value of ψ0, as expected because the value of the
surface potential is known to influence the behavior of the
colloids very strongly.1

Variation of the surface energy (γ) produced no significant
effect on the doublet formation rate and characteristic
coagulation time. It has a serious effect on the shape of the
aggregates, but this topic is out of the scope of this paper. A
negligible effect on the presented results was observed also for
the variation of the parameters of the hydration force (particle-
wall interaction).
All of the presented results for the coagulation dynamics deal

with systems subjected to high shear rates (G/s−1 ∈ ⟨6.4 × 104;
9.0 × 105⟩). The modeled values of G are higher than in
industrial processes, but the choice of large shear rates was
necessary for the following reasons. The presented DEM model
is based on the interparticle interactions, and the formulations
of the forces and torques acting on the particles require only
physical constants and material properties as parameters. The
formulations are based on the physical laws describing the
phenomena of double-layer repulsion, solid-body contact, etc.
Such a detailed model, however, requires a very small
integration time step (Δt ≈ 1 × 10−10 s). At the same time,
a high number of primary particles is needed to obtain
statistically relevant results (e.g., for the doublet formation
rate). The accessible time scale of the whole process is
therefore limited by the computational feasibility of the
calculations. To be able to capture the dynamics of the
coagulation process within the time scale of our model, we had
to consider systems subjected to high shear rates (that are still
experimentally accessible6). Most importantly, even with the
above-mentioned limitations, our model is able to capture the
trends of the coagulation in disperse systems and to provide
semiquantitative predictions with no adjustable parameters. A
possible approach for accessing the low-shear-rate region with
our model could employ an initial configuration with seeds
(doublets or triplets) and consequently model the fast-growth
stage of coagulation. Unfortunately, in that case we could easily

lose the crucial information about the characteristic time of the
overall coagulation process.

■ CONCLUSIONS
To the best of our knowledge, we have presented here the first
discrete element method (DEM)-based model of concentrated,
charge-stabilized disperse systems under shear flow in the liquid
phase. Parametric studies of the coagulation considered the
influence of the most important parameters, namely, the
particle volume fraction (ϕ), the surface potential (ψ0), and the
shear rate (G). We quantified the dependence of the
coagulation behavior on all of these parameters. A general
trend that a more concentrated and less stabilized system
subjected to higher shear is more likely to undergo coagulation
is in agreement with experimental and theoretical studies. We
found that the rate of doublet formation, a commonly used
measure of the coagulation rate, is an important characteristic
of the process. Moreover, the DEM model employed in this
study enabled us to investigate the behavior of the coagulation
more in detail, since it was possible to track each single collision
and determine the events leading to the coagulation. From
these results it is apparent that the autocatalytic nature of the
process is the key feature for its understanding. In particular, we
have shown that the characteristic time of doublet formation is
substantially higher (roughly by 2 orders of magnitude) than
the characteristic time of the coagulation itself. This suggests
that for the correct description of the coagulation kinetics we
have to consider the whole system with its complexity, and the
DEM model (even with its simplifications) is a great tool for
this purpose. It is worth noting that the model used in this work
is completely based on physical laws and mechanisms and
contains no adjustable parameters.
The lack of experimental data in the field of the complex fluid

rheology does not allow a thorough validation of the
quantitative predictions of our DEM model. Nevertheless, we
have demonstrated that the model is able to semiquantitatively
predict the behavior of concentrated disperse systems subjected
to shear. These results are valuable for the operation of
industrial processes as well as process models, where they can
serve as constraints for the parametric space. An important
drawback of our model is its high demand for computational
power and time.
In a future paper, the influence of the particle-wall interaction

on the process of fouling will be studied in detail with the
introduced model. Also, the experimentally observed approach-
retraction hysteresis during solid-body contact of the particles
(resulting from AFM measurements) will be incorporated into
the model.
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(20) Smoluchowski, M. Über Brownsche Molekularbewegung unter
Einwirkung a ̈ußerer Kra ̈fte und den Zusammenhang mit der

verallgemeinerten Diffusionsgleichung. Ann. Phys. (Berlin, Ger.) 1915,
353, 1103−1112.
(21) Guery, J.; Bertrand, E.; Rouzeau, C.; Levitz, P.; Weitz, D. A.;
Bibette, J. Irreversible shear-activated aggregation in non-Brownian
suspensions. Phys. Rev. Lett. 2006, 96, No. 198301.

Langmuir Article

dx.doi.org/10.1021/la500101x | Langmuir 2014, 30, 2693−27022702

http://www.netlib.org/

